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Synthesis and structure–activity studies of antibacterial
oxazolidinones containing dihydrothiopyran
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Abstract—A new series of antimicrobial oxazolidinones bearing unsaturated heterocyclic C-rings is described. Dihydrothiopyran
derivatives were prepared from the saturated tetrahydrothiopyran sulfoxides via a Pummerer-rearrangement/elimination sequence.
Two new synthetic approaches to the dihydrothiazine ring system were explored, the first involving a novel trifluoroacetylative-det-
rifluoroacetylative Pummerer-type reaction sequence and the second involving direct dehydrogenation of tetrahydrothiopyran S,S-
dioxide intermediates. Final analogs such as 4 and 13 represent oxidized congeners of recent pre-clinical and clinical oxazolidinones.
� 2006 Elsevier Ltd. All rights reserved.
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The oxazolidinones, exemplified by linezolid, comprise a
promising new class of antibacterial protein synthesis
inhibitors with activity against methicillin-resistant
Staphylococcus aureus (MRSA) and Staphylococcus
epidermidis (MRSE).1 The clinical and commercial
success of linezolid has inspired the search for second-
generation oxazolidinones with improved antibacterial
potency and/or spectrum. Oxazolidinone analogs 1 and
2 exemplify this new generation of oxazolidinones and
have been the subject of pre-clinical and clinical studies.2

These new oxazolidinones substitute sulfur-containing
heterocycles for the morpholine ring of linezolid and,
in the case of 2, introduce an additional fluorine atom
in the B-ring.
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Structure–activity studies of these new C-ring types

included the examination of oxidized congeners (i.e.,
analogs bearing dihydrothiopyran or dihydrothiazine
ring systems). We considered that these unsaturated
C-ring structures might confer improved activity against
fastidious Gram-negative bacteria as is often observed
for fully unsaturated (i.e., aromatic and heteroaromatic)
C-ring oxazolidinone analogs.3 Here, we describe the
synthesis and antibacterial activity of oxidized conge-
ners of 1 and 2, including a systematic exploration of
B-ring and C-5 SAR. We also report new synthetic
methods to access the dihydrothiazine ring system.

We prepared dihydrothiopyran and dihydrothiazine
ring systems from the saturated precursors using Pum-
merer-type reaction sequence (Schemes 1 and 2).4 The
synthesis of dihydrothiopyran analogs 4a–c began from
NHAcNHAc3a-c 4a-c

a X, Y = H;  b X = F; Y = H;  c X, Y = F

Scheme 1. Reagents and conditions: (a) (CF3CO)2O, N-methylmor-

pholine, CH2Cl2, rt, 20 h; (b) AcOOH, THF, rt (60–80% overall).
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Scheme 2. Reagents and conditions: (a) (CF3CO)2O, N-methylmorpholine, CH2Cl2, rt; (b) mCPBA, CH2Cl2; (c) K2CO3, MeOH, CH3CN, reflux

(30–45% for three steps); (d) DDQ, dioxane, reflux, 22 h (35%); (e) 2.5 equiv LiOt-Bu, 1.3 equiv (S)-ClCH2CH(OH)CH2NHBoc, DMF (71%).
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the sulfoxide analogs 3a–c, which were prepared as
described elsewhere.5 Reaction of 3a–c with trifluoro-
acetic anhydride in the presence of N-methylmorpholine
produced the dihydrothiopyran ring system in a single
step. This conversion presumably proceeds via initial
Pummerer rearrangement followed by elimination of
trifluoroacetic acid from the a-trifluoroacetoxy sulfide
intermediate.6 Oxidation with peracetic acid in THF
then provided sulfone analogs 4a–c. When thiomorpho-
line sulfoxide analogs 5a–b5 were subjected to similar
reaction conditions, the unexpected trifluoroacetyl-
substituted compounds 6a–b were obtained (Scheme 2).
In this case, the initially formed dihydrothiazine interme-
diate reacts with excess trifluoroacetic anhydride in the
reaction mixture, thus generating 6a–b. The trifluoroace-
tyl group in 6a–b could be removed under surprisingly
mild conditions (K2CO3 in refluxing MeOH–MeCN). A
final oxidation step then provided the desired dihydrothi-
azine S,S-dioxide intermediates 7a–b. For the bis-fluoro
B-ring series (i.e., 7c) an alternative protocol was em-
ployed. Thiomorpholine intermediate 85 was oxidized
with DDQ in refluxing dioxane to afford the dihydrothi-
azine 9 directly in modest yield along with recovered 8.
This protocol was only effective with bis-fluorinated inter-
mediates such as 8. The desired bis-fluoro oxazolidinone
intermediate 7c was prepared from 9 using established
procedures.7

The synthesis of analogs of various C-5 side-chain type
was accomplished as shown in Scheme 3, starting from
compounds 4a–c or 7a–c. The C-5 acetamide in 4a–c
was cleaved via acid hydrolysis and the resulting amines
10a–c acylated with anhydride or ester reagents. This
two-step protocol provided dihydrothiopyran analogs
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Scheme 3. Reagents and conditions: (a) for 4a–c: HCl, MeOH, 75 �C, 20 h;

(b) (RC@O)2O, Py, CH2Cl2 (80% overall); (c) CHF2C(O)OEt or Ph2CHCH
12a–k bearing dichloroacetamide, difluoroacetamide,
or difluorothioacetamide8 functionality at C-5.

The synthesis of dihydrothiazine analogs 13a–k pro-
ceeded similarly, starting from Boc-protected amino-
methyl oxazolidinones 7a–c. Removal of the Boc
group in 7a–c was accomplished with TMSOTf in
2,6-lutidine,9 after we discovered that the dihydrothi-
azine ring in 7a–c was sensitive to typical acidic Boc
cleavage conditions. The resulting amines 11a–c were
then converted to dihydrothiazine analogs 13a–k as de-
scribed above for 12a–k (Scheme 3).

The new oxazolidinone analogs were tested against a
panel of Gram-positive and fastidious Gram-negative
bacteria. Minimum inhibitory concentration (MIC, in
lg/mL) values were determined using standard broth
microdilution methods.10 The activities of dihydrothio-
pyran analogs are summarized in Table 1 and those for
the dihydrothiazine analogs are presented in Table 2.
MIC data for the progenitor analogs 1 and 2 are provided
for comparison.

The in vitro activity of dihydrothiopyran analogs was
similar to that of the parent tetrahydrothiopyran analog
1. The acetamides 4a–c had similar Gram-positive activity
as 1 but were generally less active against the Gram-
negative pathogen Haemophilus influenzae. Surprisingly,
the degree of B-ring fluorination had little impact on
overall potency, although a mono-fluoro B-ring does
appear optimal for activity against H. influenzae and
Moraxella catarrhalis. Among the C-5 side chains exam-
ined, the dichloroacetamide variant (e.g., 12a, 12e, and
12i) consistently produced the best Gram-negative activity,
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2CH2OC(S)CHF2, Et3N, MeOH (40–80% overall).



Table 1. Minimum inhibitory concentrations (MICs, lg/mL) for dihydrothiopyran analogs 4a–c and 12a–k against Gram-positive and fastidious

Gram-negative bacteriaa

Compound X Y R Q S. a. MIC S. p. MIC E. f. MIC H. i. MIC M. c. MIC

— Linezolid 4 1 4 16 8

1 PNU-141659 2–4 0.5 2 4–8 2–4

4a H H CH3 O 4–8 1–2 4 8–16 8

12a H H CHCl2 O 2–4 0.5 2 4 4

12b H H CHCF2 O 4–8 1 4 8–16 4–8

12c H H CHCF2 S 2–4 0.5–1 2 8–16 4

4b H F CH3 O 4 1 2 8 2

12e H F CHCl2 O 2–4 0.5 2 4 2–4

12f H F CHCF2 O 2–4 1 2 4–8 4–8

12g H F CHCF2 S 2 0.5 1 8–16 2–4

4c F F CH3 O 4 1 2 8–16 8

12i F F CHCl2 O 2 0.5–1 2 8 4

12j F F CHCF2 O 2 1 2 8–16 8

12k F F CHCF2 S 1–2 0.5 2 16 4

a Strains: S. a. Staphylococcus aureus UC12673, UC9213, ATCC29213, and UC9271; S. p. Streptococcus pneumoniae ATCC6305 and 31573; E. f.

Enterococcus faecium UC12712, vancomycin-resistant; H. i. Haemophilus influenzae 30063 and ATCC31517; M. c. Moraxella catarrhalis 30607 and

30603.

Table 2. Minimum inhibitory concentrations (MICs, lg/mL) for dihydrothiazine analogs 13a–k against Gram-positive and fastidious Gram-negative

bacteriaa

Compound X Y R Q S. a. MIC S. p. MIC E. f. MIC H. i. MIC M. c. MIC

— Linezolid 4 1 4 16 8

2 PNU-288034 2 1 2 4–8 4

13a H H CHCl2 O 4 0.5–1 2 2–4 2–4

13b H H CHCF2 O 4–8 1 2 8–16 4–8

13c H H CHCF2 S 2 0.5 1 4–8 4–8

13d H F CH3 O 4 0.5 2 4 2–4

13e H F CHCl2 O 2–4 0.5 1–2 2–4 2–4

13f H F CHCF2 O 4 0.5–1 2 4 4

13g H F CHCF2 S 1–2 0.5 1 4 4–8

13h F F CH3 O 2–4 0.5–1 1–2 8 4–8

13i F F CHCl2 O 4 0.5–1 1 4–8 4

13j F F CHCF2 O 4 0.5–1 1 4–8 4

13k F F CHCF2 S 1–2 0.25 0.25 4–8 2–4

a Strains: see Table 1.
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while retaining good activity against the rest of the panel.
The novel C-5 difluorothioacetamide analogs 12c, 12g,
and 12k exhibited excellent activity against the Gram-posi-
tive strains, although H. influenzae activity suffered
somewhat.

Dihydrothiazine analogs 13a–k displayed antibacterial
activity comparable or slightly better than the thiomorph-
oline progenitor 2 (Table 2). In comparison to dihydrothi-
opyrans 12a–k, the dihydrothiazine analogs 13a–k were
somewhat more potent in general, and in particular
against H. influenzae strains. The mono-fluoro B-ring
type was optimal with respect to both activity and
spectrum. As in the dihydrothiopyran series, the dichloro-
acetamide side chain provided the best Gram-negative
activity (13a, 13e, and 13i), while the difluorothioaceta-
mide C-5 moiety conferred excellent Gram-positive
activity. For example, the difluorothioacetamide analog
13k was 4- to 8-fold more potent than the saturated
thiomorpholine analog 2 against Streptococcus pneumo-
niae and Enterococcus faecium strains. In total,
five dihydrothiazine analogs displayed improved
Gram-negative activity as compared to the thiomorpho-
line oxazolidinone PNU-288034 (2).
In summary, novel oxazolidinones featuring dihydrothi-
opyran and dihydrothiazine heterocyclic C-rings were
prepared and evaluated for antimicrobial activity.
En route to the dihydrothiazine derivatives, two new
synthetic approaches to this unusual heterocyclic ring
system were explored. These novel unsaturated C-ring
analogs exhibit in vitro antibacterial activity similar
and in some cases superior to that of fully saturated pro-
genitors 1 and 2, and of linezolid. More notable
improvements in potency and spectrum can be realized
through the introduction of various halogenated amide
and thioamide C-5 side-chain moieties.
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