

Substituted homoallenyl aldehydes and their derivatives. Part 2: Azines

Juraj Galeta, Stanislav Man, Aneta Valoušková, Milan Potáček*

Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Received 21 March 2012; Revised 7 June 2012; Accepted 11 June 2012

Dedicated to Professor Štefan Toma on the occasion of his 75th birthday

This paper deals with the preparation of a variously substituted non-symmetrical azine set. The starting molecule for their preparation was a protected hydrazone. The protection was performed applying Zwierzak's method. This procedure is based on the transfer of hydrazine to diethyl-hydrazidophosphate, which reacts with aldehydes to produce protected hydrazones. In the second step of the procedure, under the action of sodium hydride, the addition of another aldehyde affords non-symmetrical azines in the reaction with the protected hydrazine. The procedure was shown to be a useful and effective method. In this, the second part of our study, we present results devoted to the preparation and full identification of non-symmetrical azines. (c) 2012 Institute of Chemistry, Slovak Academy of Sciences

Keywords: allenyl, azine, aldehyde, hydrazone, deprotonation, non-symmetrical

Introduction

The preparation of protected hydrazones is the first part of azine synthesis by Zwierzak's method (Zwierzak & Sulewska, 1976; Koziara et al., 1986). We used this method with some changes to the synthetic pathway (Galeta et al., 2013) and we report here on the success of the second step, in which protected hydrazones under the treatment of sodium hydride react with the submitted aldehyde to produce non-symmetrical azines. Our targets were azines containing an allenyl skeleton (Schweizer & Lee, 1984; Schweizer et al., 1987). Syntheses of numerous organic compounds with biological activity have been based on the allenyl synthon (Zimmer, 1993; Brandsma, 2001; Brandsma & Nedolya, 2004; Krause & Hashmi, 2004; Brandsma, 2004; Brasholz et al., 2009). In the past, symmetrical azines were used in the preparation of fused cyclic compounds in intra-molecular crisscross cycloaddition reactions (Zachová et al., 2005) leading to four fused five-membered rings and for research into their interesting transformations when

treated with electrophiles (Galeta & Potáček, 2012; Zachová et al., 2006, 2009). Non-symmetrical azines serve as educts for the preparation of fused tricyclic heterocyclic systems by combined intra-intermolecular criss-cross cycloaddition (Galeta et al., 2009, 2011; Man et al., 2002, 2004, 2005).

Experimental

Unless stated otherwise, all reagents were purchased from commercial (Sigma–Aldrich, USA) supplier and used as received. Diethyl ether and toluene were distilled from sodium/benzophenone prior to use. All reactions were carried out under a dry argon atmosphere and monitored by TLC (Merck F_{254} silica gel; Merck, Germany). Products were separated by liquid chromatography with a Horizon HPFC System (Biotage, Sweden) fitted with Biotage Si 12+M and Si 25+M columns. FTIR spectra were recorded with a GENESIS ATI (Unicam, UK) spectrometer. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Avance 300 spectrometer (Bruker, USA) op-

^{*}Corresponding author, e-mail: potacek@chemi.muni.cz

Fig. 1. Two synthetic approaches leading to non-symmetrical allenyl azines	IV.
Table 1. Collection of non-symmetrical allenyl azines IVa-IVax	

Vva 1-Adamantyl H 69 24 Vbb TM H 86 3 Vd Me 1-Adamantyl 87 1 Vd Me 1-Adamantyl 77 0.5 Vvg 1-Adamantyl 88 8 Vfg 1-Adamantyl 88 8 Vfg 1-Adamantyl 65 6.5 Vvg 1-Adamantyl 77 1 Vvg 1-Adamantyl 76 5 Vvj Me 2-Furyl 83 8.5 VVi H 2-Thiophenyl 87 1 Vvi H 2-Thiophenyl 90 1 Vvi H 2-Thiophenyl 90 1 Vvi H 2-Thiophenyl 90 1 Vvi H PheO-Ph 84 2 Vvi H PheO-Ph 84 2 Vvi H PheO-Ph	Compound	R ¹	R	Yield/%	Reaction time/h
I/bcTMSH863I/VcH1-Adamantyl871I/VdMe1-Adamantyl870.5I/VePyrrol1-Adamantyl888I/fMorph1-Adamantyl656.5I/g1-Adamantyl771I/VaMorph1-Adamantyl7624I/ViH2-Furyl831I/ViH2-Furyl838.5I/ViH2-Thiophenyl901I/VaTMS2-Thiophenyl901I/VaMe2-Thiophenyl765I/VoHp-McO-Ph842I/VaMep-McO-Ph842I/VaMep-McO-Ph842I/VaMep-Tolyl872I/VaMep-Tolyl872I/VaHp-Phonyl832I/VaHPhenyl832I/VaHPhenyl832I/VaMep-Tolyl872I/VaHPhenyl631I/VaHp-CL-Ph832I/VaMep-CL-Ph832I/VaMep-CL-Ph832I/VaMep-CL-Ph832I/VaMep-NO2-Ph763I/VaMep-CL-Ph832I/VaMep-NO2-Ph <t< td=""><td>IVa</td><td>1-Adamantyl</td><td>Н</td><td>69</td><td>24</td></t<>	IVa	1-Adamantyl	Н	69	24
IVcII1-Adamantyl871IVdMe1-Adamantyl888IVfMorph1-Adamantyl888IVfMorph1-Adamantyl771IVhPhenyl1-Adamantyl771IVhPhenyl1-Adamantyl7624IViH2-Furyl831IViMe2-Furyl838.5IViMe2-Thiophenyl871IVmMe2-Thiophenyl871IVmMe2-Thiophenyl765IVnHp-MeO-Ph792IVnTMS2-Thiophenyl765IVnHp-MeO-Ph862IVnHp-MeO-Ph862IVaMep-MeO-Ph862IVaHp-Tolyl872IVaHp-Tolyl872IVuHPhenyl832IVuHPhenyl832IVuHPhenyl832IVuHPhenyl832IVaHamantylPhenyl631IVaMep-CP-Ph832IVaI-AdamantylPhenyl832IVaHp-CP-Ph832IVaHp-CP-Ph832IVaHp-CP-Ph762IVaHp-CP-Ph <t< td=""><td>IVb</td><td>\mathbf{TMS}</td><td>Н</td><td>86</td><td>3</td></t<>	IVb	\mathbf{TMS}	Н	86	3
IVaMe1-Adamantyl770.5IVePyrol1-Adamantyl656.5IVg1-Adamantyl1656.5IVg1-Adamantyl1624IViH2-Furyl831IViH2-Furyl831IViH2-Furyl838.5IViH2-Furyl901IViH2-Thiophenyl901IVinMas2-Thiophenyl901IVinMas2-Thiophenyl902IVinHp-MeoN-Ph862IVinHp-MeoN-Ph862IVinHp-MeoN-Ph862IVinEtp-MeO-Ph862IVinEtp-Tolyl872IVinEtp-Tolyl872IVinMep-Tolyl872IVinMePhenyl832IVinHPhenyl832IVinHPhenyl832IVinHPhenyl832IVinHPhenyl902IVinHPhenyl832IVinHPhenyl832IVinHPhenyl832IVinHPhenyl902IVinHPhenyl832IVinHPhenyl832IVin <td>IVc</td> <td>Н</td> <td>1-Adamantyl</td> <td>87</td> <td>1</td>	IVc	Н	1-Adamantyl	87	1
<i>IVe</i> Pyrrol1-Adamantyl888 <i>IVf</i> Morph1-Adamantyl656.5 <i>IVg</i> 1-Adamantyl771 <i>IVh</i> Phenyl1-Adamantyl771 <i>IVi</i> H2-Furyl831 <i>IVi</i> H2-Furyl838.5 <i>IVi</i> H2-Furyl838.5 <i>IVi</i> H2-Thiophenyl871 <i>IVm</i> Me2-Thiophenyl871 <i>IVm</i> H2-Thiophenyl862 <i>IVm</i> Me2-Thiophenyl765 <i>IVn</i> TMS2-Thiophenyl765 <i>IVo</i> Hp-McO-Ph842 <i>IVr</i> Etp-McO-Ph842 <i>IVr</i> Kp-Tolyl892 <i>IVa</i> Mep-Tolyl892 <i>IVa</i> Mep-Tolyl872 <i>IVa</i> HPhenyl902 <i>IVa</i> Phenyl<	IVd	Me	1-Adamantyl	77	0.5
IVfMorph1-Adamantyl656.5IVg1-Adamantyl771IVhPhenyl1-Adamantyl5624IViH2-Furyl831IViMe2-Furyl838.5IViH2-Thiophenyl871IVkTMS2-Furyl838.5IViH2-Thiophenyl901IVmMe2-Thiophenyl901IVnMMS2-Thiophenyl902IVnMe2-Thiophenyl902IVnMep-Meo-Ph862IVrHp-Meo-Ph862IVrKp-Meo-Ph862IVrHp-Meo-Ph862IVrMep-Tolyl872IVaHp-Tolyl872IVuMep-Tolyl872IVuMePhenyl832IVuMePhenyl832IVaHp-CPH832IVaHp-CPH832IVaHp-CPH832IVaHp-CPH812IVacEtp-CPH812IVacEtp-CPH861IVacHp-CPH812IVacHp-NO2-Ph762IVacMep-CPH861IVaa <td>IVe</td> <td>Pyrrol</td> <td>1-Adamantyl</td> <td>88</td> <td>8</td>	IVe	Pyrrol	1-Adamantyl	88	8
IVgi-Adamantyl771IVhPlenyli-Adamantyl5624IViH2-Furyl831IVjMe2-Furyl911IVkTMS2-Furyl838.5IVII2-Thiophenyl871IVmMe2-Thiophenyl871IVmMe2-Thiophenyl871IVmMe2-Thiophenyl765IVoHp-MeO-Ph862IVrEtp-MeO-Ph862IVrEtp-MeO-Ph862IVrBtp-Tolyl872IVrMep-Tolyl872IVrHPhenyl832IVuHPhenyl832IVuHPhenyl902IVuHPhenyl902IVuHPhenyl832IVuHPhenyl832IVuHPhenyl902IVuHPhenyl902IVuHPhenyl902IVuHPhenyl902IVuHPhenyl902IVuHPhenyl902IVuHPhenyl902IVuHPhenyl902IVuHPhenyl902IVaHPhenyl<	IVf	Morph	1-Adamantyl	65	6.5
I/VnPhenyl1-Adamantyl5624I/ViH2-Furyl831I/ViMe2-Furyl911I/VkTMS2-Furyl838.5I/VnMe2-Thiophenyl901I/VmMe2-Thiophenyl901I/VnMe2-Thiophenyl901I/VnMe2-Thiophenyl901I/VnMe2-Thiophenyl901I/VnHp-Meo.Ph862I/VpHp-Meo.Ph862I/VaMep-Meo.Ph862I/VaMep-Meo.Ph862I/VaMep-Tolyl872I/VaMep-Tolyl872I/VaMePhenyl832I/VaMePhenyl832I/VaHPhenyl952I/VaHeenylPhenyl952I/VaMep-CLPh832I/VadHp-CLPh832I/VadMep-NO_2-Ph762I/VadH1-Naphthyl654I/VadH1-Naphthyl861I/VadH1-Naphthyl816.5I/VadH1-Naphthyl851I/VadMe1-Naphthyl851I/VadMe1-Naphthyl816.5I/Vad <td>IVg</td> <td>1-Adamantyl</td> <td>1-Adamantyl</td> <td>77</td> <td>1</td>	IVg	1-Adamantyl	1-Adamantyl	77	1
IViH2-Furyl831IViMe2-Furyl911IVkTMS2-Furyl838.5IVIH2-Thiophenyl871IVmMe2-Thiophenyl901IVmTMS2-Thiophenyl765IVoHp-MeO-Ph862IVpHp-MeO-Ph862IVaMep-MoO-Ph862IViMep-Tolyl872IViMep-Tolyl872IViMep-Tolyl872IViMep-Tolyl832IViHPhenyl832IViHPhenyl902IViHPhenyl952IVxEtPhenyl952IVxPhenylPhenyl832IVaIthp-Cl-Ph832IVaHp-Cl-Ph832IVabMep-Cl-Ph832IVacBtp-Cl-Ph832IVacHp-NO2-Ph763IVadHP-NO2-Ph763IVadHNaphthyl861IVaiMep-NO2-Ph763IVaiMep-NO2-Ph763IVaiMeP-NO2-Ph735IVaiMeP-ND2-Ph763IV	IVh	Phenyl	1-Adamantyl	56	24
IVjMe2-Furyl911IVkTMS2-Furyl838.5IViH2-Thiophenyl871IVmMe2-Thiophenyl901IVmMe2-Thiophenyl901IVmMe2-Thiophenyl901IVmMe2-Thiophenyl765IVoHp-Me2N-Ph862IVgHp-MeO-Ph842IVrEtp-MeO-Ph862IVsHp-Tolyl892IVsHPhenyl822IVwHPhenyl832IVwHPhenyl832IVwHPhenyl902IVwHPhenyl902IVxEtPhenyl902IVxHoenylPhenyl631IVaaHp-CI-Ph832IVaaHp-CI-Ph832IVaaMep-CI-Ph832IVaaMep-NO2-Ph762IVadHh-Naphthyl861IVadHNo3-Ph742IVadMep-NO2-Ph763IVadMep-NO2-Ph763IVadMe1-Naphthyl861IVaiMe9-Anthryl902IVaaMe9-Anthryl7510 </td <td>IVi</td> <td>Н</td> <td>2-Furyl</td> <td>83</td> <td>1</td>	IVi	Н	2-Furyl	83	1
IVkTMS2-Furyl838.5IVH2-Thiophenyl871IVmMe2-Thiophenyl901IVnTMS2-Thiophenyl765IVoHp-MeO.Ph862IVpHp-MeO.Ph862IVrEtp-MeO.Ph862IVrEtp-MeO.Ph862IVrEtp-MeO.Ph862IVrMep-Tolyl872IVuHPhenyl832IVuHPhenyl832IVwMePhenyl832IVwHPhenyl902IVxEtPhenyl952IVxHp-Cl-Ph832IVaMep-Cl-Ph832IVacEtp-Cl-Ph832IVacHp-NO2-Ph762IVacHp-NO2-Ph762IVacHp-NO2-Ph763IVafMe1-Naphthyl861IVafMe1-Naphthyl861IVaiMe1-Naphthyl861IVaiMe1-Naphthyl861IVaiMe1-Naphthyl861IVaiMe1-Naphthyl851IVaiMe9-Anthryl763IVaiMe9-Anthryl735 </td <td>IVj</td> <td>Me</td> <td>2-Furyl</td> <td>91</td> <td>1</td>	IVj	Me	2-Furyl	91	1
IVIH2-Thiophenyl871IVmMe2-Thiophenyl901IVmTMS2-Thiophenyl765IVoHp-MeO.Ph862IVqMep-MeO.Ph842IVrEtp-MeO.Ph842IVrEtp-Tolyl892IVuMep-Tolyl872IVvHPhenyl832IVvHPhenyl832IVuKePhenyl902IVvHPhenyl902IVvHPhenyl832IVvHPhenyl832IVxEtPhenyl631IVxPhenylPhenyl631IVaMep-Cl-Ph832IVaHp-NO2-Ph762IVacEtp-NO2-Ph782IVadH1-Naphthyl654IVaqMorphp-NO2-Ph782IVafMe1-Naphthyl861IVafMe1-Naphthyl861IVafMe9-Anthryl7510IVafMe9-Anthryl7510IVafMe9-Anthryl7510IVafPhenylFt735IVafPhenylPr714.5IVafPhenylPr714.5	IVk	TMS	2-Furyl	83	8.5
lVn Me 2-Thiophenyl 90 1 lVo H p -Meo,Ph 76 5 lVo H p -Meo,Ph 86 2 lVp H p -Meo,Ph 79 2 lVq Me p -Meo,Ph 86 2 lVr Et p -Meo,Ph 86 2 lVx H p -Mo,Ph 86 2 lVx H p -Tolyl 87 2 lVu Me p -Tolyl 87 2 lVu H Phenyl 83 2 lVw H Phenyl 83 2 lVx Et Phenyl 90 2 lVx H p -Cl-Ph 83 2 $lVaa$ H p -Cl-Ph 83 2 $lVaa$ H p -NO ₂ -Ph 76 2 $lVaa$ H p -NO ₂ -Ph 76 2 $lVaa$ Me p -NO ₂ -Ph 76 3 $lVaa$ <	IVl	Н	2-Thiophenyl	87	1
IV_n TMS 2-Thiophenyl 76 5 IV_o H $p-Me_2N-Ph$ 86 2 IV_q Me $p-MeO-Ph$ 84 2 IV_r Et $p-MeO-Ph$ 84 2 IV_s H $p-Tolyl$ 89 2 IV_s H $p-Tolyl$ 87 2 IV_u Bt $p-Tolyl$ 87 2 IV_u H Phenyl 82 2 IV_w H Phenyl 83 2 IV_w H Phenyl 90 2 IV_x Et Phenyl 93 2 IV_x Phenyl Phenyl 63 1 IV_x Phenyl Phenyl 63 1 $IVaa$ H $p-Cl-Ph$ 83 2 $IVad$ H $p-NO_2-Ph$ 76 2 $IVad$ H $p-NO_2-Ph$ 78 2 $IVad$ He $p-NO_2-Ph$ 76 3	IVm	Me	2-Thiophenyl	90	1
IV_{0} H $p-MeO-Ph$ 86 2 IV_{q} Me $p-MeO-Ph$ 84 2 IV_{r} Et $p-MeO-Ph$ 86 2 IV_{s} H $p-Tolyl$ 87 2 IV_{u} Me $p-Tolyl$ 87 2 IV_{u} Et $p-Tolyl$ 87 2 IV_{w} H Phenyl 83 2 IV_{w} Me Phenyl 83 2 IV_{w} He Phenyl 90 2 IV_{x} Et Phenyl 63 1 IV_{aa} H $p-Cl-Ph$ 83 2 $IVaa$ Me $p-Cl-Ph$ 83 2 $IVaa$ Me $p-NO_2-Ph$ 76 2 $IVad$ H $p-NO_2-Ph$ 76 2 $IVaf$ Me $p-NO_2-Ph$ 76 3 $IVaf$ Me $p-NO_2-Ph$ 76 3 $IVaf$ Me $Naphthyl$ 81 6.5	IVn	TMS	2-Thiophenyl	76	5
IVp H p -MeO-Ph 79 2 IVq Me p -MeO-Ph 84 2 IVr Et p -MeO-Ph 86 2 IVs H p -Tolyl 89 2 IVu Et p -Tolyl 87 2 IVu H Phenyl 82 2 IVv H Phenyl 83 2 IVw Me Phenyl 83 2 IVx Et Phenyl 90 2 IVx Phenyl Phenyl 63 1 IVz Phenyl Phenyl 63 2 $IVaa$ H p -Cl-Ph 83 2 $IVaa$ H p -NO2-Ph 76 2 $IVad$ H p -NO2-Ph 76 2 $IVaf$ Me p -NO2-Ph 76 3 $IVaf$ Me p -NO2-Ph 76 3 $IVaf$ Me p -NO2-Ph 76 3 $IVaf$	IVo	Н	$p-Me_2N-Ph$	86	2
IVq Me p -MeO-Ph 84 2 IVr Et p -MeO-Ph 86 2 IVs H p -Tolyl 89 2 IVu Me p -Tolyl 87 2 IVu Et p -Tolyl 87 2 IVw H Phenyl 82 2 IVw Me Phenyl 83 2 IVx Et Phenyl 83 2 IVx Phenyl Phenyl 63 1 $IVaa$ H p -Cl-Ph 83 2 $IVaa$ He p -Cl-Ph 83 2 $IVac$ Et p -Cl-Ph 83 2 $IVac$ Et p -NO2-Ph 76 2 $IVad$ Me p -NO2-Ph 78 2 $IVaf$ Et p -NO2-Ph 76 3 $IVaf$ Me 1 -Naphthyl 86 1 $IVaf$ Me 1 -Naphthyl 81 6.5 <t< td=""><td>IVp</td><td>Н</td><td>$p ext{-MeO-Ph}$</td><td>79</td><td>2</td></t<>	IVp	Н	$p ext{-MeO-Ph}$	79	2
IVr Et p -MeO-Ph 86 2 IVs H p -Tolyl 89 2 IVt Me p -Tolyl 87 2 IVu Et p -Tolyl 87 2 IVv H Phenyl 82 2 IVw Me Phenyl 83 2 IVx Et Phenyl 90 2 IVx Phenyl Phenyl 63 1 IVx Phenyl Phenyl 83 2 IVa Phenyl Phenyl 83 2 $IVaa$ H p -Cl-Ph 83 2 $IVaa$ Me p -Cl-Ph 83 2 $IVad$ H p -NO ₂ -Ph 76 2 $IVad$ H p -NO ₂ -Ph 78 2 $IVaf$ Et p -NO ₂ -Ph 78 2 $IVaf$ Me 1-Naphthyl 86 1 $IVaf$ Me 9-Anthryl 76 3	IVq	Me	$p ext{-MeO-Ph}$	84	2
IVs H p -Tolyl 89 2 IVt Me p -Tolyl 87 2 IVu Et p -Tolyl 87 2 IVw H Phenyl 82 2 IVw Me Phenyl 83 2 IVw Me Phenyl 90 2 IVx Et Phenyl 95 2 IVx Phenyl Phenyl 63 1 $IVaa$ H p -Cl-Ph 83 2 $IVab$ Me p -Cl-Ph 83 2 $IVac$ Et p -NO ₂ -Ph 76 2 $IVad$ H p -NO ₂ -Ph 76 2 $IVaf$ Et p -NO ₂ -Ph 78 2 $IVaf$ Me p -NO ₂ -Ph 78 2 $IVaf$ Me 1 -Naphthyl 86 1 $IVah$ H 9 -Anthryl 90 2 $IVah$ H 9 -Anthryl 90 2 <	IVr	Et	$p ext{-MeO-Ph}$	86	2
IVt Me p -Tolyl 87 2 IVw Et p -Tolyl 87 2 IVw H Phenyl 82 2 IVw Me Phenyl 83 2 IVx Et Phenyl 90 2 IVx Et Phenyl 95 2 IVx Phenyl Phenyl 63 1 $IVaa$ H p -Cl-Ph 83 2 $IVaa$ Me p -Cl-Ph 83 2 $IVac$ Et p -Cl-Ph 83 2 $IVad$ H p -NO ₂ -Ph 76 2 $IVad$ Me p -NO ₂ -Ph 74 2 $IVad$ Me p -NO ₂ -Ph 74 2 $IVaf$ Et p -NO ₂ -Ph 78 2 $IVag$ Morph p -NO ₂ -Ph 76 3 $IVaf$ H 1-Naphthyl 65 4 $IVai$ Me 9-Anthryl 90 2	IVs	Н	<i>p</i> -Tolyl	89	2
IVu Et p -Tolyl 87 2 IVv H Phenyl 82 2 IVw Me Phenyl 83 2 IVx Et Phenyl 90 2 IVx Et Phenyl 90 2 IVx Pathon Phenyl 93 1 IVa Phenyl Phenyl 63 1 $IVaa$ H p -CL-Ph 83 2 $IVab$ Me p -CL-Ph 83 2 $IVac$ Et p -CL-Ph 83 2 $IVac$ H p -NO ₂ -Ph 76 2 $IVaf$ Et p -NO ₂ -Ph 76 2 $IVaf$ Et p -NO ₂ -Ph 46 5 $IVaf$ Me 1-Naphthyl 65 4 $IVaf$ Me 1-Naphthyl 81 6.5 $IVai$ Me 9-Anthryl 76 3 $IVai$ Me 9-Anthryl 90 2 <t< td=""><td>IVt</td><td>Me</td><td><i>p</i>-Tolyl</td><td>87</td><td>2</td></t<>	IVt	Me	<i>p</i> -Tolyl	87	2
IVv H Phenyl 82 2 IVw Me Phenyl 83 2 IVx Et Phenyl 90 2 IVy 1-Adamantyl Phenyl 95 2 IVz Phenyl Phenyl 63 1 $IVaa$ H $p-Cl-Ph$ 83 2 $IVac$ Et $p-Cl-Ph$ 83 2 $IVac$ Et $p-Cl-Ph$ 83 2 $IVac$ Me $p-NO_2-Ph$ 74 2 $IVaf$ Et $p-NO_2-Ph$ 78 2 $IVaf$ H $1-Naphthyl$ 65 4 $IVaf$ H $1-Naphthyl$ 86 1 $IVai$ Me $1-Naphthyl$ 86 1 $IVai$ Me $9-Anthryl$ 76 3 $IVai$ Me $9-Anthryl$ 90 2 $IVam$ TMS $9-Anthryl$ 90 2 $IVan$ p-Mo-Ph Et 82 1	IVu	\mathbf{Et}	<i>p</i> -Tolyl	87	2
IVw Me Phenyl 83 2 IVx Et Phenyl 90 2 IVy 1-Adamantyl Phenyl 95 2 IVz Phenyl Phenyl 63 1 $IVaa$ H $p-Cl-Ph$ 83 2 $IVab$ Me $p-Cl-Ph$ 83 2 $IVac$ Et $p-Cl-Ph$ 83 2 $IVac$ H $p-NO_2-Ph$ 76 2 $IVae$ Me $p-NO_2-Ph$ 78 2 $IVaf$ Et $p-NO_2-Ph$ 78 2 $IVaf$ Me $1-Naphthyl$ 65 4 $IVai$ Me $1-Naphthyl$ 86 1 $IVai$ Me $9-Anthryl$ 76 3 $IVai$ Me $9-Anthryl$ 75 100 $IVan$ $p-MeO-Ph$ Et 82 1 $IVao$ $p-MeO-Ph$ Bn 76 1 $IVan$ $p-MeO-Ph$ Bn 76 1	IVv	Н	Phenyl	82	2
IVx Et Phenyl 90 2 IVy 1-Adamantyl Phenyl 95 2 IVz Phenyl Phenyl 63 1 $IVaa$ H p -Cl-Ph 83 2 $IVab$ Me p -Cl-Ph 83 2 $IVac$ Et p -Cl-Ph 81 2 $IVac$ Me p -NO ₂ -Ph 76 2 $IVad$ Me p -NO ₂ -Ph 78 2 $IVag$ Morph p -NO ₂ -Ph 65 4 $IVag$ Morph p -NO ₂ -Ph 65 4 $IVag$ Morph p -NO ₂ -Ph 65 4 $IVad$ Me 1-Naphthyl 86 1 $IVai$ Me 1-Naphthyl 86 1 $IVai$ Me 9-Anthryl 90 2 $IVak$ H 9-Anthryl 90 2 $IVak$ H 9-Anthryl 90 2 $IVar$ p-MeO-Ph Bn 6.5 1 </td <td>IVw</td> <td>Me</td> <td>Phenyl</td> <td>83</td> <td>2</td>	IVw	Me	Phenyl	83	2
IVy 1-Adamantyl Phenyl 95 2 IVz Phenyl Phenyl 63 1 $IVaa$ H p -Cl-Ph 83 2 $IVab$ Me p -Cl-Ph 83 2 $IVac$ Et p -Cl-Ph 83 2 $IVac$ Et p -NO ₂ -Ph 76 2 $IVad$ H p -NO ₂ -Ph 76 2 $IVad$ Me p -NO ₂ -Ph 78 2 $IVag$ Morph p -NO ₂ -Ph 46 5 $IVah$ H 1-Naphthyl 86 1 $IVaj$ Me 1-Naphthyl 86 1 $IVaj$ TMS 1-Naphthyl 86 1 $IVaj$ Me 9-Anthryl 76 3 $IVak$ H 9-Anthryl 76 1 $IVan$ p -MeO-Ph Et 82 1 $IVan$ p -MeO-Ph Bn 76 1 $IVaa$ p -Mol,Ph Bn 70 2 <td>IVx</td> <td>\mathbf{Et}</td> <td>Phenyl</td> <td>90</td> <td>2</td>	IVx	\mathbf{Et}	Phenyl	90	2
IVzPhenylPhenyl631 $IVaa$ H p -Cl-Ph832 $IVab$ Me p -Cl-Ph832 $IVac$ Et p -Cl-Ph812 $IVac$ H p -NO ₂ -Ph762 $IVae$ Me p -NO ₂ -Ph742 $IVaf$ Et p -NO ₂ -Ph782 $IVaf$ Et p -NO ₂ -Ph763 $IVaf$ Morph p -NO ₂ -Ph465 $IVaf$ Me1-Naphthyl654 $IVai$ Me1-Naphthyl861 $IVai$ Me9-Anthryl902 $IVan$ Me9-Anthryl902 $IVan$ P-MeO-PhEt821 $IVan$ p -MeO-PhBn7510 $IVan$ p -MeO-PhEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylPr735 $IVar$ p -TolylBn722 $IVas$ p -TolylBn722 $IVau$ PhenylPr714.5 $IVau$ PhenylPr834 $IVaw$ Phenyl Pr 834 $IVaw$ Phenyl Pr 812 $IVaw$ Phenyl Pr 812 $IVaw$ Phenyl Pr 834	IVy	1-Adamantyl	Phenyl	95	2
IVaaH p -Cl-Ph832 $IVab$ Me p -Cl-Ph832 $IVac$ Et p -Cl-Ph812 $IVad$ H p -NO ₂ -Ph762 $IVae$ Me p -NO ₂ -Ph742 $IVaf$ Et p -NO ₂ -Ph782 $IVag$ Morph p -NO ₂ -Ph654 $IVaf$ H1-Naphthyl654 $IVaf$ Me1-Naphthyl861 $IVaj$ TMS1-Naphthyl816.5 $IVak$ H9-Anthryl902 $IVam$ TMS9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVaq$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylBn722 $IVat$ Phenyl Pr 714.5 $IVaw$ PhenylPr834 $IVaw$ Phenyl Pr 834 $IVaw$ Phenyl Pr 834	IVz	Phenyl	Phenyl	63	1
IVabMe p -Cl-Ph832 $IVac$ Et p -Cl-Ph812 $IVad$ H p -NO ₂ -Ph762 $IVac$ Me p -NO ₂ -Ph762 $IVaf$ Et p -NO ₂ -Ph782 $IVag$ Morph p -NO ₂ -Ph465 $IVah$ H1-Naphthyl654 $IVai$ Me1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVak$ H9-Anthryl763 $IVak$ H9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVaa$ p -MeO-PhBn761 $IVaa$ p -MeO-PhBn761 $IVaa$ p -MeO-PhBn722 $IVaa$ p -TolylPr735 $IVaa$ p -TolylBn722 $IVaa$ PhenylPr834 $IVaw$ PhenylPr834 $IVaw$ p -O2N-PhBn822	IVaa	Н	p-Cl-Ph	83	2
IVacEt p -Cl-Ph812 $IVad$ H p -NO ₂ -Ph762 $IVac$ Me p -NO ₂ -Ph742 $IVaf$ Et p -NO ₂ -Ph782 $IVag$ Morph p -NO ₂ -Ph465 $IVah$ H 1 -Naphthyl654 $IVai$ Me 1 -Naphthyl861 $IVaj$ TMS 1 -Naphthyl861 $IVaj$ TMS 1 -Naphthyl861 $IVaj$ TMS 1 -Naphthyl816.5 $IVak$ H 9 -Anthryl763 $IVak$ H 9 -Anthryl902 $IVam$ PrMO-PhEt821 $IVao$ p -MeO-PhEt821 $IVap$ p -Mol-PhBn761 $IVap$ p -TolylEt851 $IVap$ p -TolylPr735 $IVar$ p -TolylPr702 $IVas$ p -TolylBn722 $IVat$ PhenylEt822 $IVau$ PhenylPr714.5 $IVaw$ p -O2N-Ph i Pr812 $IVax$ p -O2N-PhBn822	IVab	Me	$p ext{-Cl-Ph}$	83	2
IVadH p -NO2-Ph762 $IVae$ Me p -NO2-Ph742 $IVaf$ Et p -NO2-Ph782 $IVag$ Morph p -NO2-Ph465 $IVah$ H1-Naphthyl654 $IVai$ Me1-Naphthyl861 $IVaj$ TMS1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVak$ H9-Anthryl763 $IVak$ H9-Anthryl902 $IVan$ Me9-Anthryl902 $IVan$ p-MeO-PhEt821 $IVan$ p -MeO-PhBn761 $IVaq$ p -MeO-PhBn761 $IVaq$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylBn722 $IVas$ p -TolylBn722 $IVat$ PhenylEt822 $IVau$ Phenyl Pr 714.5 $IVaw$ Phenyl Pr 834 $IVaw$ p -O2N-Ph iPr 812 $IVax$ p -O2N-PhBn822	IVac	Et	p-Cl-Ph	81	2
$IVae$ Me p -NO ₂ -Ph742 $IVaf$ Et p -NO ₂ -Ph782 $IVag$ Morph p -NO ₂ -Ph465 $IVah$ H1-Naphthyl654 $IVai$ Me1-Naphthyl861 $IVaj$ TMS1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVal$ Me9-Anthryl763 $IVal$ Me9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVaq$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylPr702 $IVas$ p -TolylBn722 $IVat$ PhenylPr714.5 $IVau$ PhenylPr834 $IVaw$ p -O_2N-PhBn822	IVad	Н	p-NO ₂ -Ph	76	2
IVafEt p -NO ₂ -Ph782 $IVag$ Morph p -NO ₂ -Ph465 $IVah$ H1-Naphthyl654 $IVai$ Me1-Naphthyl861 $IVaj$ TMS1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVak$ H9-Anthryl902 $IVam$ Me9-Anthryl7510 $IVam$ TMS9-Anthryl7510 $IVam$ p -MeO-PhEt821 $IVao$ p -MeO-PhEt851 $IVao$ p -MeO-PhBn761 $IVap$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -Tolyl p -Pr735 $IVar$ p -TolylBn722 $IVat$ PhenylPr714.5 $IVau$ PhenylPr834 $IVaw$ p -O2N-PhBn822 $IVax$ p -O2N-PhBn822	IVae	Me	p-NO ₂ -Ph	74	2
IVagMorph p -NO ₂ -Ph465 $IVah$ H1-Naphthyl654 $IVai$ Me1-Naphthyl861 $IVaj$ TMS1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVak$ H9-Anthryl902 $IVam$ Me9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVap$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylBn722 $IVas$ p -TolylBn722 $IVat$ PhenylEt822 $IVat$ PhenylPr714.5 $IVav$ PhenylPr834 $IVaw$ p -O ₂ N-Ph i Pr812 $IVax$ p -O ₂ N-PhBn822	IVaf	Et	p-NO ₂ -Ph	78	2
IVahH1-Naphthyl654 $IVai$ Me1-Naphthyl861 $IVaj$ TMS1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVal$ Me9-Anthryl902 $IVam$ TMS9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVao$ p -MeO-PhEt851 $IVaq$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylBn722 $IVas$ p -TolylBn722 $IVat$ PhenylEt822 $IVau$ PhenylPr714.5 $IVav$ Phenyl Pr 834 $IVaw$ p -O2N-Ph i Pr812 $IVax$ p -O2N-PhBn822	IVag	Morph	p-NO ₂ -Ph	46	5
IVaiMe1-Naphthyl861 $IVaj$ TMS1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVal$ Me9-Anthryl902 $IVam$ TMS9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVao$ p -MeO-PhBn761 $IVao$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylPr702 $IVas$ p -TolylBn722 $IVas$ p -TolylBn722 $IVat$ PhenylEt822 $IVau$ PhenylPr334 $IVav$ Phenyl i Pr812 $IVaw$ p -O2N-PhBn822	IVah	Н	1-Naphthyl	65	4
IVajTMS1-Naphthyl816.5 $IVak$ H9-Anthryl763 $IVal$ Me9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVam$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVap$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylPr702 $IVas$ p -TolylBn722 $IVas$ p -TolylBn722 $IVat$ PhenylEt822 $IVau$ PhenylPr714.5 $IVaw$ Phenyl Pr 834 $IVaw$ p -O ₂ N-Ph i Pr812 $IVax$ p -O ₂ N-PhBn822	IVai	Me	1-Naphthyl	86	1
IVakH9-Anthryl763 $IVal$ Me9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVao$ p -MeO-PhBn761 $IVap$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylPr702 $IVas$ p -TolylBn722 $IVas$ p -TolylEt822 $IVau$ PhenylEt822 $IVau$ Phenyl Pr 714.5 $IVaw$ Phenyl i Pr834 $IVaw$ p -O ₂ N-Ph i Pr812 $IVax$ p -O ₂ N-PhBn822	IVaj	\mathbf{TMS}	1-Naphthyl	81	6.5
IValMe9-Anthryl902 $IVam$ TMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVap$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylPr702 $IVar$ p -TolylBn722 $IVas$ p -TolylBn722 $IVas$ p -TolylPr714.5 $IVau$ PhenylPr714.5 $IVav$ Phenyl i Pr834 $IVaw$ p -O ₂ N-Ph i Pr812 $IVax$ p -O ₂ N-PhBn822	IVak	Н	9-Anthryl	76	3
IVamTMS9-Anthryl7510 $IVan$ p -MeO-PhEt821 $IVao$ p -MeO-PhBn761 $IVap$ p -TolylEt851 $IVaq$ p -TolylPr735 $IVar$ p -TolylPr702 $IVas$ p -TolylBn722 $IVas$ p -TolylEt822 $IVat$ PhenylEt822 $IVau$ PhenylPr714.5 $IVav$ Phenyl i Pr834 $IVaw$ p -O ₂ N-Ph i Pr812 $IVax$ p -O ₂ N-PhBn822	IVal	Me	9-Anthryl	90	2
$IVan$ $p-MeO-Ph$ Et821 $IVao$ $p-MeO-Ph$ Bn761 $IVap$ $p-Tolyl$ Et851 $IVaq$ $p-Tolyl$ Pr735 $IVar$ $p-Tolyl$ iPr 702 $IVas$ $p-Tolyl$ Bn722 $IVas$ $p-Tolyl$ Et822 $IVat$ PhenylEt822 $IVau$ Phenyl iPr 714.5 $IVav$ Phenyl iPr 834 $IVaw$ $p-O_2N-Ph$ iPr 812 $IVax$ $p-O_2N-Ph$ Bn822	IVam	TMS	9-Anthryl	75	10
$IVao$ $p-MeO-Ph$ Bn761 $IVap$ $p-Tolyl$ Et851 $IVaq$ $p-Tolyl$ Pr735 $IVar$ $p-Tolyl$ iPr 702 $IVas$ $p-Tolyl$ Bn722 $IVas$ $p-Tolyl$ Et822 $IVat$ PhenylPr714.5 $IVau$ Phenyl iPr 834 $IVaw$ $p-O_2N-Ph$ iPr 812 $IVax$ $p-O_2N-Ph$ Bn822	IVan	$p ext{-MeO-Ph}$	\mathbf{Et}	82	1
$IVap$ p -TolylEt851 $IVaq$ p -Tolyl Pr 735 $IVar$ p -Tolyl iPr 702 $IVas$ p -TolylBn722 $IVas$ p -TolylEt822 $IVat$ Phenyl Pr 714.5 $IVav$ Phenyl iPr 834 $IVaw$ p -O_2N-Ph iPr 812 $IVax$ p -O_2N-PhBn822	IVao	<i>p</i> -MeO-Ph	Bn	76	1
IVaq p -Tolyl Pr 73 5 $IVar$ p -Tolyl iPr 70 2 $IVas$ p -Tolyl Bn 72 2 $IVat$ Phenyl Et 82 2 $IVau$ Phenyl Pr 71 4.5 $IVav$ Phenyl iPr 83 4 $IVaw$ p -O ₂ N-Ph iPr 81 2 $IVax$ p -O ₂ N-Ph Bn 82 2	IVap	<i>p</i> -Tolyl	Et	85	1
$IVar$ p -Tolyl $i\Pr$ 702 $IVas$ p -TolylBn722 $IVat$ PhenylEt822 $IVau$ PhenylPr714.5 $IVav$ Phenyl $i\Pr$ 834 $IVaw$ p -O ₂ N-Ph $i\Pr$ 812 $IVax$ p -O ₂ N-PhBn822	IVaq	<i>p</i> -Tolyl	Pr	73	5
IVas p -TolylBn722 $IVat$ PhenylEt822 $IVau$ PhenylPr714.5 $IVav$ Phenyl i Pr834 $IVaw$ p -O ₂ N-Ph i Pr812 $IVax$ p -O ₂ N-PhBn822	IVar	p-Tolyl	<i>i</i> Pr	70	2
$IVat$ PhenylEt822 $IVau$ PhenylPr714.5 $IVav$ Phenyl $i\Pr$ 834 $IVaw$ $p-O_2N-Ph$ $i\Pr$ 812 $IVax$ $p-O_2N-Ph$ Bn822	IVas	<i>p</i> -Tolyl	Bn	72	2
$IVau$ PhenylPr714.5 $IVav$ Phenyl $i\Pr$ 834 $IVaw$ $p-O_2N-Ph$ $i\Pr$ 812 $IVax$ $p-O_2N-Ph$ Bn822	IVat	Phenyl	Et	82	2
$IVav$ Phenyl $i\Pr$ 834 $IVaw$ $p-O_2N-Ph$ $i\Pr$ 812 $IVax$ $p-O_2N-Ph$ Bn822	IVau	Phenyl	Pr	71	4.5
IVaw p -O ₂ N-Ph i Pr812 $IVax$ p -O ₂ N-PhBn822	IVav	Phenyl	<i>i</i> Pr	83	4
IVax p-O ₂ N-Ph Bn 82 2	IVaw	$p-O_2N-Ph$	<i>i</i> Pr	81	2
	IVax	p-O ₂ N-Ph	Bn	82	2

Pyrrol – pyrrolidinomethyl; Morph – morpholinomethyl.

Fig. 2. ORTEP representation of allenyl azine IVag shown at 50 % probability level (blue - N, red - O).

Table 2. Characterisation data of five allenyl azines IV

Compound	Formula	М	$w_{ m i}({ m calc.})/\% \ w_{ m i}({ m found})/\%$			M.p.
Compound	Formula	<i>W</i> _r	С	Н	Ν	$^{\circ}\mathrm{C}$
IVq	$\mathrm{C}_{16}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}$	256.34	74.97 74.82	$7.86 \\ 7.81$	$10.93 \\ 11.20$	44-48
IVt	$\mathrm{C_{16}H_{20}N_2}$	240.34	$79.96 \\ 80.13$	$8.39 \\ 8.67$	$\begin{array}{c} 11.66\\ 11.44 \end{array}$	_
IVw	$\mathrm{C_{15}H_{18}N_2}$	226.32	$79.61 \\ 79.92$	$8.02 \\ 7.92$	$12.38 \\ 12.20$	-
IVab	$\mathrm{C_{15}H_{17}ClN_2}$	260.76	$69.09 \\ 69.27$	$6.57 \\ 6.82$	$10.74 \\ 10.56$	-
IVae	$C_{15}H_{17}N_3O_2$	271.31	$66.40 \\ 66.39$	$6.32 \\ 6.29$	$15.49 \\ 15.17$	75–78

erating at frequencies of 300.13 MHz (for ¹H NMR) and 75.47 MHz (for ${}^{13}C$ NMR) with CDCl₃ as solvent. Tetramethylsilane (δ 0.00) or CDCl₃ (δ 7.27) served as internal standards for ¹H NMR spectra, and CDCl₃ (δ 77.23) for ¹³C NMR spectra. MS data were obtained on a Fisons Instruments TRIO 1000 spectrometer (Fisons Instruments, UK) at 70 eV in the electron impact (EI) mode. Elemental analyses were performed with a Perkin–Elmer CHN 2400 apparatus (Perkin-Elmer, USA). X-ray diffraction data were collected on a Kuma KM-4 four-circle CCD (Kuma Diffraction, Poland) diffractometer and corrected for Lorentz and polarisation effects. The structures were resolved by direct methods and refined by full-matrix least-squares methods using the SHELXTL program package (Bruker AXS, 1997). Hydrogen atoms were placed in calculated idealised positions.

General procedures for preparation of nonsymmetrical allenyl azines IV from hydrazones II and III

A mixture of protected allenyl hydrazone III (2 mmol) and paraformaldehyde (4 mmol, eq. CH₂O) in toluene (10 mL) was slowly added to a suspension of NaH (72 mg, 3 mmol) in diethyl ether (10 mL) at 5–10 °C. Next, the reaction mixture was stirred at laboratory temperature, the solution was filtered and the residue washed with diethyl ether (3 × 10 mL). The combined organic phases were pre-concentrated in a vacuum and the crude product purified by liquid chromatography (Et₂O) to give a colourless solid *IVa* (370 mg, 69 %). Azine *IVb* with trimethylsilyl (TMS) group was purified by vacuum distillation using a Kugelrohr apparatus (\approx 35 Pa, 60 °C) to give a colourless viscous oil (358 mg, 86 %).

 Table 3. Spectral data of newly prepared compounds

Compound	Spectral data
IVa	IR, $\tilde{\nu}/cm^{-1}$: 1092, 1183, 1216, 1359, 1382, 1449, 1683, 1936 (=C=), 2849, 2897, 2926, 2967 ¹ H NMR (CDCl ₃), δ : 1.35 (s, 6H, 2 × CH ₃), 1.60–1.68 (m, 6H, Ad), 1.70–1.78 (m, 6H, Ad), 1.94 (bs, 3H, Ad), 4.77 (s, 2H, =CH ₂), 6.96 (d, 1H, ² J = 13.5 Hz, N=CH ₂), 7.38 (d, 1H, ² J = 13.5 Hz, N=CH ₂), 7.73 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 27.6 (2 × CH ₃), 29.1 (CH, Ad), 36.7 (CH ₂ , Ad), 36.8 (C, Ad), 40.8 (C), 43.1 (CH ₂ , Ad), 78.1 (=CH ₂), 118.4 (=C-Ad), 149.2 (N=CH ₂), 171.6 (HC=N), 207.6 (=C=) MS, m/z (%): 270 (M ⁺ , 1), 255 (28), 135 (100), 107 (10)
IVb	¹ H NMR (CDCl ₃), δ : 0.14 (s, 9H, Si—CH ₃), 1.32 (s, 6H, 2 × CH ₃), 4.48 (s, 2H, ==CH ₂), 6.96 (d, 1H, ² J = 13.5 Hz, N=CH ₂), 7.38 (d, 1H, ² J = 13.5 Hz, N=CH ₂), 7.65 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 0.9 (Si—CH ₃), 26.4 (2 × CH ₃), 41.0 (C), 71.4 (==CH ₂), 101.8 (==C-Si), 149.6 (N=CH ₂), 170.5 (HC=N), 209.6 (==C=)
IVc	IR, $\tilde{\nu}/cm^{-1}$: 1045, 1218, 1452, 1643, 1954 (==C=), 2850, 2907, 2968, 3020 ¹ H NMR (CDCl ₃), δ : 1.26 (s, 6H, 2 × CH ₃), 1.65–1.82 (m, 12H, Ad), 2.04 (bs, 3H, Ad), 4.82 (d, 2H, ⁴ J = 6.7 Hz, =CH ₂), 5.25 (t, 1H, ⁴ J = 6.7 Hz, HC=C), 7.53 (s, 1H, HC—Ad), 7.67 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 25.6 (2 × CH ₃), 28.1 (CH, Ad), 36.9 (CH ₂ , Ad), 38.0 (C, Ad), 39.7 (C), 39.8 (CH ₂ , Ad), 77.7 (=CH ₂), 97.5 (HC=C), 168.4 (HC—Ad), 171.0 (HC=N), 207.1 (==C=) MS, m/z (%): 270 (M ⁺ , 56), 255 (30), 213 (16), 135 (100), 108 (70), 94 (43), 79 (42), 67 (30), 41 (20)
IVd	IR, $\tilde{\nu}/cm^{-1}$: 1046, 1218, 1452, 1642, 1953 (=C=), 2850, 2906, 2976, 3017 ¹ H NMR (CDCl ₃), δ : 1.28 (s, 6H, 2 × CH ₃), 1.71 (t, 3H, ⁵ J = 3.1 Hz, =C-CH ₃), 1.76-1.82 (m, 12H, Ad), 2.07 (bs, 3H, Ad), 4.73 (q, ⁵ J = 3.1 Hz, 2H, =CH ₂), 7.53 (s, 1H, HC-Ad), 7.61 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 15.4 (=C- <u>C</u> H ₃), 24.4 (2 × CH ₃), 28.1 (CH, Ad), 36.9 (CH ₂ , Ad), 39.6 (C, Ad), 39.8 (CH ₂ , Ad), 40.1 (C), 76.0 (=CH ₂), 103.5 (=C-CH ₃), 167.9 (HC-Ad), 170.6 (HC=N), 206.5 (=C=) MS, m/z (%): 284 (M ⁺ , 2), 149 (98), 135 (95), 123 (73), 108 (100), 93 (51), 79 (61), 67 (66), 55 (24), 41 (30)
IVe	IR, $\tilde{\nu}/cm^{-1}$: 1048, 1116, 1220, 1321, 1345, 1385, 1452, 1519, 1642, 1954 (=C=), 2796, 2851, 2907, 2970, 3019 ¹ H NMR (CDCl ₃), δ : 1.30 (s, 6H, 2 × CH ₃), 1.70–1.71 (m, 4H, pyrrol.), 1.74–1.81 (m, 12H, Ad), 2.05 (bs, 3H, Ad), 2.49–2.53 (m, 4H, N—CH ₂), 3.07–3.12 (m, 2H, N—CH ₂), 4.85–5.02 (m, 2H, =CH ₂), 7.48 (s, 1H, HC—Ad), 7.64 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 23.8 (2 × CH ₂), 24.8 (2 × CH ₃), 28.1 (CH, Ad), 36.9 (CH ₂ , Ad), 39.7 (C, Ad), 39.8 (CH ₂ , Ad), 40.3 (C), 54.2 (2 × CH ₂), 55.2 (=C— <u>C</u> H ₂), 78.1 (=CH ₂), 107.4 (= <u>C</u> —CH ₂), 168.0 (HC—Ad), 169.9 (HC=N), 206.6 (=C=) MS, m/z (%): 354 (M ⁺ , 1), 191 (100), 122 (92), 84 (90), 70 (22), 42 (17)
IVf	IR, $\tilde{\nu}$ /cm ⁻¹ : 1005, 1117, 1218, 1308, 1346, 1384, 1454, 1643, 1953 (=C=), 2763, 2808, 2849, 2904, 2965 ¹ H NMR (CDCl ₃), δ : 1.29 (s, 6H, 2 × CH ₃), 1.68–1.81 (m, 12H, Ad), 2.04 (bs, 3H, Ad), 2.41 (m, 4H, N—CH ₂), 2.93 (t, 2H, ⁵ J = 2.3 Hz, =C—CH ₂), 3.69 (m, 4H, O—CH ₂), 4.85 (t, 2H, ⁵ J = 2.3 Hz, =CH ₂), 7.52 (s, 1H, HC—Ad), 7.74 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 25.0 (2 × CH ₃), 28.1 (CH, Ad), 36.9 (CH ₂ , Ad), 39.7 (C, Ad), 39.9 (CH ₂ , Ad), 40.1 (C), 53.6 (N—CH ₂), 58.5 (=C— <u>C</u> H ₂), 67.1 (O—CH ₂), 77.3 (=CH ₂), 105.4 (= <u>C</u> —CH ₂), 168.8 (HC—Ad), 170.4 (HC=N), 207.5 (=C=) MS m/z (%): 369 (M ⁺ 1), 207 (100), 122 (62), 100 (89), 79 (24), 56 (22)
IVg	IR, $\tilde{\nu}/cm^{-1}$: 1044, 1100, 1314, 1360, 1451, 1642, 1937 (=C=), 2850, 2901 ¹ H NMR (CDCl ₃), δ : 1.39 (s, 6H, 2 × CH ₃), 1.63–1.96 (m, 24H, Ad), 1.99 (bs, 3H, Ad), 2.08 (bs, 3H, Ad), 4.80 (s, 2H, =CH ₂), 7.55 (s, 1H, HC—Ad), 7.73 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 27.8 (2 × CH ₃), 28.1 (CH, Ad), 29.2 (CH, Ad), 36.5 (C, Ad), 36.9 (2 × CH ₂ , Ad), 39.8 (C, Ad), 39.9 (CH ₂ , Ad), 40.8 (C), 43.1 (CH ₂ , Ad), 78.0 (=CH ₂), 118.7 (=C—Ad), 169.8 (HC—Ad), 170.0 (HC=N), 207.8 (=C=) MS, m/z (%): 404 (M ⁺ , 1), 389 (26), 269 (42), 228 (10), 135 (100)
IVh	IR, $\tilde{\nu}$ /cm ⁻¹ : 1032, 1127, 1220, 1362, 1451, 1600, 1641, 1942 (=C=), 2849, 2907, 2971 ¹ H NMR (CDCl ₃), δ : 1.35 (s, 6H, 2 × CH ₃), 1.70–1.85 (m, 12H, Ad), 2.10 (bs, 3H, Ad), 4.96 (s, 2H, =CH ₂), 7.22–7.39 (m, 5H, Ph), 7.48 (s, 1H, HC—Ad), 7.80 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 25.6 (2 × CH ₃), 28.0 (CH, Ad), 36.8 (CH ₂ , Ad), 36.9 (C, Ad), 39.7 (CH ₂ , Ad), 40.4 (C), 77.6 (=CH ₂), 111.3 (=C-Ph), 126.9 (CH), 128.0 (2 × CH), 128.7 (2 × CH), 136.0 (C), 168.3 (HC—Ad), 170.3 (HC=N), 208.2 (=C=) MS, m/z (%): 346 (M ⁺ , 100), 305 (13), 291 (78), 189 (18), 135 (35), 83 (16)
IVi	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1018, 1082, 1150, 1272, 1306, 1363, 1385, 1475, 1635, 1644, 1955 (=C=), 2868, 2931, 2971, 3120 ¹ H NMR (CDCl ₃), δ : 1.27 (s, 6H, 2 × CH ₃), 4.81 (d, 2H, ⁴ J = 6.7 Hz, =CH ₂), 5.26 (t, 1H, ⁴ J = 6.7 Hz, HC=C), 6.48 (dd, 1H, ³ J = 3.4 Hz, ³ J = 1.8 Hz, Ar), 6.81 (d, 1H, ³ J = 3.4 Hz, Ar), 7.54 (d, 1H, ³ J = 1.8 Hz, Ar), 7.92 (s, 1H, HC=N), 8.33 (s, 1H, HC=Ar) ¹³ C NMR (CDCl ₃), δ : 25.7 (2 × CH ₃), 38.3 (C), 77.9 (=CH ₂), 97.3 (HC=C), 112.2 (CH), 116.0 (CH), 145.6 (CH), 149.6 (C), 150.3 (HC=Ar), 171.3 (HC=N), 207.1 (=C=)

Compound	Spectral data
IVj	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1017, 1083, 1109, 1150, 1274, 1372, 1456, 1479, 1636, 1952 (=C=), 2869, 2930, 2973, 3119 ¹ H NMR (CDCl ₃), δ : 1.27 (s, 6H, 2 × CH ₃), 1.68 (t, 3H, ⁵ J = 3.0 Hz, =C-CH ₃), 4.70 (q, 2H, ⁵ J = 3.0 Hz, =CH ₂), 6.49 (dd, 1H, ³ J = 3.3 Hz, ³ J = 1.7 Hz, Ar), 6.82 (d, 1H, ³ J = 3.3 Hz, Ar), 7.55 (d, 1H, ³ J = 1.7 Hz, Ar), 7.88 (s, 1H, HC=N), 8.34 (s, 1H, HC-Ar)
IVk	¹³ C NMR (CDCl ₃), δ : 15.3 (=C- <u>C</u> H ₃), 24.4 (2 × CH ₃), 40.4 (C), 76.1 (=CH ₂), 103.4 (= <u>C</u> -CH ₃), 112.2 (CH), 116.0 (CH), 145.6 (CH), 149.6 (C), 150.1 (HC-Ar), 171.2 (HC=N), 206.4 (=C=) IR, $\tilde{\nu}/\text{cm}^{-1}$: 1018, 1083, 1155, 1250, 1306, 1362, 1383, 1465, 1480, 1636, 1896, 1923 (=C=), 2870, 2898, 2936, 2963,
	3108 ¹ H NMR (CDCl ₃), δ : 0.13 (s, 9H, Si—CH ₃), 1.34 (s, 6H, 2 × CH ₃), 4.47 (s, 2H, =CH ₂), 6.50 (dd, 1H, ³ J = 3.4 Hz, ³ J = 1.8 Hz, Ar), 6.82 (d, 1H, ³ J = 3.4 Hz, Ar), 7.55 (d, 1H, ³ J = 1.8 Hz, Ar), 7.91 (s, 1H, HC=N), 8.34 (s, 1H, HC=Ar)
T 7 71	¹³ C NMR (CDCl ₃), δ : 0.9 (Si—CH ₃), 26.5 (2 × CH ₃), 41.0 (C), 71.4 (=CH ₂), 101.8 (=C—Si), 112.2 (CH), 115.9 (CH), 145.5 (CH), 149.7 (C), 150.0 (HC—Ar), 172.2 (HC=N), 209.6 (=C=)
IVI	IR, ν/cm^{-1} : 1040, 1143, 1213, 1363, 1420, 1457, 1583, 1014, 1630, 1954 (=C=), 2800, 2927, 2908, 3077 ¹ H NMR (CDCl ₃), δ : 1.30 (s, 6H, 2 × CH ₃), 4.85 (d, 2H, ⁴ J = 6.7 Hz, =CH ₂), 5.29 (t, 1H, ⁴ J = 6.7 Hz, HC=C), 7.09 (dd, 1H, ³ J = 5.0 Hz, ³ J = 3.7 Hz, Ar), 7.37 (d, 1H, ³ J = 3.7 Hz, Ar), 7.44 (d, 1H, ³ J = 5.0 Hz, Ar), 7.89 (s, 1H, HC=N), 8.64 (s, 1H, HC=Ar) ³ C NMP (CDCl_3), δ : C(H), 28.2 (C), 77.0 (- CH), 97.4 (HC, C), 197.8 (CH), 180.8 (
	$\begin{array}{c} \text{C-NMR} (\text{CDC1}_3), & \text{i}: 25.7 (2 \times \text{CH}_3), & \text{so.s.} (C), & \text{i}: 13 (= \text{CH}_2), & \text{i}: 14 (\text{H}_{\underline{\text{C}}}=\text{C}), & \text{i}: 27.8 (\text{CH}), & \text{i}: 29.8 (\text{CH}), & \text{i}: 32.2 (\text{CH}), \\ & \text{i}: 139.0 (\text{C}), & \text{i}: 55.3 (\text{HC}-\text{Ar}), & \text{i}: 70.6 (\text{HC}=\text{N}), & 207.2 (= \text{C}=) \end{array}$
IVm	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1046, 1108, 1214, 1427, 1454, 1581, 1630, 1952 (=C=), 2867, 2927, 2972 ¹ H NMR (CDCl ₃), δ : 1.29 (s, 6H, 2 × CH ₃), 1.70 (t, 3H, ⁵ J = 3.1 Hz, =C-CH ₃), 4.71 (q, 2H, ⁵ J = 3.1 Hz, =CH ₂), 7.04–7.10 (m, 1H, Ar), 7.34–7.38 (m, 1H, Ar), 7.40–7.44 (m, 1H, Ar), 7.82 (s, 1H, HC=N), 8.63 (s, 1H, HC=
	HC—Ar) ¹³ C NMR (CDCl ₃), δ : 15.4 (=C— <u>C</u> H ₃), 24.5 (2 × CH ₃), 40.4 (C), 76.1 (=CH ₂), 103.4 (= <u>C</u> —CH ₃), 127.8 (CH), 129.7 (CH), 132.1 (CH), 139.1 (C), 155.1 (HC—Ar), 170.4 (HC=N), 206.5 (=C=) MS, m/z (%): 232 (M ⁺ , 1), 220 (100), 192 (35), 147 (24), 110 (46), 96 (32), 70 (29)
IVn	$IR, \tilde{\nu}/cm^{-1}: 1046, 1173, 1213, 1250, 1362, 1383, 1427, 1462, 1583, 1632, 1897, 1922 (=C=), 2869, 2897, 2933, 2965, 2016, 2017$
	³⁰⁵⁸ , ³⁰⁷⁶ ¹ H NMR (CDCl ₃), δ : 0.16 (s, 9H, Si—CH ₃), 1.37 (s, 6H, 2 × CH ₃), 4.49 (s, 2H, —CH ₂), 7.09 (dd, 1H, ³ J = 4.9 Hz, ³ J = 3.7 Hz, Ar), 7.38 (d, 1H, ³ J = 3.7 Hz, Ar), 7.44 (d, 1H, ³ J = 4.9 Hz, Ar), 7.87 (s, 1H, HC—N), 8.64 (s, 1H, HC—Ar)
	¹³ C NMR (CDCl ₃), δ : 0.8 (Si—CH ₃), 26.4 (2 × CH ₃), 40.9 (C), 71.2 (=CH ₂), 101.6 (=C—Si), 127.6 (CH), 129.5 (CH), 131.9 (CH), 139.0 (C), 154.8 (HC—Ar), 171.3 (HC=N), 209.4 (=C=)
IVo	IR, $\tilde{\nu}/cm^{-1}$: 1180, 1366, 1527, 1610, 1953 (=C=), 2809, 2866, 2923, 2977, 3201 ¹ H NMR (CDCl ₃), δ : 1.29 (s, 6H, 2 × CH ₃), 2.98 (s, 6H, N—CH ₃), 4.82 (d, 2H, ⁴ J = 6.6 Hz, =CH ₂), 5.30 (t, 1H, ⁴ J = 6.6 Hz, HC=C), 6.66 (d, 2H, ³ J = 8.8 Hz, Ar), 7.62 (d, 2H, ³ J = 8.8 Hz, Ar), 7.88 (s, 1H, HC=N), 8.41 (s, 1H, HC-Ar)
	¹³ C NMR (CDCl ₃), δ : 25.8 (2 × CH ₃), 38.1 (C), 40.2 (N—CH ₃), 77.7 (=CH ₂), 97.6 (H <u>C</u> =C), 111.7 (CH), 121.7 (C), 130.1 (CH), 152.4 (C), 161.8 (HC—Ar), 168.6 (HC=N), 207.1 (=C=) MS, m/z (%): 255 (M ⁺ , 16), 254 (24), 240 (35), 146 (100), 94 (44)
IVp	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1032, 1168, 1252, 1512, 1608, 1633, 1954 (=C=), 2837, 2868, 2931, 2966, 3035, 3072
	¹ H NMR (CDCl ₃), δ : 1.31 (s, 6H, 2 × CH ₃), 3.83 (s, 3H, O—CH ₃), 4.84 (d, 2H, ⁴ J = 6.7 Hz, =CH ₂), 5.30 (t, 1H, ⁴ J = 6.7 Hz, HC=C), 6.92 (d, 2H, ³ J = 8.9 Hz, Ar), 7.71 (d, 2H, ³ J = 8.9 Hz, Ar), 7.88 (s, 1H, HC=N), 8.44 (s, 1H, HC = Ar)
	¹¹¹ , ^{11C} —AI) ¹³ C NMR (CDCl ₃), δ : 25.8 (2 × CH ₃), 38.2 (C), 55.5 (O—CH ₃), 77.8 (=CH ₂), 97.6 (H <u>C</u> =C), 114.4 (CH), 126.9 (C), 130.2 (CH), 160.9 (HC—Ar), 162.2 (C), 169.8 (HC=N), 207.2 (=C=) MS, m/z (%): 243 (M ⁺ + 1, 45), 241 (67), 227 (100), 211 (25), 134 (50), 108 (56), 94 (58)
IVq	IR, $\tilde{\nu}/cm^{-1}$: 1030, 1254, 1512, 1608, 1628, 1954 (=C=), 2837, 2866, 2927, 2978, 3045, 3076 ¹ H NMR (CDCl ₃), δ : 1.30 (s, 6H, 2 × CH ₃), 1.71 (t, 3H, ⁵ J = 3.0 Hz, =C-CH ₃), 3.84 (s, 3H, O-CH ₃), 4.72 (q, 2H, ⁵ J = 3.0 Hz, =CH ₂), 6.93 (d, 2H, ³ J = 8.9 Hz, Ar), 7.71 (d, 2H, ³ J = 8.9 Hz, Ar), 7.81 (s, 1H, HC=N), 8.44
	(s, 1H, HC—Ar) ¹³ C NMR (CDCl ₃), δ : 15.5 (=C— <u>C</u> H ₃), 24.5 (2 × CH ₃), 40.4 (C), 55.5 (O—CH ₃), 76.1 (=CH ₂), 103.6 (= <u>C</u> —CH ₃), 114.4 (CH), 127.0 (C), 130.2 (CH), 160.7 (HC—Ar), 162.2 (C), 169.6 (HC=N), 206.6 (=C=)
IVr	MS, m/z (%): 257 (M ⁺ + 1, 25), 255 (27), 241 (100), 225 (12), 211 (25), 134 (27), 122 (40), 108 (65) IR, $\tilde{\nu}/\text{cm}^{-1}$: 1032, 1168, 1252, 1512, 1608, 1633, 1952 (=C=), 2839, 2872, 2931, 2968, 3035, 3072 ¹ H NMR (CDCl ₃), δ : 1.00 (t, 3H, ³ $_{J}$ = 7.3 Hz, H_3 C—CH ₂), 1.31 (s, 6H, 2 × CH ₃), 1.90–2.03 (m, 2H, H ₃ C—CH ₂),
	3.84 (s, 3H, O—CH ₃), 4.85 (t, 2H, ${}^{5}J = 4.0$ Hz, =CH ₂), 6.93 (d, 2H, ${}^{3}J = 8.9$ Hz, Ar), 7.71 (d, 2H, ${}^{3}J = 8.9$ Hz, Ar), 7.81 (s, 1H, HC=N), 8.44 (s, 1H, HC—Ar)
	¹³ C NMR (CDCl ₃), δ : 12.7 (H ₃ <u>C</u> —CH ₂), 20.5 (H ₃ C— <u>C</u> H ₂), 24.7 (2 × CH ₃), 40.6 (C), 55.5 (O—CH ₃), 78.9 (=CH ₂), 110.7 (=C—Et), 114.4 (CH), 127.0 (C), 130.2 (CH), 160.7 (HC—Ar), 162.1 (C), 169.8 (HC=N), 205.9 (=C=) MS, m/z (%): 271 (M ⁺ + 1, 72), 255 (100), 241 (36), 227 (16), 134 (46), 122 (83), 107 (36)

Compound	Spectral data
IVs	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1109, 1176, 1306, 1458, 1635, 1954 (=C=), 2868, 2929, 2968, 3026, 3051 ¹ H NMR (CDCl ₃), δ : 1.31 (s, 6H, 2 × CH ₃), 2.38 (s, 3H, Ph–CH ₃), 4.84 (d, 2H, ⁴ J = 6.7 Hz, =CH ₂), 5.30 (t, 1H, ⁴ J = 6.7 Hz, HC=C), 7.21 (d, 2H, ³ J = 8.1 Hz, Ar), 7.65 (d, 2H, ³ J = 8.1 Hz, Ar), 7.88 (s, 1H, HC=N), 8.45 (s, 1H, HC=Ar)
	(s, III, IIC III) ¹³ C NMR (CDCl ₃), δ : 21.8 (Ph—CH ₃), 25.8 (2 × CH ₃), 38.3 (C), 77.9 (=CH ₂), 97.5 (H <u>C</u> =C), 128.6 (CH), 129.7 (CH), 131.5 (C), 141.6 (C), 161.3 (HC—Ar), 170.0 (HC=N), 207.2 (=C=) MS, m/z (%): 227 (M ⁺ + 1, 100), 211 (72), 118 (13), 108 (37), 94 (39)
IVt	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1109, 1176, 1306, 1454, 1635, 1954 (=C=), 2868, 2928, 2971, 3026, 3049 ¹ H NMR (CDCl ₃), δ : 1.30 (s, 6H, 2 × CH ₃), 1.71 (t, 3H, ⁵ J = 3.0 Hz, =C—CH ₃), 2.38 (s, 3H, Ph—CH ₃), 4.72 (q, 2H, ⁵ J = 3.0 Hz, =CH ₂), 7.21 (d, 2H, ³ J = 8.1 Hz, Ar), 7.66 (d, 2H, ³ J = 8.1 Hz, Ar), 7.82 (s, 1H, HC=N), 8.45 (s, 1H, HC—Ar)
	¹³ C NMR (CDCl ₃), δ : 15.5 (=C- <u>C</u> H ₃), 21.8 (Ph-CH ₃), 24.5 (2 × CH ₃), 40.4 (C), 76.1 (=CH ₂), 103.5 (= <u>C</u> -CH ₃), 128.5 (CH), 129.7 (CH), 131.5 (C), 141.6 (C), 161.0 (HC-Ar), 169.8 (HC=N), 206.5 (=C=) MS, m/z (%): 240 (M ⁺ , 20), 225 (100), 122 (38), 108 (100), 91 (85)
IVu	IR, $\tilde{\nu}/cm^{-1}$: 1176, 1306, 1458, 1635, 1950 (=C=), 2873, 2931, 2970, 3026, 3049 ¹ H NMR (CDCl ₃), δ : 1.00 (t, 3H, ³ J = 7.4 Hz, <u>H</u> ₃ C—CH ₂), 1.31 (s, 6H, 2 × CH ₃), 1.89–2.03 (m, 2H, H ₃ C—C <u>H₂), 2.38 (s, 3H, Ph—CH₃), 4.85 (t, 2H, ⁵J = 4.0 Hz, =CH₂), 7.21 (d, 2H, ³J = 7.9 Hz, Ar), 7.65 (d, 2H, ³J = 7.9 Hz, Ar), 7.81 (s, 1H, HC=N), 8.45 (s, 1H, HC—Ar) ¹³C NMR (CDCl₃), δ: 12.7 (H₃C—CH₂), 20.5 (H₃C—<u>C</u>H₂), 21.8 (Ph—CH₃), 24.7 (2 × CH₃), 40.6 (C), 78.9 (=CH₂), 110.7 (=C—Et), 128.6 (CH), 129.7 (CH), 131.6 (C), 141.6 (C), 161.0 (HC—Ar), 170.1 (HC=N), 205.9 (=C=)</u>
IVv	MS, m/z (%): 255 (M ⁺ + 1, 84), 239 (100), 122 (91), 109 (46), 91 (63) IR, $\tilde{\nu}/\text{cm}^{-1}$: 1448, 1635, 1954 (=C=), 2868, 2929, 2968, 3028, 3060 ¹ H NMR (CDCl ₃), δ : 1.31 (s, 6H, 2 × CH ₃), 4.84 (d, 2H, ⁴ J = 6.6 Hz, =CH ₂), 5.30 (t, 1H, ⁴ J = 6.6 Hz, HC=C),
	7.35–7.47 (m, 3H, Ph), 7.72–7.82 (m, 2H, Ph), 7.88 (s, 1H, HC=N), 8.47 (s, 1H, HC—Ph) ¹³ C NMR (CDCl ₃), δ : 25.8 (2 × CH ₃), 38.3 (C), 77.9 (=CH ₂), 97.5 (HC=C), 128.6 (2 × CH), 128.9 (2 × CH), 131.2 (CH), 134.2 (C), 161.1 (HC—Ph), 170.3 (HC=N), 207.2 (=C=) MS, m/z (%): 213 (M ⁺ + 1, 100), 197 (35), 77 (48)
IVw	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1109, 1448, 1637, 1955 (=C=), 2870, 2929, 3026, 3062 ¹ H NMR (CDCl ₃), δ : 1.31 (s, 6H, 2 × CH ₃), 1.72 (t, 3H, ⁵ J = 3.0 Hz, =C-CH ₃), 4.73 (q, 2H, ⁵ J = 3.0 Hz, =CH ₂), 7.38-7.46 (m, 3H, Ph), 7.73-7.80 (m, 2H, Ph), 7.82 (s, 1H, HC=N), 8.47 (s, 1H, HC-Ph) ¹³ C NMR (CDCl ₃), δ : 15.5 (=C- <u>CH₃</u>), 24.5 (2 × CH ₃), 40.4 (C), 76.1 (=CH ₂), 103.5 (=C-CH ₃), 128.6 (2 × CH), 128.9 (2 × CH), 131.2 (CH), 134.3 (C), 160.9 (HC-Ph), 170.0 (HC=N), 206.5 (=C=) MS. m/z (%): 225 (M ⁺ + 1, 38), 211 (88), 122 (42), 108 (74), 77 (100)
IVx	IR, $\tilde{\nu}/cm^{-1}$: 1448, 1635, 1952 (=C=), 2870, 2933, 2968, 3062 ¹ H NMR (CDCl ₃), δ : 1.00 (t, 3H, ³ J = 7.4 Hz, <u>H</u> ₃ C—CH ₂), 1.31 (s, 6H, 2 × CH ₃), 1.90–2.03 (m, 2H, H ₃ C—C <u>H₂), 4.85 (t, 2H, ⁵J = 4.0 Hz, =CH₂), 7.34–7.47 (m, 3H, Ph), 7.71–7.79 (m, 2H, Ph), 7.81 (s, 1H, HC=N), 8.47 (s, 1H, HC=Ph) ¹³C NMR (CDCl₃), δ: 12.7 (H₃C—CH₂), 20.5 (H₃C—<u>CH₂</u>), 24.7 (2 × CH₃), 40.7 (C), 79.0 (=CH₂), 110.7 (=C- Et), 128.6 (2 × CH), 128.9 (2 × CH), 131.2 (CH), 134.3 (C), 160.9 (HC—Ph), 170.4 (HC=N), 205.9 (=C=)</u>
IVy	MS, m/z (%): 240 (M ⁺ , 14), 225 (78), 211 (34), 122 (58), 77 (100) IR, $\tilde{\nu}/\text{cm}^{-1}$: 1032, 1127, 1220, 1362, 1451, 1600, 1641, 1942 (=C=), 2849, 2907, 2971 ¹ H NMR (CDCl ₃), δ : 1.35 (s, 6H, 2 × CH ₃), 1.70–1.85 (m, 12H, Ad), 2.10 (bs, 3H, Ad), 4.96 (s, 2H, =CH ₂), 7.22–7.39 (m, 5H, Ph), 7.48 (s, 1H, HC—Ad), 7.80 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 2.56 (2 × CH ₃), 28.0 (CH, Ad), 36.8 (CH ₂ , Ad), 36.9 (C, Ad), 39.7 (CH ₂ , Ad), 40.4 (C), 7.75.2 (CH ₂), 111.6 (CH ₂), δ : 2.56 (2 × CH ₃), 28.0 (CH, Ad), 36.8 (CH ₂ , Ad), 36.9 (C, Ad), 39.7 (CH ₂ , Ad), 40.4 (C),
	$\begin{array}{l} \text{(HC=N), 208.2 (=C=)} \\ \text{MS, } m/z \ (\%): 346 \ (\text{M}^+, 100), 305 \ (13), 291 \ (78), 189 \ (18), 135 \ (35), 83 \ (16) \end{array}$
IVz	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1472, 1482, 1609, 1625, 1927 (=C=), 2932, 3037, 3057 ¹ H NMR (CDCl ₃), δ : 1.33 (s, 6H, 2 × CH ₃), 4.93 (s, 2H, =CH ₂), 7.11–7.25 (m, 6H, Ph), 7.31–7.33 (m, 2H, Ph), 7.67–7.70 (m, 2H, Ph), 7.96 (s, 1H, HC=N), 8.38 (s, 1H, HC—Ph) ¹³ C NMR (CDCl ₃), δ : 25.6 (2 × CH ₃), 40.6 (C), 77.7 (=CH ₂), 116.6 (=C—Ph), 126.9 (2 × CH), 128.0 (2 × CH), 128.3 (2 × CH), 128.6 (2 × CH), 130.9 (CH), 132.8 (CH), 134.0 (C), 135.9 (C), 160.6 (HC—Ph), 170.4 (HC=N), 208.2 (=C=)
IVaa	IR, $\tilde{\nu}/cm^{-1}$: 1092, 1491, 1635, 1954 (=C=), 2868, 2929, 2970, 3030, 3055 ¹ H NMR (CDCl ₃), δ : 1.31 (s, 6H, 2 × CH ₃), 4.85 (d, 2H, ⁴ J = 6.6 Hz, =CH ₂), 5.29 (t, 1H, ⁴ J = 6.6 Hz, HC=C), 7.39 (d, 2H, ³ J = 8.3 Hz, Ar), 7.70 (d, 2H, ³ J = 8.3 Hz, Ar), 7.87 (s, 1H, HC=N), 8.43 (s, 1H, HC-Ar) ¹³ C NMR (CDCl ₃), δ : 25.7 (2 × CH ₃), 38.3 (C), 78.0 (=CH ₂), 97.4 (HC=C), 129.3 (CH), 129.7 (CH), 132.7 (C), 137.2 (C), 159.8 (HC-Ar), 170.7 (HC=N), 207.2 (=C=) MS, m/z (%): 247 (M ⁺ , 16), 245 (20), 231 (21), 139 (28), 135 (26), 111 (61), 108 (95), 94 (100)

Compound	Spectral data
IVab	IR, $\tilde{\nu}/cm^{-1}$: 1092, 1490, 1635, 1954 (=C=), 2868, 2931, 2974, 3029, 3051 ¹ H NMR (CDCl ₃), δ : 1.30 (s, 6H, 2 × CH ₃), 1.71 (t, 3H, ⁵ J = 3.0 Hz, =C-CH ₃), 4.73 (q, 2H, ⁵ J = 3.0 Hz, =CH ₂), 7.39 (d, 2H, ³ J = 8.4 Hz, Ar), 7.70 (d, 2H, ³ J = 8.4 Hz, Ar), 7.81 (s, 1H, HC=N), 8.43 (s, 1H, HC-Ar) ¹³ C NMR (CDCl ₃), δ : 15.4 (=C- <u>C</u> H ₃), 24.4 (2 × CH ₃), 40.5 (C), 76.2 (=CH ₂), 103.4 (= <u>C</u> -CH ₃), 129.3 (CH), 129.7 (CH), 132.8 (C), 137.2 (C), 159.6 (HC-Ar), 170.5 (HC=N), 206.6 (=C=) MS, m/z (%): 261 (M ⁺ , 100), 259 (22), 245 (76), 138 (24), 122 (62), 108 (100), 93 (36)
IVac	IR, $\tilde{\nu}/cm^{-1}$: 1090, 1491, 1635, 1950 (=C=), 2872, 2931, 2970, 3030, 3051 ¹ H NMR (CDCl ₃), δ : 1.00 (t, 3H, ³ J = 7.3 Hz, <u>H</u> ₃ C—CH ₂), 1.31 (s, 6H, 2 × CH ₃), 1.89–2.02 (m, 2H, H ₃ C—C <u>H</u> ₂), 4.86 (t, 2H, ⁵ J = 4.0 Hz, =CH ₂), 7.39 (d, 2H, ³ J = 8.4 Hz, Ar), 7.70 (d, 2H, ³ J = 8.4 Hz, Ar), 7.80 (s, 1H, HC=N), 8.43 (s, 1H, HC—Ar) ¹³ C NMR (CDCl ₃), δ : 12.7 (H ₃ <u>C</u> —CH ₂), 20.5 (H ₃ C— <u>C</u> H ₂), 24.7 (2 × CH ₃), 40.7 (C), 79.0 (=CH ₂), 110.6 (=C- Et), 129.3 (CH), 129.7 (CH), 132.8 (C), 137.2 (C), 159.6 (HC—Ar), 170.8 (HC=N), 205.9 (=C=) NS. $\omega^{-}(\mathcal{O}) = 27. (\mathcal{O}) = 27. (\mathcal{O}) = 24.9 (11) - 129. (4C) - 111. (22) = 29. (4T)$
IVad	$ \begin{array}{l} \text{MS, } m/z \ (\%): \ 273 \ (\text{M}^+, \ 32), \ 248 \ (11), \ 103 \ (100), \ 138 \ (40), \ 111 \ (05), \ 89 \ (53) \\ \text{IR, } \tilde{\nu}/\text{cm}^{-1}: \ 1108, \ 1340, \ 1518, \ 1598, \ 1634, \ 1950 \ (=C=), \ 2867, \ 2931, \ 2971, \ 3043, \ 3092, \ 3129 \\ ^{1}\text{H} \ \text{NMR} \ (\text{CDCl}_3), \ \delta: \ 1.32 \ (\text{s, } 6\text{H}, \ 2 \times \text{CH}_3), \ 4.87 \ (\text{d, } 2\text{H}, \ ^4J = 6.6 \ \text{Hz}, \ =\text{CH}_2), \ 5.29 \ (\text{t, } 1\text{H}, \ ^4J = 6.6 \ \text{Hz}, \ \text{HC}=\text{C}), \\ 7.89 \ (\text{s, } 1\text{H}, \ \text{HC}=\text{N}), \ 7.93 \ (\text{d, } 2\text{H}, \ ^3J = 8.9 \ \text{Hz}, \ \text{Ar}), \ 8.27 \ (\text{d, } 2\text{H}, \ ^3J = 8.9 \ \text{Hz}, \ \text{Ar}), \ 8.50 \ (\text{s, } 1\text{H}, \ \text{HC}=\text{Ar}) \\ ^{13}\text{C} \ \text{NMR} \ (\text{CDCl}_3), \ \delta: \ 25.7 \ (2 \times \text{CH}_3), \ 38.5 \ (\text{C}), \ 78.1 \ (=\text{CH}_2), \ 97.2 \ (\text{H}\underline{C}=\text{C}), \ 124.2 \ (\text{CH}), \ 129.1 \ (\text{CH}), \ 140.1 \ (\text{C}), \\ 149.3 \ (\text{C}), \ 158.3 \ (\text{HC}=\text{Ar}), \ 171.6 \ (\text{HC}=\text{N}), \ 207.3 \ (=\text{C}=) \\ \text{MS, } m/z \ (\%): \ 256 \ (\text{M}^+, \ 38), \ 242 \ (80), \ 195 \ (20), \ 108 \ (76), \ 94 \ (100), \ 79 \ (64) \\ \end{array}$
IVae	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1107, 1343, 1520, 1602, 1631, 1951 (=C=), 2865, 2927, 2971, 3051, 3081, 3108 ¹ H NMR (CDCl ₃), δ : 1.32 (s, 6H, 2 × CH ₃), 1.72 (t, 3H, ⁵ J = 3.0 Hz, =C-CH ₃), 4.74 (q, 2H, ⁵ J = 3.0 Hz, =CH ₂), 7.83 (s, 1H, HC=N), 7.93 (d, 2H, ³ J = 8.8 Hz, Ar), 8.27 (d, 2H, ³ J = 8.8 Hz, Ar), 8.50 (s, 1H, HC-Ar) ¹³ C NMR (CDCl ₃), δ : 15.4 (=C-CH ₃), 24.3 (2 × CH ₃), 40.6 (C), 76.3 (=CH ₂), 103.2 (=C-CH ₃), 124.1 (CH), 129.1 (CH), 140.1 (C), 149.3 (C), 158.1 (HC-Ar), 171.4 (HC=N), 206.5 (=C=) MS, m/z (%): 271 (M ⁺ , 4), 270 (19), 256 (100), 210 (33), 122 (55), 108 (58)
IVaf	IR, $\tilde{\nu}/cm^{-1}$: 1103, 1342, 1521, 1601, 1633, 1949 (=C=), 2856, 2871, 2931, 2969, 3046, 3103 ¹ H NMR (CDCl ₃), δ : 1.01 (t, 3H, ³ J = 7.3 Hz, <u>H</u> ₃ C-CH ₂), 1.32 (s, 6H, 2 × CH ₃), 1.89–2.03 (m, 2H, H ₃ C-C <u>H₂), 4.87 (t, 2H, ⁵J = 4.0 Hz, =CH₂), 7.83 (s, 1H, HC=N), 7.93 (d, 2H, ³J = 8.6 Hz, Ar), 8.27 (d, 2H, ³J = 8.6 Hz, Ar), 8.50 (s, 1H, HC-Ar) ¹³C NMR (CDCl₃), δ: 12.7 (H₃<u>C</u>-CH₂), 20.5 (H₃C-<u>C</u>H₂), 24.6 (2 × CH₃), 40.8 (C), 79.1 (=CH₂), 110.4 (=C- Et), 124.1 (CH), 129.1 (CH), 140.1 (C), 149.3 (C), 158.1 (HC-Ar), 171.7 (HC=N), 205.9 (=C=) MS m/z (%): 285 (M⁺ 3), 284 (10), 270 (100), 256 (33), 224 (23), 136 (25), 122 (66), 107 (42)</u>
IVag	¹ H NMR (CDCl ₃), δ : 1.36 (s, 6H, 2 × CH ₃), 2.39–2.47 (m, 4H, N—CH ₂), 2.96–3.00 (m, 2H, =C—CH ₂), 3.61–3.68 (m, 4H, O—CH ₂), 4.84–4.88 (m, 2H, =CH ₂), 7.93 (d, 2H, ³ J = 8.1 Hz, Ar), 7.96 (s, 1H, HC=N), 8.28 (d, 2H, ³ J = 8.1 Hz, Ar), 8.50 (s, 1H, HC—Ar) ¹³ C NMR (CDCl ₃), δ : 24.9 (2 × CH ₃), 40.2 (C), 53.6 (N—CH ₂), 58.7 (=C— <u>CH₂</u>), 67.2 (O—CH ₂), 77.5 (=CH ₂), 105.3 (=C—CH ₂), 124.2 (CH), 129.0 (CH), 140.2 (C), 149.3 (C), 157.8 (HC—Ar) 172.5 (HC=N), 207.6 (=C=)
IVah	IR, $\tilde{\nu}/cm^{-1}$: 1240, 1319, 1338, 1464, 1510, 1578, 1633, 1954 (=C=), 2868, 2927, 2970, 3053 ¹ H NMR (CDCl ₃), δ : 1.44 (s, 6H, 2 × CH ₃), 4.94 (d, 2H, ⁴ J = 6.8 Hz, =CH ₂), 5.43 (t, 1H, ⁴ J = 6.8 Hz, HC=C), 7.47-7.67 (m, 3H, Ar), 7.84-8.00 (m, 2H, Ar), 8.00-8.09 (m, 1H, Ar), 8.10 (s, 1H, HC=N), 8.85-8.97 (m, 1H, Ar), 9.21 (s, 1H, HC-Ar) ¹³ C NMR (CDCl ₃), δ : 25.8 (2 × CH ₃), 38.3 (C), 77.9 (=CH ₂), 97.5 (HC=C), 124.7 (CH), 125.3 (CH), 126.3 (CH), 127.3 (CH), 128.8 (CH), 129.1 (CH), 129.7 (C), 131.5 (C), 131.7 (CH), 134.0 (C), 160.9 (HC-Ar), 170.3 (HC=N), 207.2 (=C=) MS, m/z (%): 262 (M ⁺ , 24), 247 (71), 234 (17), 192 (30), 153 (75), 139 (34), 127 (100), 108 (73), 94 (96), 79 (47), 67 (65), 53 (41), 41 (54)
IVai	IR, $\tilde{\nu}/cm^{-1}$: 1109, 1240, 1317, 1338, 1371, 1456, 1512, 1576, 1633, 1951 (=C=), 2868, 2927, 2972, 3045 ¹ H NMR (CDCl ₃), δ : 1.36 (s, 6H, 2 × CH ₃), 1.75 (t, 3H, ⁵ J = 3.1 Hz, =C—CH ₃), 4.74 (q, 2H, ⁵ J = 3.1 Hz, =CH ₂), 7.45–7.65 (m, 3H, Ar), 7.81–7.94 (m, 2H, Ar), 7.95 (s, 1H, HC=N), 7.95–8.02 (m, 1H, Ar), 8.78–8.89 (m, 1H, Ar), 9.14 (s, 1H, HC—Ar) ¹³ C NMR (CDCl ₃), δ : 15.5 (=C—CH ₃), 24.5 (2 × CH ₃), 40.5 (C), 76.2 (=CH ₂), 103.6 (=C—CH ₃), 124.8 (CH), 125.5 (CH), 126.3 (CH), 127.4 (CH), 128.9 (CH), 129.1 (CH), 129.8 (C), 131.6 (C), 131.7 (CH), 134.1 (C), 160.7 (HC—Ar), 170.3 (HC=N), 206.6 (=C=) MS, m/z (%): 277 (M ⁺ + 1, 30), 261 (35), 245 (31), 229 (39), 149 (17), 122 (87), 108 (100), 95 (27), 79 (24), 67 (50), 55 (32), 41 (25)
IVaj	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1022, 1173, 1214, 1249, 1315, 1339, 1362, 1383, 1406, 1461, 1511, 1577, 1633, 1896, 1924 (=C=), 2898, 2932, 2965, 3053 ¹ H NMR (CDCl ₃), δ : 0.24 (s, 9H, Si—CH ₃), 1.48 (s, 6H, 2 × CH ₃), 4.56 (s, 2H, =CH ₂), 7.50–7.67 (m, 3H, Ar), 7.87–7.99 (m, 2H, Ar), 8.00–8.04 (m, 1H, Ar), 8.05 (s, 1H, HC=N), 8.89 (d, 1H, ³ J = 8.4 Hz, Ar), 9.20 (s, 1H, HC—Ar) ¹³ C NMR (CDCl ₃), δ : 1.0 (Si—CH ₃), 26.6 (2 × CH ₃), 41.1 (C), 71.5 (=CH ₂), 102.0 (=C—Si), 124.8 (CH), 125.5 (CH), 126.3 (CH), 127.4 (CH), 128.9 (CH), 129.1 (CH), 130.0 (C), 131.7 (CH), 134.1 (C), 160.6 (HC—Ar), 171.4 (HC=N), 209.6 (=C=)

Compound	Spectral data
IVak	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1159, 1257, 1444, 1454, 1520, 1632, 1954 (=C=), 2867, 2929, 2970, 3051 ¹ H NMR (CDCl ₃), δ : 1.45 (s, 6H, 2 × CH ₃), 4.94 (d, 2H, ⁴ J = 6.6 Hz, =CH ₂), 5.45 (t, 1H, ⁴ J = 6.6 Hz, HC=C), 7.45–7.65 (m, 4H, Ant), 7.98–8.10 (m, 2H, Ant), 8.13 (s, 1H, HC=N), 8.53 (s, 1H, Ant), 8.64–8.75 (m, 2H, Ant), 9.72 (s, 1H, HC=Ant)
IVal	¹³ C NMR (CDCl ₃), δ : 25.9 (2 × CH ₃), 38.5 (C), 78.0 (=CH ₂), 97.6 (HC=C), 125.4 (2 × CH), 125.6 (2 × CH), 127.1 (2 × CH), 129.1 (2 × CH), 130.5 (CH), 130.7 (C), 131.5 (C), 160.7 (HC—Ant), 170.9 (HC=N), 207.3 (=C=) MS, m/z (%): 312 (M ⁺ , 64), 297 (27), 203 (100), 176 (27), 108 (15), 94 (90), 79 (18), 67 (14), 53 (14), 41 (22) IR, $\tilde{\nu}/cm^{-1}$: 1109, 1215, 1444, 1632, 1952 (=C=), 2868, 2927, 2974, 3051, 3082
	¹ H NMR (CDCl ₃), δ : 1.42 (s, 6H, 2 × CH ₃), 1.81 (t, 3H, ⁵ J = 3.0 Hz, =C-CH ₃), 4.77 (q, 2H, ⁵ J = 3.0 Hz, =CH ₂), 7.45-7.65 (m, 4H, Ant), 8.00-8.04 (m, 1H, Ant), 8.05 (s, 1H, HC=N), 8.05-8.08 (m, 1H, Ant), 8.55 (s, 1H, Ant), 8.64-8.71 (m, 2H, Ant), 9.71 (s, 1H, HC-Ant)
	¹³ C NMR (CDCl ₃), δ : 15.6 (=C— <u>C</u> H ₃), 24.6 (2 × CH ₃), 40.6 (C), 76.2 (=CH ₂), 103.6 (= <u>C</u> —CH ₃), 125.4 (2 × CH), 125.6 (2 × CH), 127.2 (2 × CH), 129.2 (2 × CH), 130.5 (CH), 130.8 (C), 131.6 (C), 160.1 (HC—Ant), 170.7 (HC=N), 206.6 (=C=)
IVam	MS, m/z (%): 327 (M ⁺ + 1, 19), 312 (18), 203 (100), 176 (32), 108 (58), 67 (10) IR, $\tilde{\nu}/cm^{-1}$: 1021, 1160, 1249, 1306, 1362, 1444, 1519, 1632, 1896, 1924 (=C=), 2869, 2898, 2930, 2965, 3029, 3052,
	3082 ¹ H NMR (CDCl ₃), δ : 0.28 (s, 9H, Si—CH ₃), 1.52 (s, 6H, 2 × CH ₃), 4.58 (s, 2H, ==CH ₂), 7.49–7.54 (m, 2H, Ant), 7.55–7.61 (m, 2H, Ant), 8.04 (d, 2H, ³ J = 8.3 Hz, Ant), 8.12 (s, 1H, HC=N), 8.53 (bs, 1H, Ant), 8.65–8.69 (m, 2H, Ant), 9.71 (s, 1H, HC=Ant)
	¹³ C NMR (CDCl ₃), δ : 1.1 (Si—CH ₃), 26.6 (2 × CH ₃), 41.3 (C), 71.5 (=CH ₂), 102.0 (=C—Si), 125.4 (2 × CH), 125.5 (2 × CH), 127.1 (2 × CH), 129.1 (2 × CH), 130.3 (CH), 130.7 (C), 131.5 (C), 160.2 (HC—Ant), 171.9 (HC=N), 209.7 (=C=)
IVan	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1035, 1180, 1245, 1290, 1384, 1461, 1509, 1606, 1646, 1940 (=C=), 2836, 2935, 2969 ¹ H NMR (CDCl ₃), δ : 1.14 (t, 3H, ³ J = 7.6 Hz, CH ₂ -CH ₃), 1.32 (s, 6H, 2 × CH ₃), 2.35 (dq, 2H, ³ J = 7.6 Hz, ³ J
	= 5.1 Hz, CH ₂ —CH ₃), 3.80 (s, 3H, OCH ₃), 4.98 (s, 2H, =CH ₂), 6.97 (d, 2H, ${}^{3}J$ = 8.7 Hz, Ar), 7.68 (d, 2H, ${}^{3}J$ = 8.7 Hz, Ar), 7.72 (s, 1H, HC=N), 7.80 (t, 1H, ${}^{3}J$ = 5.1 Hz, =CH-CH ₂)
	¹³ C NMR (CDCl ₃), δ : 10.5 (CH ₂ — <u>C</u> H ₃), 25.6 (2 × CH ₃), 26.1 (<u>C</u> H ₂ —CH ₃), 39.9 (C), 55.4 (OCH ₃), 77.5 (=CH ₂), 109.5 (=C—Ar), 115.5 (2 × CH), 130.4 (2 × CH), 139.0 (C), 151.3 (C), 165.8 (= <u>C</u> H—CH ₂), 170.9 (HC=N), 208.8 (=C=)
IVao	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1035, 1180, 1245, 1288, 1454, 1509, 1606, 1643, 1941 (=C=), 2834, 2931, 2969, 3029 ¹ H NMR (CDCl ₃), δ : 1.35 (s, 6H, 2 × CH ₃), 3.68 (d, 2H, ³ J = 5.8 Hz, =CH- <u>CH₂</u>), 3.79 (s, 3H, OCH ₃), 4.99 (s, 2H, =CH ₂), 7.07 (d, 2H, ³ J = 8.1 Hz, Ar), 7.33-7.45 (m, 5H, Ph), 7.62 (d, 2H, ³ J = 8.1 Hz, Ar), 7.75 (s, 1H, HC=N), 7.84 (t, 1H, ³ J = 5.8 Hz, =CH- <u>CH₂</u>)
	¹³ C NMR (CDCl ₃), δ : 24.3 (CH ₂), 25.2 (2 × CH ₃), 39.5 (C), 55.4 (OCH ₃), 77.6 (=CH ₂), 109.5 (=C-Ar), 114.9 (CH), 127.5 (C), 128.5 (CH), 128.9 (CH), 129.1 (CH), 129.5 (CH), 131.3 (C), 152.2 (C), 162.4 (=CH-CH ₂), 170.8 (HC=N), 209.2 (=C=)
IVap	IR, $\tilde{\nu}/\text{cm}^{-1}$: 1032, 1210, 1388, 1466, 1512, 1649, 1942 (=C=), 2878, 2922, 2966 ¹ H NMR (CDCl ₃), δ : 1.15 (t, 3H, ³ J = 7.2 Hz, CH ₂ —CH ₃), 1.35 (s, 6H, 2 × CH ₃), 2.30 (dq, 2H, ³ J = 7.2 Hz, ³ J = 5.2 Hz, CH ₂ —CH ₃), 2.40 (s, 3H, Ph—CH ₃), 5.01 (s, 2H, =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ —CH ₃), 2.40 (s, 3H, Ph—CH ₃), 5.01 (s, 2H, =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂ =CH ₂), 7.20 (d, 2H, ³ J = 8.0 Hz, Ar), 7.67 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J = 5.2 Hz, CH ₂), 7.20 (d, 2H, ³ J =
	= 8.0 Hz, Ar), 7.70 (s, 1H, HC=N), 7.76 (t, 1H, ${}^{\circ}J$ = 5.1 Hz, =CHCH ₂) ${}^{13}C$ NMR (CDCl ₃), δ : 10.4 (CH ₂ - <u>C</u> H ₃), 22.0 (PhCH ₃), 25.3 (2 × CH ₃), 25.9 (<u>C</u> H ₂ CH ₃), 39.5 (C), 77.4 (=CH ₂), 111.8 (=CAr), 128.5 (2 × CH), 129.4 (2 × CH), 131.0 (C), 137.3 (C), 165.2 (= <u>C</u> HCH ₂), 169.9 (HC=N), 207.8 (=C=)
IVaq	IR, $\tilde{\nu}/cm^{-1}$: 1014, 1106, 1346, 1382, 1465, 1600, 1940 (=C=), 2873, 2933, 2967 ¹ H NMR (CDCl ₃), δ : 1.20 (t, 3H, ³ J = 7.1 Hz, CH ₂ —C <u>H</u> ₃), 1.38 (s, 6H, 2 × CH ₃), 1.60–1.68 (m, 2H, CH ₂), 1.76–1.83 (m, 2H, CH ₂), 2.34 (s, 3H, Ph—CH ₃), 5.00 (s, 2H, =CH ₂), 7.24 (d, 2H, ³ J = 8.2 Hz, Ar), 7.63 (s, 1H, HC=N), 7.65 (d, 2H, ³ J = 8.2 Hz, Ar), 7.81 (t, 1H, ³ J = 5.3 Hz, =CH—CH ₂)
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
IVar	IR, $\tilde{\nu}/cm^{-1}$: 1021, 1110, 1383, 1464, 1510, 1644, 1940 (=C=), 2870, 2928, 2967 ¹ H NMR (CDCl ₃), δ : 1.09 (d, 6H, ³ J = 7.0 Hz, 2 × CH ₃), 1.35 (s, 6H, 2 × CH ₃), 2.35 (s, 3H, Ph—CH ₃), 2.38–2.52 (m, 1H, CH), 4.99 (s, 2H, =CH ₂), 7.22 (d, 2H, ³ J = 8.1 Hz, Ar), 7.60 (d, 2H, ³ J = 8.1 Hz, Ar), 7.64 (s, 1H, HC=N), 7.70 (d, 1H, ³ J = 5.7 Hz, =CH ¹³ C NMR (CDCl ₃), δ : 19.8 (2 × CH ₃), 25.6 (2 × CH ₃), 30.1 (CH), 40.9 (C), 77.4 (=CH ₂), 110.7 (=C-Ar), 128.3
	$(2 \times CH), 129.7 (2 \times CH), 130.8 (C), 136.7 (C), 165.8 (=CH-CH), 169.0 (HC=N), 207.1 (=C=)$

Compound	Spectral data
IVas	IR, $\tilde{\nu}/cm^{-1}$: 1023, 1119, 1384, 1460, 1517, 1621, 1942 (=C=), 2872, 2936, 2969 ¹ H NMR (CDCl ₃), δ : 1.34 (s, 6H, 2 × CH ₃), 2.31 (s, 3H, Ph–CH ₃), 3.66 (d, 2H, ³ J = 5.9 Hz, =CH–CH ₂), 4.96 (s, 2H, =CH ₂), 7.21 (d, 2H, ³ J = 8.4 Hz, Ar), 7.30–7.42 (m, 5H, Ph), 7.58 (d, 2H, ³ J = 8.4 Hz, Ar), 7.61 (s, 1H, HC=N), 7.88 (t, 1H, ³ J = 5.9 Hz, =CH–CH ₂) ¹³ C NMR (CDCl ₃), δ : 24.0 (CH ₂), 25.6 (2 × CH ₃), 39.3 (C), 77.9 (=CH ₂), 110.1 (=C–Ar), 127.5 (C), 128.5 (CH), 128.7 (CH), 128.9 (CH), 129.1 (CH), 129.5 (CH), 131.3 (C), 137.7 (C), 162.4 (=CH–CH ₂), 170.1 (HC=N), 207.9 (=C=)
IVat	IR, $\tilde{\nu}$ /cm ⁻¹ : 1047, 1126, 1383, 1492, 1597, 1646, 1941 (=C=), 2880, 2934, 2974 ¹ H NMR (CDCl ₃), δ : 1.35 (s, 6H, 2 × CH ₃), 1.52 (t, 3H, ³ J = 7.5 Hz, CH ₂ CH ₃), 2.36 (dq, 2H, ³ J = 7.5 Hz, ³ J = 5.1 Hz, CH ₂ CH ₃), 4.99 (s, 2H, =CH ₂), 7.25-7.30 (m, 2H, Ph), 7.79-7.83 (m, 3H, Ph), 7.84 (t, 1H, ³ J = 5.1 Hz, =CHCH ₂), 7.87 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 10.4 (CH ₂ CH ₃), 25.3 (2 × CH ₃), 25.9 (CH ₂ CH ₃), 40.1 (C), 77.4 (=CH ₂), 116.8 (=CPh), 127.7 (2 × CH), 127.8 (CH), 128.5 (2 × CH), 137.0 (C), 165.2 (=CHCH ₃), 168.9 (HC=N), 207.9 (=C=)
IVau	IR, $\tilde{\nu}$ /cm ⁻¹ : 1016, 1109, 1344, 1382, 1465, 1601, 1943 (=C=), 2877, 2939, 2964 ¹ H NMR (CDCl ₃), δ : 1.29 (t, 3H, ³ J = 7.1 Hz, CH ₂ —CH ₃), 1.36 (s, 6H, 2 × CH ₃), 1.59–1.65 (m, 2H, CH ₂), 1.68–1.71 (m, 2H, CH ₂), 4.96 (s, 2H, =CH ₂), 7.38 (t, 1H, ³ J = 5.0 Hz, =CH ₂ —CH ₂), 7.51–7.59 (m, 2H, Ph), 7.75–7.80 (m, 3H, Ph), 7.81 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 1.3.9 (CH ₂ —CH ₃), 19.8 (CH ₂ —CH ₃), 23.0 (CH ₂), 25.2 (2 × CH ₃), 39.6 (C), 77.3 (=CH ₂), 111.8 (=C—Ph), 127.3 (CH), 128.5 (2 × CH), 128.8 (2 × CH), 137.3 (C), 164.5 (=CH—CH ₂), 169.3 (HC=N), 207.8 (=C=)
IVav	IR, $\bar{\nu}$ /cm ⁻¹ : 1029, 1087, 1141, 1398, 1456, 1558, 1600, 1650, 1945 (=C=), 2925, 2971 ¹ H NMR (CDCl ₃), δ : 1.11 (d, 6H, ³ J = 7.0 Hz, 2 × CH ₃), 1.38 (s, 6H, 2 × CH ₃), 2.40–2.55 (m, 1H, CH), 5.02 (s, 2H, =CH ₂), 7.43–7.49 (m, 2H, Ph), 7.52 (d, 1H, ³ J = 6.7 Hz, =C <u>H</u> –CH), 7.69–7.74 (m, 3H, Ph), 7.85 (s, 1H, HC=N) ¹³ C NMR (CDCl ₃), δ : 19.8 (2 × CH ₃), 25.7 (2 × CH ₃), 29.9 (CH), 40.3 (C), 77.8 (=CH ₂), 111.7 (=C–Ph), 127.0 (CH), 128.2 (2 × CH), 128.8 (2 × CH), 136.5 (C), 165.8 (= <u>C</u> H–CH), 169.0 (HC=N), 207.1 (=C=)
IVaw	IR, $\bar{\nu}/cm^{-1}$: 1051, 1101, 1384, 1463, 1517, 1592, 1644, 1934 (=C=), 2871, 2921, 2960 ¹ H NMR (CDCl ₃), δ : 1.16 (d, 6H, ³ J = 7.1 Hz, 2 × CH ₃), 1.40 (s, 6H, 2 × CH ₃), 2.55–2.66 (m, 1H, =CH-C <u>H</u>), 5.18 (s, 2H, =CH ₂), 7.41 (d, 2H, ³ J = 8.8 Hz, Ar), 7.70 (s, 1H, HC=N), 7.84 (t, 1H, ³ J = 5.3 Hz, =C <u>H</u> -CH), 8.14 (d, 2H, ³ J = 8.8 Hz, Ar) ¹³ C NMR (CDCl ₃), δ : 19.8 (2 × CH ₃), 26.7 (2 × CH ₃), 29.3 (CH), 42.9 (C), 79.8 (=CH ₂), 108.0 (=C-Ar), 123.2 (CH), 128.8 (CH), 141.0 (C), 146.8 (C), 163.6 (= <u>C</u> H-CH), 170.9 (HC=N), 209.9 (=C=)
IVax	IR, $\tilde{\nu}/cm^{-1}$: 1027, 1113, 1347, 1382, 1467, 1511, 1620, 1932 (=C=), 2873, 2937, 2968 ¹ H NMR (CDCl ₃), δ : 1.37 (s, 6H, 2 × CH ₃), 3.68 (d, 2H, ³ J = 5.5 Hz, =CH—CH ₂), 5.21 (s, 2H, =CH ₂), 7.31–7.38 (m, 5H, Ph), 7.39 (d, 2H, ³ J = 8.9 Hz, Ar), 7.79 (s, 1H, HC=N), 7.84 (t, 1H, ³ J = 5.5 Hz, =CH—CH ₂), 8.10 (d, 2H, ³ J = 8.9 Hz, Ar) ¹³ C NMR (CDCl ₃), δ : 24.6 (CH ₂), 27.2 (2 × CH ₃), 42.5 (C), 80.1 (=CH ₂), 107.5 (=C—Ar), 123.8 (CH), 127.9 (CH), 128.5 (CH), 129.3 (CH), 130.1 (CH), 141.3 (C), 146.9 (C), 162.9 (=CH—CH ₂), 171.3 (HC=N), 210.2 (=C=)

Ad – 1-Adamantyl; Ant – 9-anthryl; Ph – phenyl.

The procedure for the preparation of other azines IVc-IVax differed only in the amounts of reactants used. The reaction mixture contained 10.5 mmol of protected hydrazone II and 10 mmol of allenyl aldehyde. The desired azines were purified by filtering the crude product in petroleum ether through a short column of neutral alumina or by liquid chromatography (DCM).

Results and discussion

The investigation and preparation of non-symmetrical allenyl azines IV represents a major part of the work undertaken in our laboratory. The starting compounds II and III for their preparation were published in Part 1 (Galeta et al., 2013). Their preparation follows Zwierzak's procedure, in which protected hydrazine I reacts with carbonyl compounds forming protected hydrazones II or III. Their reaction in the presence of a strong base with a second aldehyde afforded the expected azines IV. Two reaction pathways (A and B) could be utilised (Fig. 1). The second pathway (B) served for derivatives with a hydrogen atom (R = H) because it was not possible to prepare hydrazone II after reaction with formaldehyde. Thus, we collected very differently substituted azines IV in high yields using a relatively easy and rapid procedure (Table 1).

For structural studies, we were able to prepare a crystal suitable for X-ray analysis. It clearly shows that the stereochemical arrangement in a heterodiene system is trans - s-trans - trans and that the allenyl group lies approximately in the extended plane defined by the heterodiene and p-nitrophenyl ring but is oriented in the opposite direction (Fig. 2).

Since thermal stress can initiate slow decomposition of compounds IV, elemental analyses of just five representatives were carried out (Table 2). It is

Fig. 3. Decomposition of aromatic aldazines.

worth noting here that aliphatic aldazines are some of the most stable derivatives. The stability of aromatic derivatives decreases with their increasing aromaticity. It was observed that decomposition mainly produced their symmetrical counterparts (Fig. 3) consisting of the same aldehyde segments bound to nitrogen atoms of the azine moiety. For this reason, handling them at ambient temperature was limited to the shortest time necessary. Spectral data of all newly prepared compounds are summarized in Table 3.

Conclusions

Detailed investigation of scope of preparation of non-symmetrical allenyl azines afforded 50 new derivatives, which can serve as very potent systems for subsequent cycloaddition reaction steps. Two possible pathways for their preparation and, alternatively, the degradation products of aromatic aldazines were discussed. The crystal structure of one product was also obtained and discussed.

Acknowledgements. The authors are grateful to Marek Nečas for crystallographic measurements. The research was supported by the Grant Agency of the Czech Republic, project No. 203/09/1345.

Supplementary data

Crystallographic data on the structure of azine *IVag* have been deposited in the Cambridge Crystallographic Data Centre, CCDC No. 871315. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Tel: +44 (0)1223 762911; e-mail: kamila@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

References

Brandsma, L. (2001). Unsaturated carbanions, heterocumulenes and thiocarbonyl compounds – new routes to heterocycles. *European Journal of Organic Chemistry*, 2001, 4569–4581. DOI: 10.1002/1099-0690(200112)2001:24<4569::aid-ejoc 4569>3.0.CO;2-w.

- Brandsma, L. (2004). Synthesis of acetylenes, allenes and cumulenes: Methods and techniques. Oxford, UK: Elsevier.
- Brandsma, L., & Nedolya, N. A. (2004). Allenic compounds and isothiocyanates as key building units in the synthesis of heterocycles. Synthesis, 2004, 735–745. DOI: 10.1055/s-2004-816005.
- Brasholz, M., Reissig, H. U., & Zimmer, R. (2009). Sugars, alkaloids, and heteroaromatics: exploring heterocyclic chemistry with alkoxyallenes. Accounts of Chemical Research, 42, 45– 56. DOI: 10.1021/ar800011h.
- Bruker AXS (1997). SHELXTL, Version 5.10. An integrated system for solving and refining crystal structures from diffraction data. Madison, WI, USA: Bruker AXS.
- Galeta, J., Man, S., & Potáček, M. (2009). Non-symmetrical allenyl azines and their transformations leading to new heterocyclic skeletons. ARKIVOC, 2009, 6, 245–259.
- Galeta, J., Man, S., Bouillon, J. P., & Potáček, M. (2011). Unexpected heterocyclic products from cycloaddition reactions of nonsymmetrical allenyl aldoketazines with substituted alkynes. *European Journal of Organic Chemistry*, 2011, 392– 398. DOI: 10.1002/ejoc.201001044.
- Galeta, J., & Potáček, M. (2012). Substituted diazatetracyclo [4.4.0.1^{3,10}.1^{5,8}]dodecanes as stable caged proton sponges. *The Journal of Organic Chemistry*, 77, 1010–1017. DOI: 10.1021/jo202235f.
- Galeta, J., Man, S., & Potáček, M. (2013). Substituted homoallenyl aldehydes and their derivatives. Part 1: Homoallenyl aldehydes and protected hydrazones. *Chemical Papers*, 67, 29–39. DOI: 10.2478/s11696-012-0215-6.
- Koziara, A., Turski, K., & Zwierzak, A. (1986). A general synthesis of unsymmetrical azines via N-(diethoxyphosphinyl)hydrazones. Synthesis, 1986, 298–301. DOI: 10.1055/s-1986-31589.
- Krause, N., & Hashmi, A. S. K. (2004). Modern allene chemistry. Weinheim, Germany: Wiley–VCH.
- Man, S., Kulhánek, P., Potáček, M., & Nečas, M. (2002). New fused heterocycles by combined intra-intermolecular crisscross cycloaddition of nonsymmetrical azines. *Tetrahedron Letters*, 43, 6431–6433. DOI: 10.1016/s0040-4039(02)01378-3.
- Man, S., Bouillon, J. P., Nečas, M., & Potáček, M. (2004). Combined intra-intermolecular criss-cross cycloaddition of a new fluorinated unsymmetrical allenylazine with alkynes. *Tetrahedron Letters*, 45, 9419–9421. DOI: 10.1016/j.tetlet.2004.10. 107.
- Man, S., Nečas, M., Bouillon, J. P., Baillia, H., Harakat, D., & Potáček, M. (2005). New intra-intermolecular criss-cross cycloaddition of unsymmetrical allenylazines with alkynes lead-

ing to three fused five-membered heterocycles. *Tetrahedron*, 61, 2387–2393. DOI: 10.1016/j.tet.2005.01.020.

- Schweizer, E. E., & Lee, K. J. (1984). Reactions of azines. 8. Synthesis and thermal rearrangement of 1-oxo-3,4-diaza-2,4,6-heptatrienes and 1-oxo-3,4-diaza-2,4,6,7-octatetraenes (allenyl azines). The Journal of Organic Chemistry, 49, 1959–1964. DOI: 10.1021/jo00185a025.
- Schweizer, E. E., Hayes, J. E., Hirwe, S. N., & Rheingold, A. L. (1987). Reactions of azines. 9. Preparation of 4,5-dihydropyrazolo[1,5-a]pyridines, 6,7-dihydropyrazolo[1,5a]pyridines, and pyrazolo[1,5-a]pyridines. The Journal of Organic Chemistry, 52, 1319–1324. DOI: 10.1021/jo00383a028.
- Zachová, H., Man, S., Nečas, M., & Potáček, M. (2005). Fused tetracyclic heterocycles by thermally initiated intramolecular criss-cross cycloaddition of 3-substituted homoallenylaldazines. European Journal of Organic Chemistry, 2005, 2548–2557. DOI: 10.1002/ejoc.200400814.
- Zachová, H., Marek, R., Man, S., Taraba, J., & Potáček, M. (2006). A new rearrangement of fused tetracyclic heterocycles in an acidic medium in the presence of NaBH₃CN. *Tetrahedron Letters*, 47, 8157–8159. DOI: 10.1016/j.tetlet.2006.09. 030.
- Zachová, H., Man, S., Taraba, J., & Potáček, M. (2009). Rearrangement of fused tetracyclic heterocycles induced by alkyl halides and formation of a new type of 'proton sponge'. *Tetrahedron*, 65, 792–797. DOI: 10.1016/j.tet.2008.11.057.
- Zimmer, R. (1993). Alkoxyallenes building blocks in organic synthesis. Synthesis, 1993, 165–178. DOI: 10.1055/s-1993-25823.
- Zwierzak, A., & Sulewska, A. (1976). Solid-liquid phasetransfer-catalysed phosphorylation of hydrazine. Preparation of dialkyl phosphorohydrazidates and N,N'-bis[dialkoxyphosphoryl]hydrazines. Synthesis, 1976, 835–837. DOI: 10.1055/s-1976-25385.