Stoffwechselprodukte des Doxaminols

Spektroskopische Eigenschaften des partiellen β -Agonisten Doxaminol (BM 10.188) und seiner Stoffwechselprodukte

Richard Neidlein, Christine Volland und Walter Kramer

Pharmazeutisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 364, Postfach 105760, D-6900 Heidelberg

Eingegangen am 17. April 1989

Die Biotransformation der positiv inotropen Substanz N-Methyl-N-(2-hydroxy-3-phenoxypropyl)-11-(2-aminoethyl)-6,11-dihydrodibenz[b,e]oxepin, neutrales Fumarat, (Doxaminol, racem. Diastereomerengemisch) im Hund wird untersucht. Durch ¹H-, ¹³C-NMR- sowie massenspektrometrische Untersuchungen werden Strukturvorschläge für die isolierten Metaboliten M1-M7 belegt. 2-Hydroxy-3-phenoxypropionsäure, Phenoxyessigsäure, 3-(4'-Hydroxy)-phenoxy-1,2-propandiol und Phenylessigsäure entstehen durch oxidative Spaltung der Seitenkette des Moleküls. Die Konjugate Doxaminol-O-glucuronid, 4-Hydroxydoxaminol-O-glucuronid sowie 1-Hydroxy-3-phenoxy-2-propylsulfat wurden ebenfalls identifiziert.

Spectroscopic Properties of the Partial β -Agonist Doxaminol (BM 10.188) and its Metabolites

The biotransformation of the positively inotropically active compound Nmethyl-N-(2-hydroxy-3-phenoxy-propyl)-11-(2-aminoethyl)-6,11-dihydrodibenz[b,e]-oxepine, neutral fumarate, (Doxaminol, racemic mixture of diastereomeres) in dogs is examined. The metabolits **M1-M7** were isolated and their chemical structures identified by ¹H-NMR, ¹³C-NMR and mass spectroscopic methods. 2-Hydroxy-3-phenoxypropionic acid, phenoxyacetic acid, 3-(4'-hydroxy)-phenoxy-1,2-propandiol and phenylacetic acid were formed by side chain oxidation of the parent molecule. Furthermore, the following conjugates were characterized: Doxaminol-O-glucuronide, 4'-hydroxydoxaminol-O-glucuronide, and 1-hydroxy-3-phenoxy-2-propyl sulfate.

Am Ganztier entfaltet Doxaminol (1) bei verschiedenen Tierspezies eine anhaltende cardiotone Wirkung, die über β -Rezeptoren vermittelt wird und dementsprechend durch β -Blocker aufgehoben werden kann. In vitro verhält sich Doxaminol (1) eindeutig wie ein β -Rezeptorenblocker, in erster Linie kenntlich an der Parallelverschiebung der Dosis-Wirkungs-Kurve für die Isoprenalin-Tachykardie. Aufgrund dieser Unterschiede zwischen Befunden am Ganztier und an isolierten Organen^{1,2)} sind Stoffwechseluntersuchungen von Interesse. Doxaminol (1) wird nach peroraler Applikation im Hund zu Phase I- sowie Phase II-Produkten metabolisiert³⁾.

Ergebnisse

1. Spektroskopische Eigenschaften des Doxaminols

1.1.¹H-NMR-Spektroskopie

Die arom. Protonen des Dibenzoxepinrings und der Phenoxygruppe erscheinen bei 7.30-7.17 ppm (m, 8H) und 7.06-6.85 ppm (m, 5H). Es folgen bei höherem Feld ein Singulett für 2"-H des Fumaratanions (6.79 ppm) sowie zwei Dubletts bei 5.84 und 5.00 ppm ($J_{AB} = 5.2$ Hz) für die CH₂-Protonen des Siebenrings.

Die Zuordnung der aliphatischen Protonen erfolgte mittels H,H-Verschiebungskorrelation (COSY-45) und NOE-Differenzspektroskopie. Das durch Bestrahlung des Multipletts bei 4.26 ppm (1H) erhaltene NOE-Differenzspektrum (NOEs bei 7.72 (OH), chem. Verschiebung ist konzentrationsabhängig), 4.07 (17-H_a), und 3.87 ppm (17-H_b)) ermöglichte dessen einwandfreie Identifizierung als 16-H, welches als Einstieg in das Korrelationsdiagramm (Abb. 1) zur Zuordnung von 15-H, 16-H und 17-H benutzt wurde.

Die Protonen des zweiten Abschnitts der bezüglich der H,H-Verknüpfung durch das N-Atom unterbrochenen Seitenkette (11-H, 12-H, 13-H) lassen sich ebenfalls beginnend mit einem NOE-Experiment leicht zuordnen. Bei Bestrahlung des Multipletts bei 3.87 ppm (2H) werden im NOE-Differenzspetrum Intensitätszunahmen u.a. im Aromatenbereich (1-H, 10-H) beobachtet, womit die Signallage von 11-H bei 3.87 ppm (neben 17-H_b aus dem vorigen Experiment) eindeutig bestimmt ist. Damit können auch die diastereotopen Protonen 12-H_{a,b} und 13-H_{a,b} zugeordnet werden.

1.2. ¹³C-NMR-Spektroskopie

Das ¹H-breitbandentkoppelte ¹³C-NMR-Spektrum des Doxaminols 1 (Abb. 2) zeigt bei 26 magnetisch verschiedenen C-Atomen insgesamt 30 Signale, da für C-13, C-15, C-16 und N-CH₃ die für die diastereomeren Spezies mit 11(R),16(R)- und 11(S),16(S)- Konfiguration einerseits sowie 11(R),16(S)- und 11(S),16(R)- Konfiguration andererseits getrennt zu beobachten sind.

Da in den Metaboliten mit Ausnahme zweier Glucuronide (**M1**, **M2**) der Dibenzoxepinrest stets fehlt, konnte die Zuordnung des ¹³C-NMR-Spektrums von 1 auf die C-Atome der Seitenkette beschränkt und nach Zuordnung des Protonenspektrums eindeutig aus einem H,C-COSY-Experiment entnommen werden (Abb. 3). C-12 (33.3 ppm) und C-13 (56.2 ppm) geben keine Kreuzpeaks im Korrelationsdiagramm (in Abb. 3 ist das 1D-¹³C-NMR-Spektrum, nicht die F2-Projektion abgebildet), ihre Unterscheidung ist jedoch leicht anhand der chem. Verschiebung möglich (N-Substitution von C-13).

Abb. 1: H,H-COSY-Spektrum von 1 in CDCl3 (250.13 MHz).

2. Spektroskopische Eigenschaften der Metaboliten M1 bis M7

2.1. Metabolit M1

Das ¹H-NMR-Spektrum von M1 in CD₃OD läßt erkennen, daß alle Strukturelemente des Ausgangsmoleküls 1 noch vorhanden sind. Die im Vergleich zu 1 (CD₃OD) tieffeldverschobenen Signale von 16-H, 17-H sowie 15-H lassen auf eine Konjugation des Moleküls über die freie OH-Gruppe an C-16 schließen.

Weitere Signale treten bei 4.49 (1"-H), 3.20 (2"-H), 3.43 (3"-H), und 3.73-3.57 ppm (4"-, 5"-H) auf, welche den Protonen eines mit der OH-Gruppe konjugierten Gluconsäurerestes zugeordnet werden können (H,H-COSY).

In den Massenspektren (EI, 100 eV) konnte der Molpeak nicht detektiert werden, jedoch treten im NI-FAB-MS der [M-H]⁻-Peak des glucuronidierten Doxaminols bzw. im PI-FAB-MS der Quasimolpeak [M+H]⁺ auf. Zusätzlich werden die Clusterionen $[M + 2Na-H]^+$, $[M + Na]^+$ sowie [Aglykon + Na]⁺ beobachtet.

Einen weiteren Strukturbeweis liefert die Spaltung von M1 mit β -Glucuronidase in einer Ammoniumacetat-Pufferlösung, woraus das Aglykon isoliert und dc sowie ms nachgewiesen werden konnte.

2.2. Metabolit M2

Da wegen ungenügender Reinheit weder aus den NMRnoch aus den Massenspektren aussagekräftige Hinweise über die Struktur von M2 erhalten werden konnten, wurde mit β -Glucuronidase gespalten. DC Vergleiche mit den synthetischen Aglyka 2, 3 und 4 in verschiedenen Fließmitteln sowie ms Untersuchungen ermöglichten die Indentifizierung des Aglykons von M2 als 4'-Hydroxydoxaminol (4). Im Stoßaktivierungs(CAD)-Spektrum des [MH]⁺-Ions treten die gleichen charakteristischen Tochterionen wie in dem der synthetischen Vergleichsverbindungen 4 auf.

Abb. 2: H,C-COSY-Spektrum von 1 in CDCl₃ (250.13/62.89 MHz; Ausschnitt)

2.3. Metabolit M3

Ein Vergleich des ¹H-NMR-Spektrums von M3 (CD₃OD) mit dem Spektrum der Ausgangsverbindung zeigt, daß M3 ein Bruchstück des Doxaminols ist, da die Signale der Dibenzoxepin-Protonen fehlen. Die im Aromatenbereich auftretenden Multipletts entstammen dem Phenoxyrest. Weitere Signale werden bei 4.27-4.21 (m, 2H) und 4.11-3.95 ppm (m, 1H) registriert.

Die von M3 isolierte Menge reichte aus für die Aufnahme eines ¹³C-NMR-Spektrums. Dieses enthält neben den Signalen des Phenoxyrests lediglich drei weitere Signale im sp²-Bereich und ist identisch mit dem ¹³C-NMR-Spektrum von 2-Hydroxy-3-phenoxypropansäure.

Eine GC-MS-Untersuchung führt nach Derivatisierung zum gleichen Ergebnis. Chemische Ionisation und Elektronenstoßionisation ermöglichen die Detektion des Molekülions sowie charakteristischer Fragmentionen.

2.4. Metabolit M4

Das ¹H-NMR-Spektrum von M4 enthält nur noch die Signale des Phenoxyrestes sowie ein Singulett bei 4.36 ppm (2H). Aufgrund der Radioaktivität von M4 sollte das ursprünglich [¹⁴C]-markierte C-16 des Doxaminols (1) noch vorhanden sein. Es muß daher angenommen werden, daß das Molekül zwischen C-15 und C-16 oxidativ gespalten wurde.

Die Annahme, daß es sich bei M4 um Phenoxyessigsäure handeln könnte, wird gestützt durch den Vergleich mit dem ¹H-NMR-Spektrum einer authentischen Probe, deren CH₂-Signal jedoch um 0.19 ppm gegenüber dem Signal des isolierten Metaboliten M4 tieffeldverschoben ist. Dieser Unterschied erklärt sich durch das Vorliegen des Metaboliten in Form seines Ammoniumsalzes (Verwendung von Ammoniumacetat-Pufferlösung bei der sc Trennung des Harnextraktes). Die ¹H-NMR-Spektren von M4 und dem Ammoniumsalz der Phenoxyessigsäure sind identisch.

Abb. 3: ¹³C-NMR-Spektrum von I) M5 (75.76 MHz) und II) 3-Phenoxypropan-1,2-diol (62.89 MHz) in CD₃OD..

Ebenso führen gc-ms Untersuchungen von M4 sowie der synthetischen Vergleichsverbindung nach Trimethylsilylierung zu dem Ergebnis, daß es sich bei M4 um Phenoxyessigsäure handelt.

2.5. Metabolit M5

Den ¹H- und ¹³C-NMR-Spektren von M5 ist die Grundstruktur eines Phenoxyglycerin-Derivats zu entnehmen. Die endständige Anordnung des Phenoxyrestes ist durch die Struktur von 1 vorgegeben und wurde durch ein NOE-Experiment gesichert. Die ¹H- und ¹³C-NMR-Spektren von M5 und 3-Phenoxypropan-1,2-diol stimmen jedoch nicht miteinander überein.

Im NI-FAB-MS findet man (neben verschiedenen Glycerinpeaks) Signale bei m/z = 247, m/z = 248 und m/z = 249. Das Isotopenverhältnis ist nahezu identisch mit dem für ein Molekül der Zusammensetzung C₉H₁₁O₆S zu erwartenden theoretischen Isotopenverteilung. Demnach dürfte M5 die Struktur eines Schwefelsäurehalbesters zukommen. Zur Positionsbestimmung der -OSO₃H-Gruppe wurden die ¹³Cchemischen Verschiebungsunterschiede zwischen M5 und 1-Phenoxyglycerin sowie Dimethylsulfat ($\delta = 59.1$) und Methanol ($\delta = 50.2$) herangezogen⁵⁾. In beiden Verbindungspaaren bewirkt der Sulfatrest eine Tieffeldverschiebung des direkt gebundenen C-Atoms. Sie beträgt im Falle Methanol/Dimethylsulfat -8.9 ppm, bei C-2 von 3-Phenoxypropan-1,2-diol/M5 -6.4 ppm (C-1 und C-3 sind um 2 bzw. 3 ppm hochfeldverschoben). Für M5 wird somit die Struktur eines 1-Hydroxy-3-phenoxy-2-propylsulfats vorgeschlagen.

Das Aglykon von M5 konnte durch enzymatische Spaltung mit β -Glucuronidase/Arylsulfatase gewonnen und als 3-Phenoxypropandiol-(1,2) durch dc Vergleich mit einer authentischen Probe in den Fließmitteln I, II und III sowie nach Derivatisierung mittels GC/MS charakterisiert werden.

Die CAD-Spektren der (Quasi-)Molekülionen, welche bei der GC-MS-Untersuchung der gleichartig derivatisierten Verbindungen M5 und Phenoxyessigsäure erhalten werden, sind identisch.

2.6. Metabolit M6

Das Erscheinungsbild des ¹H-NMR-Spektrums von M6 ist charakteristisch für einen 1,4-substituierten Aromaten, wobei das Aufspaltungsmuster der aliphatischen Protonen, von einer Verunreinigung abgesehen, praktisch mit dem des 3-Phenoxypropan-1,2-diols übereinstimmt. M6 entsteht vermutlich durch para-Hydroxylierung des Phenoxyrestes und oxidative Spaltung der Seitenkette des Doxaminols (1). - Die Struktur von M6 konnte ebenfalls durch GC-MS-Untersuchung des tris-Trimethylderivats bestätigt werden.

2.7. Metabolit M7

M7 besitzt ein besonders einfaches ¹H-NMR-Spektrum. Es besteht aus einem Multiplett (5H) im Aromatenbereich sowie einem Singulett bei 3.57 ppm (3H). Aufgrund der noch vorhandenen Radioaktivität muß C-16 des Doxaminols (1) noch vorhanden sein. Dementsprechend findet man im ¹³C-NMR-Spektrum von M7 neben den Signalen für die Phenyl-C-Atome sowie die CH₂-Gruppe ein weiteres, einem quartären C-Atom entsprechendes Signal bei 174.1 ppm. Die Vermutung, daß es sich hierbei um Phenylessigsäure handeln könnte, wird durch den Vergleich mit den ¹Hund ¹³C-NMR-Spektren authentischer Phenylessigsäure bestätigt.

Diskussion

Doxaminol 1 wird im Organismus des Hundes intensiv metabolisiert. Mit Hilfe der ¹H- und ¹³C-NMR-Spektroskopie sowie verschiedenen massenspektrometrischen Untersuchungsmethoden konnten die Strukturen der aus Harn isolierten Metaboliten M1 bis M7 aufgeklärt werden. Neben durch Reaktionen der Phase I entstehenden Stoffwechselprodukten wurden auch Konjugate identifiziert, die nach Phase I- über Phase II-Reaktionen gebildet werden. Ein möglicher Metabolisierungsweg ist in Schema 3 vorgeschlagen. In erster Linie wird Doxaminol (1) in Cytochrom-P-450-abhängigen Monooxygenasereaktionen⁶⁾ an verschiedenen Stellen des Moleküls oxidiert. Eine Spaltung der Seitenkette zwischen dem N-Atom und dem α -ständigen C-Atom C-15 führt zur 2-Hydroxy-3-phenoxypropionsäure (M3). Phenoxyessigsäure (M4) wird ebenfalls durch oxidative Spaltung der Seitenkette des Doxaminols (1) gebildet. Als Konjugationsreaktionen treten Glucuronidierung des Doxaminols (1) sowie seines 4'-Hydroxyderivates zu den Metaboliten M1 und M2 neben einer Bindung an Schwefelsäure (Entstehung von M5) auf.

Wir danken der Fa. BOEHRINGER MANNHEIM GmbH, Mannheim, für die Bereitstellung des ¹⁴C-markierten Doxaminols, Frau G. Baumann, Frau M. Fischer sowie Herrn Dr. P. Kunzelmann für die Aufnahme von NMR-Spektren, Herrn Dr. R. Endele für seine Unterstützung auf dem Gebiet der Massenspektrometrie sowie Herrn J. Klaus für die Aufnahme zahlreicher Massenspektren.

Weiterhin gilt unser Dank der BASF AG, Ludwigshafen/Rh., dem Verband der Chemischen Industrie - Fonds der Chemie -, der BAYER AG, Leverkusen, und der HOECHST AG, Frankfurt/M., für die Lieferung von Chemikalien sowie der ICN BIOMEDICALS GmbH, Eschwege, für die Bereitstellung von Kieselgel.

Experimenteller Teil

¹H-, ¹³C-NMR-Spektren

¹H-NMR: Bruker WM 250 (250.13 MHz). - ¹³C-NMR: Bruker WM 250 (62.89 MHz), Bruker WH 300 (75.46 MHz), Bruker AM 500 (125.3 MHz). Lösungsmittel: CD₃OD (Deuterierungsgrad: 99.5 bzw. 99.95%). Als Standard dient TMS oder das Signal des unvollständig deuterierten Lösungsmittelanteils (CHD₂OD).

¹H, ¹H-COSY-2D-NMR-Spektrum (250.13 MHz, CD₃OD)

Pulssequenz: D1 $-\pi/2 - t_1 - \pi/4 - FID(t_2)$; 90° Puls: 7.4 µs, Relaxationszeit D1: 3s, spectral width: 1650 MHz (F2), 825 Hz (F1), 2048 x 1024 Datenpunkte, zero filling in F1, 512 Inkremente, 32 scans pro Inkrement, 4 dummy scans, sine-bell-Multiplikation in beiden Dimensionen (Bruker-Standardsoftware).

¹H, ¹³C-COSY-2D-NMR-Spektrum (62.89 MHz, CDCl₃)

Pulssequenz ¹H: D1 - $\pi/2$ - $t_{1/2}$ - $t_{1/2}$ - D3 - $\pi/2$ - D4 ¹³C: π - $\pi/2$ - FID (BB, ¹H, t_2); 90° Puls (¹³C): 15.7 µs, 90° Puls (¹H): 24.5 µs, Relaxations-

Schema 1: Mögliches Metabolisierungsschema des Doxaminols 1

zeit D1: 3s, Polarisationszeit D3 = 3.45 ms (0.5/J_{CH}), Refokussierungszeit D4 = 1.72 ms (0.25/J_{CH}), spectral width: 9260 Hz (F2), 781 Hz (F1), 4096 x 512 Datenpunkte, zero filling in F1, 256 Inkremente, 128 scans pro Inkrement, 2 dummy scans, shifted sine-bell-Multiplikation (π /10) in F2, Lorentz-Gauß-Multiplikation (LB = -4 GB = 0.6) in F1 (Bruker-Standardsoftware).

Massenspektren

Doppelfokussierendes Massenspektrometer MAT 311 A (Ionisierungsenergie 100 eV) der Fa. Varian MAT, Bremen, für EI- und hochaufgelöste Spektren; Triple Stage Quadrupol 45 (TSQ 45) der Fa. Finnigan MAT, Bremen, für EI- und CI-Spektren (Ionisierungsenergien 70 bzw. 130 eV) sowie für CAD (Collision Activated Dissociation); MAT 312 der Fa. Finnigan MAT, Bremen, für FAB-Spektren.

Kombinierte Gaschromatographie-Massenspektrometrie

Gaschromatograph HP 5790 der Fa. Hewlett-Packard, Bad Homburg, Massenspektrometer TSQ 45 der Fa. Finnigan MAT, Bremen.

Derivatisierung

10 μ l einer methanolischen Lösung des Metaboliten werden in eine Conicampulle (Fa. W. Günther Analysentechnik WGA, Pfungstadt) pipettiert, anschließend wird das Lösungsmittel mit N₂ abgeblasen. Nach Zugabe von 100 μ l einer frisch bereiteten Silylierungsmischung, die sich aus Hexamethyldisilazan (HMDS), Trimethylchlorsilan (TMCS) - beide Fa. Macherey und Nagel, Düren - sowie aus Pyridin (HMDS + TMCS + Pyridin 5 + 1 + 5) zusammensetzt, derivatisiert man 0.5 h bei 60°C im Thermoblock.

Die Silylierungsmittel werden mit N₂ abgeblasen, nach Aufnahme der silylierten Substanz in 100 μ l Acetonitril werden 10 μ l der Lösung injiziert.

GC-MS-Bedingungen

Säule: 10 m DB-5 (1% Vinyl- und 5% Phenylmethylpolysiloxan-Kapillare), Innendurchmesser 0.32 mm

Trägergas: Helium, Reinheit 4.6, 14 psi

Temperaturprogramm: 80°C (1 min) \rightarrow 40°C/min \rightarrow 270°C (3 min). - Injektionstemp.: 250-270°C. - Transferline-Temp.: 270°C. - Seperator-Ofen: 270°C. - Detektion: TSQ 45, CI, 130 eV. - Scan: m/z 80-750 in 0.5 sec. -Ionenquelle-Temp.: 120°C.

Die Derivatisierung aller Metabolite sowie deren gaschromatographischmassenspektrometrische Untersuchungen erfolgen in Analogie zu den oben angegeben Bedingungen.

Spaltung der Konjugate und Untersuchung der Aglyka

Pufferlösung 0.1 molar, pH = 4.6: Ammoniumacetat 0.77 g, Eisessig 6.5 ml, dest. Wasser ad 100.0 ml.

In einem 20 ml Gasfläschchen werden 6.0 ml Pufferlösung pH = 4.6 vorgelegt. Nach Zugabe von 32-85 μ g Metabolit in methanolischer Lösung sowie 64-170 μ l einer Lösung von β -Glucuronidase aus *Escherichia coli* bzw. β -Glucuronidase/Arylsulfatase aus *Helix pomatia* der Fa. Boehringer Mannheim GmbH, Mannheim, wird 24 h bei 37°C im Brutschrank temperiert. Das Reaktionsgemisch wird anschließend dreimal mit 15 ml CH₂Cl₂ extrahiert, das Lösungsmittel mit N₂ abgeblasen und der Metabolit in 3.0 ml Methanol aufgenommen. Durch Flüssigszintillationsmessung von je 2 x 0.1 ml wird die Menge des freien Aglykons bestimmt. Nach Konzentrierung der methanolischen Lösung erfolgt zunächst eine dc, später gc-ms Untersuchung. Fließmittel in der Dünnschichtchromatographie

I. Chloroform + Methanol + Methylethylketon + Eisessig + Wasser: 75 + 35 + 25 + 5 + 8.

II. Toluol + Ameisensäureethylester + Ameisensäure: 50 + 40 + 10. III. Isopropanol + Essigsäurebutylester + Wasser + Ammoniak: 50 + 30 + 15 + 5.

Spektroskopische Daten

Doxaminol (1)

¹H-NMR (CD₃OD): δ (ppm) = 7.29-6.89 (m, 13H, Aromaten-H's); 6.67 (s, 1H, 2"-H); 5.53 (d, $J_{AB} = 14.8$ Hz, 1H, 6-H_a); 4.98 (d, $J_{AB} = 14.8$ Hz, 1H, 6-H_b); 4.18-4.09 (m, 1H, 16-H); 3.98-3.89 (d, 3H, 11/17-H); 3.04-2.78 (m, 4H, 13/15-H); 2.66 (s, 3H, N-CH₃); 2.55-2.34 (m, 2H, 12-H). - ¹³C-NMR (CD₃OD): δ (ppm) = 172.9 (s, C-1"), 160.0, 159.2 (s, C-4a und C-1')^a), 140.7, 137.5, 135.2 (s, C-1a, C-6a und c-10a)^b, 136.7 (d, C-2"), 131.5, 131.3, 130.6, 129.9, 128.7, 128.3, 125.0, 122.5, 122.2 (C-1, C-2, C-3, C-4, C-7, C-8, C-9, C-10, C-3'/5', C-4')^c, 115.7 (d, C-2'/6'), 74.1 (t, C-6), 71.1 (t, C-17), 66.4 (d, C-16), 60.0 (t, C-15), 57.1 (t, C-13), 50.7 (d, C-11), 42.1 (q, N-CH₃), 34.5 (t, C-12). - Die Zuordnungen innerhalb der Signalgruppen^{a-c'} sind austauschbar. - MS (CI/NH₃, 130 eV, 120[•]C) m/z = 404 (100) [M+H]⁺, 310 (4) [C₂₀H₂₄NO₂⁺], 208 (7) [C₁₂H₁₈NO₂⁺]. -

Doxaminol-O-glucuronid (M1)

¹H-NMR (CD₃-OD): δ (ppm) = 7.27-7.08 (m, 8H, (1-4/7-10)-H); 7.06-6.89 (m, 5H, (2'-6')-H); 5.48 (d, 1H, 6-H_a); 4.90 (d, 1H, 6-H_b); 4.49 (d, 1H, 1"-H); 4.40-4.32 (m, 1H, 16-H); 4.18-4.08 (m, 2H, 17-H); 4.05-3.90 (m, 1H, 11-H); 3.73-3.57 (m, 2H, 4"-H und 5"-H); 3.43 (m, 1H, 3"-H); 3.36-3.25 (m, 2H, 15-H); 3.20 (m, 1H, 2"-H); 3.08-2.95 (m, 2H, 13-H); 2.80 (s, 3H, N-CH₃); 2.60-2.45 (m, 2H, 12-H). - MS (EI, 100 eV, 253*C) m/z = (M⁺ fehlt), 266 (54) [C₁₈H₂₀NO⁺], 195 (19) [C₁₄H₁₁O⁺], 58 (100) [C₃H₃N⁺], 44 (60), 43 (45), 42 (9). - MS (NI-FAB, 4-5 Watt, 50*C): m/z = 578 (11) [M-H]⁻. - MS (PI-FAB, 4-5 Watt, 50*C): m/z = 624 (7) [M + 2Na - H]⁺, 602 (2), [M + Na]⁺, 580 (1) [M + H]⁺, 426 (3) [Aglykon + Na].

Doxaminol, Aglykon des M1 (Trimethylsilyl-Derivat)

GC-MS (CI/CH₄, 130 eV, 120°C) m/z = 504 (15) [M + C₂H₅]⁺, 476 (100) [M + H]⁺, 460 (30) [M⁺ - CH₃], 382 (6) [C₂₃H₃₂NO₂Si⁺], 280 (7) [C₁₅H₂₆NO₂Si⁺], 266 (28) [C₁₈H₂₀NO⁺].

4'-Hydroxydoxaminol, Aglykon des M2 (Trimethylsilyl-Derivat)

CAD [m/z = 420] (CI/CH₄; 3.5 mtorr. - 20.5 eV, N₂) m/z = 223 (49) [C₁₆H₁₅O⁺], 195 (100) [C₁₄H₁₁O⁺], 167 (77) [C₁₃H₁₁O⁺], 131 (14), 129 (11), 107 (17) [C₇H₇O⁺], 105 (11), 58 (53) [C₃H₈N⁺]. - GC-MS (CI/CH₄, 130 eV, 120°C) m/z = 604 (1) [M + C₃H₅]⁺, 592 (13) [M + C₂H₅]⁺, 564 (100) [M + H]⁺, 548 (46) [M⁺ - CH₃], 474 (1) [M⁺ - C₃H₁₀OSi], 266 (17) [C₁₈H₂₀NO⁺]. -

2-Hydroxy-3-phenoxy-propionsäure (M3) (Trimethylsilyl-Derivat)

¹H-NMR (CD₃OD): δ (ppm) = 7.27-7.19 (m, 2H, 3'/5'-H); 6.95-6.85 (m, 3H, 2'/4'/6'-H); 4.27-4.21 (m, 2H, 3-H); 4.11-3.95 (m, 1H, 2-H). - ¹³C-NMR (125.3 MHz, CD₃OD): δ = 170.4 (C-1), 150.5 (C-1'), 130.4 (C-3'/5'), 121.8 (C-4'), 115.8 (C-2'/6'), 73.0 (C-2), 72.4 (C-3). - Die Zuordnung erfolgt aufgrund eines DEPT-Spektrums. - GC MS (CI/CH₄, 130 eV, 120'C) m/z = 367 (12) [M + C₃H₅]⁺, 355 (20) [M + C₂H₅], 327 (94) [M + H]⁺, 311 (100) [M⁺ - CH₃], 237 (10), [C₁₂H₁₇O₃Si⁺], 209 (20) [C₁₁H₁₇O₂Si⁺], 119 (10) [C₈H₇O⁺]. -

Phenoxyessigsäure (M4) (Trimethylsilyl-Derivat)

¹H-NMR (CD₃: δ (ppm) = 7.26-7.20 (m, 2H, 3'/5'-H); 6.93-6.85 (m, 3H, 2'/4'/6'-H); 4.36 (s, 2H, 2-H). - GC-MS (CI/CH₄, 130 eV, 120'C) m/z =

265 (13) $[M + C_3H_5]^{+}$, 253 (19) $[M + C_2H_5]^{+}$, 225 (100) $[M + H]^{+}$, 209 (18) $[M^{+} - CH_3]$, 135 (9) $[C_8H_7O_2^{+}]$, 107 (18) $[C_7H_7O^{+}]$.

1-Hydroxy-3-phenoxy-2-propylsulfat (M5)

¹H-NMR (CD₃OD): δ (ppm) = 7.28-7.20 (m, 2H, 3'/5'-H); 6.97-6.87 (m, 3H, 2'/4'/6'-H); 4.65-4.57 (m, 1H, 2-H); 4.22 (d, ³J = 5.5 Hz, 2H, 3-H); 3.95-3.80 (ddd, ³J = 4.3 Hz, ²J = 11.9 Hz, 2H, 1-H). - ¹³C-NMR (75.46 MHz, CD₃OD): δ = 160.3 (C-1'), 130.4 (C-3'/5'), 121.9 (C-4'), 115.7 (C-2'/6'), 78.2 (C-2), 67.1 (C-3), 62.1 (C-1). - NI-FAB (4-5 Watt, 50°C) m/z = 339 (2) [(M - H)' + C₃H₈O₃], 275 (22) [C₉H₂₃O₉], 247 (22) [M - H]', 183 (100) [C₆H₁₅O₆']. -

3-Phenoxypropandiol-(1,2), vergl. M5 (Bis-Trimethylsilyl-Derivat)

GC-MS (CI/CH₄, 130 eV, 120[•]C) m/z= 353 (5) [M + C₃H₅]⁺, 341 (3) [M + C₂H₅]⁺, 313 (100) [M + H]⁺, 297 (16) [M⁺ - CH₃], 219 (8) [C₉H₂₃O₂Si₂⁺], 133 (18) [C₉H₉O⁺]. -

3-(4'-Hydroxy)-phenoxypropandiol-(1,2)(M6) Tris-trimethylsilyl-Derivat)

¹H-NMR (CD₃OD): δ (ppm) = 7.24-7.17 (d, 2H, 2'/6'-H); 6.93-6.88 (d, 2H, 3'/5'-H); 4.06-3.90 (m, 3H, 2/3-H); 3.69-3.57 (m, 2H, 1-H). - GC-MS (CI/CH₄, 130 eV, 120'C) m/z = 401 (100) [M + H]⁺, 385 (39) [M⁺ - CH₃], 295 (17) [C₁₄H₂₃O₃Si₂⁺], 221 (46) [C₁₂H₁₇O₂Si⁺]. -

Phenylessigsäure (M7) (Trimethylsilyl-Derivat)

¹H-NMR (CD₃-OD): δ (ppm) = 7.42-7.19 (m, 5H, (2'-6')-H); 3.57 (s, 2H, 2-H). - ¹³C-NMR (75.46 MHz, CD₃OD): δ = 174.1 (C-1), 136.8 (C-1'), 130.4 (C-3'/5'), 129.5 (C-2'/6'), 127.9 (C-4'), 43.5 (C-2). - CAD m/z = 209 [M + H]⁺ (GC-MS, CI/CH₄; 3.5 mtorr, -8.2 eV, N₂) m/z = 193 (6) [M⁺ - CH₃], 119 (24) [C₈H₇O⁺], 91 (100) [C₇H₇⁺]. -

Literatur

- G. Sponer, K. Strein, W. Bartsch und B. Müller-Beckmann, Z. Kardiol. 71/3 (1982) 171, Abstr. P109.
- 2 G. Sponer, E. Heeg, W. Bartsch, K. Strein und B. Müller-Beckmann, Z. Kardiol. 71/3 (1982) 171, Abstr. P110.
- 3 Ch. Volland, Untersuchung zur Pharmakokinetik und Biotransformation des partiellen β-Agonisten Doxaminol (BM 10.188) im Hund, Dissertation Heidelberg 1989.
- 3a R. Neidlein., Ch. Volland und K. Strein, Arzneim. Forsch. i. Druck.
- 3b R. Neidlein, Ch. Volland und K. Strein, Arzneim. Forsch. i. Druck.
- 3c Ch. Volland, R. Neidlein und K. Strein, AAPS-American Association of Pharmaceutical Scientists - Annual Meeting, Atlanta, Georgia, USA: 22. - 26. Oktober 1989; *Abstract-Book*, PP 1497, S. 203.
- 4 H.O. Kalinowski, S. Berger und S. Braun, ¹³C-NMR-Spektroskopie, S. 168, Georg Thieme Verlag, Stuttgart/New York 1984.
- 5 A.H. Conney, R.W. Estabrook, A. Hildebrandt, J. Roots und V. Ullrich, Microsomes and Drug Oxidations, I. Aufl., Pergamon Press, Oxford 1977.

[Ph680]