

Received 3 January 2019 Accepted 31 January 2019

Edited by M. Kubicki, Adam Mickiewicz University, Poland

Keywords: *α*-hydroxy-*α*-arylphosphonates; crystal structure; hydrogen bonding; Pudovik reaction.

Supporting information: this article has supporting information at journals.iucr.org/c

© 2019 International Union of Crystallography

The typical crystal structures of a few representative *a*-aryl-*a*-hydroxyphosphonates

Zita Rádai,^a Nóra Zsuzsa Kiss,^a Mátyás Czugler,^{a,b}* Konstantin Karaghiosoff^c and György Keglevich^a

^aDepartment of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest 1521, Hungary, ^bResearch Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1525, Hungary, and ^cDepartment Chemie und Biochemie, Ludwig Maximilians Universität, München 81377, Germany. *Correspondence e-mail: czugler.matyas@mail.bme.hu1845720184572118457221845723184572418457251845726

The crystal structures of seven α -aryl- α -hydroxyphosphonates synthesized by the Pudovik reaction of substituted benzaldehydes and dialkyl phosphites, namely dimethyl [(hydroxy)(phenyl)methyl]phosphonate, $C_0H_{13}O_4P$, dimethyl $[(3,4-dimethoxyphenyl)(hydroxy)methyl]phosphonate, C_{11}H_{17}O_6P, dimethyl$ (1-hydroxy-1-phenylethyl)phosphonate, C₁₀H₁₅O₄P, dimethyl [1-hydroxy-1-(4nitrophenyl)ethyl]phosphonate, C₁₀H₁₄NO₆P, dibenzyl [hydroxy(2-nitrophenyl)methyl]phosphonate, C₂₁H₂₀NO₆P, dibenzyl [(3-chlorophenyl)(hydroxy)methyl]phosphonate, C₂₁H₂₀ClO₄P, and dibenzyl [hydroxy(4-methylphenyl)methyl]phosphonate, $C_{22}H_{23}O_4P$, were studied to gain a better understanding of the organization in this type of molecule in the solid state. The crystals obtained for this series of compounds show a balance between $C-OH \cdots O = P$ chain-linked packing and the dimeric types of hydrogen-bond bridges of intermolecular pairs of such functions. The description is based on primary graph-set descriptors. Using graph-set descriptors one level deeper (i.e. secondary graph sets of the $C-H \cdots O$ type) revealed a similarity in the graph-set descriptors, suggesting a fine interplay of substituent- and shape-dependent effects on strong-weak interactions. It seems that the formation of chains or dimers is governed not only by the presence of a tertiary C α atom, but also by the nature and crowding of the ortho substituents of the α -aryl group.

1. Introduction

 α -Hydroxyphosphonates represent a prominent class within organophosphorus compounds due to their real or potential biological activity. Based on their enzyme inhibitory properties (Patel *et al.*, 1995), hydroxyphosphonates may have antibiotic (Kategaonkar *et al.*, 2010; Pokalwar *et al.*, 2006), antifungicidal (Kategaonkar *et al.*, 2010), antioxidant (Rao *et al.*, 2011; Naidu *et al.*, 2012), anticancer (Kalla *et al.*, 2015), anti-HIV and anti-inflammatory effects (Frechette *et al.*, 1997). Trichlorfon [or *O,O*-dimethyl (2,2,2-trichloro-1-hydroxyethyl)phosphonate] was an early insecticide that was the precursor of dichlorvos (2,2-dichlorovinyl dimethylphosphate) with an acetylcholine esterase paralyzing effect (Lorenz *et al.*, 1995).

A number of base- and acid-catalyzed, as well as different solid-salt-catalyzed methods were elaborated for the synthesis of α -hydroxyphosphonates (Rádai & Keglevich, 2018; Pudovik & Konovalova, 1979; Kharasch *et al.*, 1960; Ruveda & De Licastro, 1972; Timmler & Kurz, 1971; Texierboullet & Foucard, 1980, 1982*a*,*b*; Hudson *et al.*, 2008; Sardarian & Kaboudin, 1997; Smahi *et al.*, 2008; Solhy *et al.*, 2010; Kaboudin & Nazari, 2002). Thiourea-based organo-catalysts have also been used for the synthesis of tertiary α -hydroxyphosphonates

			J J1	1			
			³¹ P NMR				
Time (min)	Yield (%)	δP	δP (reference)	M.p. (°C)	M.p. (reference) (°C)	$[M + H]^+$	Entry
10	95	23.8	24.3 ^{<i>a</i>}	100-101	101-102 ^{e,f}	217.1	1
120	86	24.1	23.8^{b}	125-126	124^{b}	277.1	2#
30	91	21.1	21.1^{c}	124-125	-	414.1114	3
30	88	22.3	22.3 ^c	103-104	-	403.0881	4
330	94	22.4	22.4^{d}	110-111	$87-88^{d}$	383.1392	5
	Time (min) 10 120 30 30 330 330	Time (min) Yield (%) 10 95 120 86 30 91 30 88 330 94	Time (min) Yield (%) δP 10 95 23.8 120 86 24.1 30 91 21.1 30 88 22.3 330 94 22.4	Time (min) Yield (%) $\overline{\delta P}$ δP (reference) 10 95 23.8 24.3 ^a 120 86 24.1 23.8 ^b 30 91 21.1 21.1 ^c 30 88 22.3 22.3 ^c 330 94 22.4 22.4 ^d	3'P NMR Time (min) Yield (%) δP δP (reference) M.p. (°C) 10 95 23.8 24.3 ^a 100–101 120 86 24.1 23.8 ^b 125–126 30 91 21.1 21.1 ^c 124–125 30 88 22.3 22.3 ^c 103–104 330 94 22.4 22.4 ^d 110–111	31P NMRTime (min)Yield (%) $\overline{\delta P}$ δP (reference)M.p. (°C)M.p. (reference) (°C)109523.824.3 ^a 100-101101-102 ^{e.f.} 1208624.123.8 ^b 125-126124 ^b 309121.121.1 ^c 124-125-308822.322.3 ^c 103-104-3309422.422.4 ^d 110-11187-88 ^d	3 ¹ P NMR Time (min) Yield (%) δP δP (reference) M.p. (°C) M.p. (reference) (°C) $[M + H]^+$ 10 95 23.8 24.3 ^a 100–101 101–102 ^{e,f} 217.1 120 86 24.1 23.8 ^b 125–126 124 ^b 277.1 30 91 21.1 21.1 ^c 124-125 - 414.1114 30 88 22.3 22.3 ^c 103–104 - 403.0881 330 94 22.4 22.4 ^d 110–111 87–88 ^d 383.1392

Table 1							
Experimental of	details for th	ne preparation	and cha	aracterization	of α -hydro	xyphosphonat	es 1 and 3.

Notes: (#) In this case, 0.3 equivalents of triethylamine was used. References: (a) Rowe & Spilling (2001); (b) Hudson et al. (2008); (c) Rádai et al. (2018); (d) Pawar et al. (2006); (e) Keglevich et al. (2011); (f) Abramov (1952).

(Kong et al., 2012). Keglevich and co-workers reported a microwave-assisted, solvent-free preparation of hydroxyphosphonates (Keglevich et al., 2011). Although a number of green variations were developed for the synthesis of the phosphonates under discussion, in these approaches the reaction conditions were green only with respect to the catalyst and the lack of solvents. The work-up involved the extensive use of solvents as extractants, eluants in chromatography and as media for recrystallizations (Kumar et al., 2012; Nandre et al., 2012; Kong et al., 2014; Kulkarni et al., 2013; Ramananarivo et al., 2013; Santhisudha et al., 2015; Liu et al., 2014). Keglevich and co-workers could, however, elaborate a green method, when the hydroxyphosphonate simply crystallized out in a pure form from the reaction mixture. In this case, only a minimal amount of acetone and pentane was necessary as the solvent (Keglevich et al., 2017). A convenient functionalization of α -hydroxyphosphonates was also reported recently (Cytlak et al., 2018) en route to the synthesis of α aminophosphonates. Several such novel α -aminophosphonate crystal structures were also reported (Cytlak et al., 2018). The structure determination of phosphonates was soon undertaken as their economic value grew. The crystal structure of trichlorfon was reported 50 years ago (Höhne & Lohs, 1969). Several related tertiary $C\alpha \alpha$ -hydroxyphosphonate ester crystal structures have been reported recently, viz. diphenyl (hydroxyphenylmethyl)phosphonate (Fang et al., 2006c), diethyl [hydroxy(phenyl)methyl]phosphonate (An et al., 2008; Fang et al., 2010; Ouksel et al., 2017), dimethyl [hydroxy(phenyl)methyl]phosphonate (Fang et al., 2006b) and diisopropyl (hydroxyphenylmethyl)phosphonate (Fang et al., 2006a). Of interest are the three known independent roomtemperature structure determinations of diethyl [hydroxy(phenyl)methyl]phosphonate derivative. One determination reports disorder of the ethyl ester groups (An et al., 2008), but the three have different volumes of 1296.5, 1263.5 and 1315.2 Å³ [Cambridge Structural Database (CSD; Groom et al., 2016) refcodes KODYOS (An et al., 2008), KODYOS01 (Fang et al., 2010) and KODYOS02 (Ouksel et al., 2017)]. Some closely related $C\alpha$ methyl-group-containing crystal structures are dimethyl (S)-[cyano(hydroxy)phenylmethyl]phosphonate (Kong et al., 2012), diphenyl (1-hydroxy-1phenylethyl)phosphonate (Lane et al., 1996), dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Acar et al., 2009), dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Tahir et al., 2009a,b) and diethyl (1-hydroxy-1-phenylethyl)phosphonate (Tahir et al., 2009c).

Figure 1 The synthesis of α -hydroxyphosphonates **1**, **2** and **3**.

Table 2	
Experimental details for the preparation and characterization of α -hydroxyphosphonates 2a and 2b .	

			³¹ P NMR					
Product	Time (min)	Yield (%)	$\delta \mathbf{P}$	δP (reference)	M.p. (°C)	M.p. (reference) (°C)	$[M + \mathrm{H}]^+$	Entry
2a	7	48	26.2	26.0^{a}	130-131	130^{c}	231.1	1
2b	2	82	24.8	24.8^{b}	167–168	170–171 ^b	276.1	2#

Notes: (#) 13 C NMR (CDCl₃): δ 25.8 (d, ${}^{2}J$ = 3.3 Hz, CH₃), 53.8 (d, ${}^{2}J$ = 8.0 Hz, OCH₃), 54.7 (d, ${}^{2}J$ = 7.3 Hz, OCH₃), 73.7 (d, ${}^{1}J$ = 160.1 Hz, PCH), 123.1 (d, ${}^{4}J$ = 2.7 Hz, C3), 126.8 (d, ${}^{3}J$ = 4.2 Hz, C2), 147.2 (d, ${}^{5}J$ = 3.3 Hz, C4), 148.6 (C1). References: (a) Seven *et al.* (2011); (b) Keglevich *et al.* (2017); (c) Hudson *et al.* (2008).

Table 3 Crystallization summary of compounds **1**, **2** and **3** at 26 °C.

Compound	Solvent	Precipitant	Crystallization time
1 a ^{<i>a</i>}	methanol	pentane	5 min
1b ^b	acetone	_	48 h
$2a^b$	acetone	_	48 h
2b ^b	acetone	_	48 h
3a ^b	diethyl ether	_	24 h
3b ^b	diethyl ether	_	24 h
3c ^b	diethyl ether	-	72 h

Notes: (a) crystals were obtained from the reaction mixture; (b) crystals were obtained by recrystallization.

Here we aim at describing some fundamental association patterns in the solid state which may govern the formation of macroscopic ordered solid objects, i.e. crystals. Structures in general and the crystal structure in particular may be important not only in structure-activity relationships, but also in many simple practical properties of pharmaceuticals, such as preparing solid dosage forms (tablettability), bio-availability (solubility and polymorphy), storage and metabolic pathway identification, and many others (Ye et al., 2014). Crystal structure descriptions of phosphonates usually allude to a description of the association patterns observed in the solid phase via characterization of hydrogen-bond bridges and/or other putative favourable interactions contributing towards the build-up of the macroscopic crystal. This and similar issues are relevant and are the subject of recent discussions (Edwards et al., 2017; Mackenzie et al., 2017). Another series of studies has dealt with the two different ways of looking at intermolecular interactions either with an emphasis on specific atom-atom contacts (whether interactions or bonds) or rather as a whole-of-molecule approach that is sort of blind to atomatom interactions (Dunitz, 2015; Lecomte et al., 2015; Thakur et al., 2015).

2. Experimental

2.1. Syntheses and crystallizations

The ³¹P, ¹³C and ¹H NMR spectra were taken on a Bruker Avance-300 instrument operating at 121.5, 75.5 and 300 MHz, respectively. The exact mass measurements were performed using a Q-TOF Premier mass spectrometer in positive electrospray mode. The melting points were determined by differential scanning calorimetry (DSC) measurements using a Setaram DSC 92 instrument.

2.1.1. General procedure for the preparation of dimethyl [hydroxy(phenyl)methyl]phosphonates, 1, and dibenzyl [hy-

droxy(phenyl)methyl]phosphonates, 3. A mixture of 11.0 mmol of aromatic aldehyde (benzaldehyde: 1.2 g; 2-nitrobenzaldehyde: 1.7 g; 3-chlorobenzaldehyde: 1.5 g; 4-methylbenzaldehyde: 1.3 g; 3,4-dimethoxybenzaldehyde: 1.8 g), 11.0 mmol of phosphite (dimethyl phosphite: 1.1 ml; dibenzyl phosphite: 2.4 ml) and triethylamine (1.1 mmol, 0.15 ml) was stirred in acetone (1 ml) under reflux for 10–330 min (for details, see Table 1). After adding pentane (6 ml) to the reaction mixture, the product crystallized on cooling. Filtration of the crystals afforded products **1a**, **1b**, **3b** and **3c** as white crystals, and **3a** as orange crystals in yields of 86–95% in a pure form.

2.1.2. General procedure for the preparation of dimethyl (1-hydroxy-1-phenylethyl)phosphonates, 2. A mixture of 11.0 mmol of aromatic ketone (acetophenone: 1.2 g; 4-nitro-acetophenone: 1.7 g), dimethyl phosphite (11.0 mmol, 1.1 ml) and triethylamine (11.0 mmol, 1.5 ml) was stirred at 26 °C for 2–7 h. The product appeared as a white precipitate. The reaction mixture was cooled to 5 °C. After crystallization was complete, the product was isolated by simple filtration. The white crystals were washed with hexane (2 × 5 ml), affording hydroxyphosphonates **2a** and **2b** in yields of 48/82% in a purity of >98% (Table 2).

Crystals were obtained by slow evaporation of various solvents (see Table 3).

The differing crystallization times may suggest different factors that control the process, as the almost instant crystallization of **1a** may suggest kinetic control of the crystal growth, while others may well be governed by thermodynamic control.

2.2. Data collection, structure solution and refinement

The crystal structure of compound **1a** has been reported at room temperature (Fang et al., 2006b) and thus a redetermination at low temperature was carried out. Hydroxy H atoms were located in difference Fourier maps and refined keeping the isotropic displacements adjusted to 20% greater than that of the O-atom U_{iso} value. All C-H hydrogens were placed at idealized positions and treated as riding atoms, with isotropic parameters 20 or 50% (for methyl C atoms) greater than for the C atoms to which they are attached. The crystal of **3b** is the only in this series which crystallized in a chiral space group. As no enantioselective agents were applied, this means that conglomerate crystallization (spontaneous resolution) occurred on crystallization. The high Flack x = 0.35 (12) and its high s.u. value indicate that the measured single crystal was a racemic twin in approximate 0.33:0.67 proportions. Further crystallographic experimental details (such as space groups, cells and

Table 4

Experimental details.

For all determinations, H atoms were treated by a mixture of independent and constrained refinement.

	1a	1b	2a	2b
Crystal data				
Chemical formula	C ₀ H ₁₃ O ₄ P	$C_{11}H_{17}O_6P$	$C_{10}H_{15}O_4P$	$C_{10}H_{14}NO_6P$
M _r	216.16	276.21	230.19	275.19
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, C2/c	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$
Temperature (K)	173	173	173	173
a, b, c (Å)	8.4039 (5), 7.7007 (3), 16.6012 (7)	39.464 (3), 8.5132 (4), 8.0044 (3)	8.4780 (3), 17.2370 (6), 8.1357 (3)	8.1800 (4), 8.4006 (6), 9.9661 (4)
$lpha,eta,\gamma(^\circ)$	90, 99.149 (4), 90	90, 100.620 (5), 90	90, 106.484 (4), 90	102.173 (5), 94.897 (4), 107.504 (5)
$V(Å^3)$	1060.69 (9)	2643.2 (2)	1140.05 (7)	630.26 (6)
Z	4	8	4	2
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.25	0.23	0.23	0.24
Crystal size (mm)	$0.40 \times 0.20 \times 0.04$	$0.30 \times 0.20 \times 0.05$	$0.40\times0.35\times0.25$	$0.40\times0.35\times0.20$
Data collection				
Diffractometer	Agilent Xcalibur Sapphire3	Agilent Xcalibur Sapphire3	Agilent Xcalibur Sapphire3	Agilent Xcalibur Sapphire3
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)	Multi-scan (CrysAlis PRO; Agilent, 2014)	Multi-scan (CrysAlis PRO; Agilent, 2014)	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.846, 1.000	0.956, 1.000	0.933, 1.000	0.948, 1.000
No. of measured, indepen- dent and observed $[I > 2\sigma(I)]$ reflections	20344, 3209, 2491	13696, 4023, 2812	22954, 3450, 3080	12564, 3827, 3070
R _{int}	0.041	0.049	0.025	0.028
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.714	0.714	0.714	0.714
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.108, 1.02	0.047, 0.126, 1.03	0.031, 0.089, 1.04	0.041, 0.114, 1.03
No. of reflections	3209	4023	3450	3827
No. of parameters	139	178	150	176
No. of restraints	0	0	0	0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.33, -0.27	0.40, -0.29	0.35, -0.19	0.34, -0.28

Crystal data Chemical formula М., Crystal system, space group Temperature (K) a, b, c (Å)

 $\substack{lpha,\ eta,\ \gamma\ (^\circ)\ V\ ({
m \AA}^3)}$ Ζ Radiation type $\mu~(\rm{mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections

 R_{int} $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters No. of restraints $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ Absolute structure Absolute structure parameter

 $C_{21}H_{20}NO_6P$ 413.35 Triclinic, $P\overline{1}$ 133 10.0795 (3), 13.8530 (6), 15.9354 (5) 111.110 (4), 90.852 (3), 106.326 (3) 1975.23 (13) Δ Μο Κα 0.18 $0.43 \times 0.30 \times 0.25$

Multi-scan (CrysAlis PRO; Agilent, 2014) 0.980, 1.000 39828, 11989, 8512

0.714

3a

Agilent Xcalibur Sapphire3

0.038

0.046, 0.124, 1.03

11989

0.60, -0.31

565

0

Multi-scan (CrysAlis PRO; Agilent, 2014) 0.991, 1.000 6934, 3407, 2955 0.028 0.625 0.047, 0.114, 1.05

3407

0.34, -0.20

0.35 (12)

255

1

3b

 $C_{21}H_{20}ClO_4P$

Monoclinic, P21

90, 103.775 (7), 90

 $0.30 \times 0.22 \times 0.20$

Agilent Xcalibur Sapphire3

Refined as an inversion twin

960.49 (11)

Μο Κα

0.31

10.4239 (8), 7.8757 (5), 12.0461 (7)

402.79

133

2

 $C_{22}H_{23}O_4P$ 382.37 Orthorhombic, Pbca 173 16.7332 (8), 8.2012 (3), 28.0902 (13) 90, 90, 90 3854.9 (3) 8 Μο Κα 0.17 $0.37\,\times\,0.15\,\times\,0.05$

3c

Agilent Xcalibur Sapphire3 Multi-scan (CrysAlis PRO; Agilent, 2014) 0.980, 1.000 29616, 4758, 3133

0.070 0.667

_

0.056, 0.150, 1.02 4758 265 0 0.45, -0.26

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), ORTEP (Burnett & Johnson, 1996), ORTEP-3 (Farrugia, 2012), DIAMOND (Brandenburg, 1999) and PLATON (Spek, 2009).

Figure 2

The molecular structure of **1a**, showing the atomic numbering and 50% probability displacement parameters for the non-H atoms.

data collection), as well as computational results (model refinement and final notes), are summarized in Table 4.

2.3. Other computing tools

The Cambridge Structural Database (CSD; Groom et al., 2016) programs ConQuest (Versions 1.22 and 1.23; Bruno et al., 2002) and Mercury (Macrae et al., 2008) were used with their built-in tools (such as plotting, graph-set analysis and statistical tools). Incidentally, the legacy CSD program RPLUTO was also applied. For an overview of some of the electronic aspects of the interactions in these crystals, CrystalExplorer was applied (Turner et al., 2017). Underlying energy calculations were performed both at the CE-HF (Hartree–Fock) and CE B3LYP/6-31G(d,p) levels. Energy frameworks resulting from these two approaches proved to be nearly identical with respect to both the energy components magnitude and the directional features in the respective crystals. Thus, the resulting minor discrepancies either in the components (Coulombic, dispersion and repulsion forces) or in the total energies only showed hardly visible differences. However, most of these results will be reported in a later publication and only one particular aspect for 3a is covered here.

3. Results and discussion

The structural diagrams of the seven crystal structures determined in this study are shown in Fig. 1, and the crystallographic asymmetric-unit contents are shown in Figs. 2–8.

These seven crystal structures are classified and shown in the order of their principal hydrogen-bond motifs based on the topology of the O-H···O=P hydrogen bonds. This group simply follows the literature usage in naming 'chains' and 'dimers' as the principal propagation forms of O-H···O hydrogen-bond bridges in the crystal packing of the individual solid forms (*e.g.* Etter, 1990; Bernstein *et al.*, 1995; Tahir *et al.*, 2009*a*; Ouksel *et al.*, 2017).

The tertiary $C\alpha$ H-atom-containing and chain-forming compounds **1a**, **1b**, **3b** and **3c** are discussed first. The formation of chain-like hydrogen-bond bridges in tertiary $C\alpha$ -H-

Figure 3

The molecular structure of $\mathbf{1b}$ (the asymmetric unit), showing the atomic numbering and 50% probability displacement parameters for the non-H atoms.

containing phosphonates has been reported previously [*e.g.* in trichlophone (Höhne & Lohs, 1969) or in Ouksel *et al.* (2017)].

A packing drawing for compound **1b** (Fig. SF1 in the supporting information) shows a typical arrangement for this class of contacts.

The quaternary $C\alpha$ methyl-containing derivatives which form dimers are **2a** and **2b**, while tertiary $C\alpha$ -H equipped hydroxyphosphonate **3a** forms a dimer even in its asymmetric unit. The other tertiary α -H-containing counterparts, *i.e.* **3b** and **3c**, form chains.

Compound **1a** is possibly isostructural (Kálmán *et al.*, 1993) with the known diethyl [hydroxy(phenyl)methyl]phosphonate crystal structures (An *et al.*, 2008; Fang *et al.*, 2010; Ouksel *et al.*, 2017; see Table ST1 in the supporting information).

Packing drawings for 2a and 3a (see Figs. SF2 and SF3 in the supporting information) show the basic primary propagation forms of the O-H···O hydrogen-bond bridges in the crystal packing for the centrosymmetric dimer and for the pseudo-centrosymmetric types.

Figure 4

The molecular structure of 3b (the asymmetric unit), showing the atomic numbering and 50% probability displacement parameters for the non-H atoms.

research papers

Table 5OPCO torsion angles (°) in 1a–3c.

Compound **3a** has two independent molecules in the asymmetric unit, hence the two values.

Compound	OPCO	Torsion (°)
1a	O1 - P1 - C1 - O4	66.4 (1)
1b	O1-P1-C1-O4	54.6 (1)
2a	O1-P1-C1-O4	-56.5(1)
2b	O1-P1-C5-O4	64.3 (1)
3a	O1-P1-C1-O4	-74.0(1)
3a	O7-P2-C22-O10	73.5 (1)
3b	O1-P1-C1-O4	55.5 (3)
3c	O1-P1-C1-O4	55.4 (2)

This work was primarily initiated in order to explain the packing formation of these seven related α -hydroxy- α -aryl-phosphonate target compounds. The main driving force was supposed to be the O-H···O=P-type hydrogen-bond bridge formation. About three-quarters (30 out of 40, see supporting information) of such structures adopt some form of chain. We believe that this is related partly to the crowding around the C α atom and partly due to electronic reasons. The usual chain formation in our seven-membered mini-series is broken for the two quaternary C α -atom structures (*i.e.* **2a** and **2b**) and, somewhat surprisingly, for a tertiary C α -atom derivative (**3a**) also, which is a possible irregularity.

3.1. Analysis of some intra- and intermolecular features

As the synthesis and a crystal structure description of compound **1a** have been published previously (Fang *et al.*, 2006*b*), only other aspects will be reported here. Low-temperature geometry data of **1a** are consistent with the other structures presented in this article. Intramolecular bonding features will not be discussed at length as the bonding parameters conform to expected mean values within the usual significance criteria.

The only intramolecular shape descriptor we deal with is the torsion angle along the $P-C\alpha$ bond, as defined by the hydroxy O atom and the O atom of the P=O unit (double-bond

Figure 6

The molecular structure of 2a (the asymmetric unit), showing the atomic numbering and 50% probability displacement parameters for the non-H atoms.

notation is used hereinafter in the conventional sense in conformity with database notations). The O=P-C-OH torsion angles (OPCO hereinafter) are listed for the studied crystal structures **1a–3c** in Table 5.

The absolute values of these eight angular angles are distributed around a mean value of 62.5°. Thus, one is inclined to believe that this torsion is swaying around 60° in the synclinal (sc) conformation range. The four molecules in the dimer-type crystal structures have a mean value of 58°, while the rest show a mean value of 67.1°. The torsion angles are rather soft parameters, hence the individual deviations from either the mean or from any other in this small sample may not have particular significance. Similar values and like deviations arise from literature data obtained from the Cambridge Structural Database (CSD; Groom et al., 2016). Saying there is no particular significance just indicates that deviations and the small torsion-angle variations might well be signs of intermolecular effects that may span a range from a few tenths to a few kJ mol⁻¹ energies or so (Sarkar & Row, 2017). A search for the chemical fragment (Fig. SF4 in the supporting information) with an acyclic hydroxyphosphonate ester unit and a

Figure 5

The molecular structure of 3c (the asymmetric unit), showing the atomic numbering and 50% probability displacement parameters for the non-H atoms.

The molecular structure of 2b (the asymmetric unit), showing the atomic numbering and 50% probability displacement parameters for the non-H atoms.

Figure 8

The molecular structure of 3a (the asymmetric unit), showing the atomic numbering and 50% probability displacement parameters for the non-H atoms. The dimer formed by hydrogen-bond bridges is shown with broken lines. This pseudocentrosymmetric dimer is quite similar to the true centrosymmetric dimers formed in 2a and 2b.

Table 6

Statistic descriptors of the 36 OPCO values around the sc conformation range in the CSD.

Extracted from a full table and rounded appropriately to integer numbers. The most relevant numbers are printed in bold.

	Count	Min (°)	Max (°)	Mean (°)	Sample std dev. (°)	Mean std dev. (°)	Skewness	Kurtosis	Median (°)
OPCO	36	48	83	64	9	7	0.56	-0.49	61

C-O-H moiety within hydrogen-bond bridging distance to the P=O group. This search resulted in 36 hits (*i.e.* crystal structures) which contain 42 independent molecular fragments. Of these 42, the OPCO angle values of 36 fall in the synperiplanar/synclinal ranges (*i.e.* between -30 and 30° , and between 30 and 90° for sp and sc, respectively). Thus, when the

Figure 9

A polar histogram of the HO–C–P=O torsion-angle distribution in acyclic P(OR) esters (*i.e.* omitting cyclic constrained esters). There are still several high antiperiplanar (ap, *trans*) conformations (6 out of 42 hits).

OPCO angle values are truncated to this range, the distribution values come close to those seen in the structures here (Table 6). The OPCO torsion angle seems to favour this low synclinal conformation range just at the border of the sp region. Of historical interest is that trichlorfon has the lowest reported OPCO torsion angle (28°).

Of further interest is that when the full search results are examined it becomes apparent (Fig. 9) that some OPCO torsions adopt values close to 180° (6 in the sample of total of 42) attaining the antiperiplanar conformation. This corresponds to the traditional *trans* disposition of the two O atoms across the P-C bond. None of our compounds adopts this conformation. The question is whether such conformational changes have any influence regarding the hydrogen-bond bridge-forming ability?

Thus, the intermolecular relationships need to be examined. A quick overview is provided by the polar scattergram of the OPCO values against the hydrogen-bond bridge angles (Fig. 10), as well as a summary of the statistics of some of the hydrogen-bond bridge distance parameters (Table 7). These both point towards nondiscriminative hydrogen-bond bridge features conforming well to expected standards, thus indicating normal and possibly well-defined hydrogen-bond bridges. Apparently, the OPCO torsion-angle values do not indicate any particular influence on the hydrogen-bond bridge geometry.

A further aspect of the intermolecular interactions is, however, their topology. As this type was recognized in the Table 7

Statistics table of the intermolecular hydrogen-bond bridges of acyclic esters of hydroxyphosphonate fragments in the CSD.

35 crystal structures yielded 42 independent fragments containing the search moiety (the table is restricted to the most known parameters only). AHD is the P \longrightarrow O \cdots H-O hydrogen-bond bridge angle and *d* is the O \cdots H distance. The angular values are rounded to whole degrees.

Name	Count	Min.	Max.	Mean	Sample std dev.	Mean dev.	Median
AHD (°)	42	136	178	166	11	9	170
d (Å)	42	2.59	2.77	2.70	0.04	0.03	2.70

form of chain-like or dimer involvement of the $P=O\cdots H-O$ hydrogen-bond bridges, the quest is to try to identify conditions which would decide in favour of either option. Initially, the presence of the α -H atom at the chiral C atom (ternary C atom in compounds **1** and **3**) was supposed to be responsible for chain formation. In contrast, the presence of the α -methyl substituent (*i.e.* a quaternary C atom) would promote dimer formation, as seen in compounds **2**. Nevertheless, the crystal structure of **3a**, which is a dimer-forming tertiary C α H-atom species, seems to be an exception in this assumption.

3.2. Graph-set characterization

Graph-set descriptions have been used since the pioneering work of Etter and Bernstein (Etter, 1990; Bernstein *et al.*, 1995) for a topological representation of the intra- and mainly intermolecular hydrogen-bond contacts. Compound **3a** is exceptional in many aspects. A representation abstracted from its crystal energy framework computation result from *CrystalExplorer* (Turner *et al.*, 2017) is shown in graphical form (Fig. 11). This serves also to exemplify the relationship between the $P=O\cdots H-O$ hydrogen-bond bridges, directionality and energy relations.

The Coulombic component provides here most of the total energy, with the major dispersion contribution aligned also close to parallel to the electrostatic contribution. The resulting

Figure 10

A polar scattergram of the HO-C-P=O torsion angles *versus* the P=O···H-O hydrogen-bond bridge angle in acyclic P(OR) esters.

Table 8

Hydrogen-bond graph-set descriptors in compounds 1a-3c.

Primary contacts are $O-H\cdots O$ hydrogen-bond bridges, while secondary contacts encompass additional $C-H\cdots O$ hydrogen-bond bridges involving those used in the primary contact as well (for a graphical overview, see Table ST2 in the supporting information.

Compound	Primary GS	Secondary GS
1a	<i>C</i> (5)	$R_{2}^{2}(8)$
1b	C(5)	$R_{2}^{\hat{2}}(8)$
2a	$R_{2}^{2}(10)$	$R_{2}^{2}(10)$
2b	$R_{2}^{\tilde{2}}(10)$	$R_{2}^{\tilde{2}}(10)$
3a	$R_{2}^{\tilde{2}}(10)$	$R_{2}^{\tilde{2}}(10)$, with S(6) and S(5)
3b	$\tilde{C(5)}$	$R_{2}^{\tilde{2}}(8)$
3c	C(5)	$C(8), C_2^2(13), \text{ with } S(7)$

total energy (shown as a thick blue rod) aligns very well with the direction of the $O \cdots H - O$ hydrogen-bond bridges, thus explaining the dominant vectorial interaction in this crystal. As the dominating electrostatic contribution comes from the $O-H \cdots O$ =P-type hydrogen-bond bridges, the simplest approach lists these interactions first (Table 8). Fivemembered chains of one donor/acceptor each (chains) or rings twice as large of two donors/acceptors each (dimers) constitute the basic motif propagation.

The dominant $O-H \cdots O$ hydrogen-bond bridges are the primary component. When adding any C-H types to the possible donors, this picture is complemented by the secondary graph-set motifs such that these latter partly overlap with the primary sets. This is to say that at least one of the O atoms from the primary set is involved (*i.e.* a joint $O-H \cdots O$ and $C-H \cdots O$ motif exists). This also makes sense, as the many $C-H \cdots O$ interactions might be a substantial factor due to their large number alone.

Examining the primary dimer sets (*i.e.* **2a**, **2b** and **3a**), especially with regard to seeking an explanation why a dimer (even more in the asymmetric unit) is formed in species **3a**, we can establish the following: in **2a**, prevalent rings made up by

The largest total energy bar (blue rod) is shown in the **3a** asymmetric unit dimer from its lattice energy framework. This shows the largest cohesive total energy relationship between molecular centres. One molecule is shown with its unsigned Hirshfeld surface also, while the other is represented in a displacement ellipsoid plot only, with the two H···O-to-acceptor distances listed (with values of 1.657 and 1.658 Å).

Figure 12

A view of the decisive internal hydrogen-bond bridges in the asymmetricunit dimer of **3a**. Distances are in Å and their values stem from a normalized H-atom position geometry. As to their uncertainties, one can estimate that they are in the order of 0.01 Å.

the dominant $O-H \cdot \cdot \cdot O$ interactions are complemented by an $R_2^2(10)$ secondary motif involving two symmetry-related *ortho* H-C groups from the phenyl group. This points to the important role that the phenyl ortho substituents may play. The other quaternary $C\alpha$ compound, **2b**, has an identical ranking of rings in the secondary complement. But these are not from o-C-H but from two symmetry-related α -methyl H atoms. The 3a primary set is the same ten-membered ring, but formed through intermolecular hydrogen-bond bridges between the two molecules of the asymmetric unit (Z' = 2), while the secondary set forms between symmetry-centrerelated molecules. Thus, they are symmetrically identical with those in **2a** and **2b**, but they involve intermolecular $C-H \cdots O$ hydrogen-bond contacts in the case of 3a. Extending the hydrogen-bond bridge functions for intramolecular $C-H \cdots O$ results in the S(6) and S(5) patterns. This self-binding involves the o-NO₂-group O atoms to the C α H atom [S(6) pattern] and to the neighbouring m-C-H group [S(5) form] in both 3a molecules (Fig. 12).

Practically identical dimensions and patterns underline the important electronic and steric functions of the o-NO₂ groups towards their neighbouring units in both 3a molecules. In the case of dimethyl [hydroxy(2-nitrophenyl)methyl]phosphonate, dimer formation with an identical $R_2^2(10)$ primary hydrogen-bonded ring was reported (Tahir et al., 2009a), together with similar internal o-NO2-group involvement. The o-NO₂ group forms the same S(6) and S(5) rings to the C α H atom and to the next m-C-H group, respectively. Thus, 3a, in spite of having a tertiary $C\alpha$ atom, it does not form a chain-like packing motif but a dimer, similar to 2a and 2b with their quaternary C α atom. In such a way, the o-NO₂ groups act [torsion angles O5-N1-C3-C2 = -9.2 (2)° and O11-N2- $C24-C23 = 13.7 (2)^{\circ}$ not only as effective steric shielding for the H atom at C α (Fig. SF5 in the supporting information), but also as if they were quaternary C-atom substituents. Thus, we hypothesize, that compounds with tertiary $C\alpha$ atoms are prone to form chains, while those with quaternary C α atoms, or with a sterically electronically shielded $C\alpha$ H atom, tend to cause dimers. Compound 3b has a secondary set that is identical topologically and functionally with those in compounds 1 in a chiral crystal lattice. Compound 3c has a more confusing secondary set situation. It is hard to decide the ranking as there are at least two competitive chain sets, both involving o-C-H H atoms. In the S(7) set, an intramolecular distance (2.66 Å) links one of the benzyl *o*-H atoms to the O=P group. In the other C(8) set, an o-H atom of the other benzyl ester group approaches (2.57 Å) an O–H group of the next 3cmolecule. Both of these are relatively longer distances with respect to the sum of the van der Waals radii concerned. Moreover, a $C_2^2(13)$ graph set links two more molecules to the base graph set via contacts both to a screw and to a gliderelated molecule from the basal α -H atom to a screw-related O=P group (3.17 Å), which is also acting towards a gliderelated o-H atom (2.57 Å) of that benzyl moiety.

4. Conclusions

There seem to be just too many variables and conditions, not to mention the actual crystallization conditions, that may affect the final outcome of crystal formation, *i.e.* the topology of the associates formed under particular circumstances. We think that the initial assumption concerning the crowding around the C α atom is an important piece of the puzzle. The simplest realization of crowding is the introduction of a methyl group at $C\alpha$, *i.e.* for **2a** and **2b**. Electronic modification through either substituents or through noncovalent interactions may also affect a tertiary C-H group. An important role of the C-H...O interactions is seen in **3a**. In spite of having a tertiary C α atom, it does not form a chain-like packing motif but a dimer, like 2a and 2b with their quaternary $C\alpha$ atom. Thus, we postulate the hypothesis that compounds with tertiary C α atoms are prone to form chains, while those with quaternary $C\alpha$ atoms, or with a sterically electronically shielded C α H atom, tend to promote the formation of dimers. Nevertheless, we believe, even on the basis of this limited study, that we may call attention to several factors that have an influence on the hydrogen-bonding motif outcome. As mentioned here several times, grouping the compounds on the tertiary-quaternary feature of the C α atom is one of these factors. The role and nature of the substituents, especially in the *ortho* positions of the aromatic phenyl-type moieties, that are immediately linked to $C\alpha$ modify such a classification via intramolecular effects. It seems from the graph-set analysis that the dominating (primary) hydrogen-bond bridges are not only co-existent with the weaker but more numerous secondary bridges, but that these may provide a complementary vehicle towards making crystals. One may also observe a degree of similarity in the primary and secondary graph sets of the studied molecular crystals, thus reflecting molecular similarity at another more abstract level.

Acknowledgements

ZR is grateful for the fellowship provided by Chinoin–Sanofi Pharmaceuticals and the József Varga Foundation. A small part of these investigations have been supported by the Hungarian Pension Fund to MC. The authors also thank anonymous reviewers for their inspiring comments and suggestions on this work.

Funding information

Funding for this research was provided by: National Research, Development and Innovation Office (grant No. K119202).

References

- Abramov, V. S. (1952). Zh. Obshch. Khim. 22, 647-652.
- Acar, N., Tahir, M. N., Yilmaz, H., Chishti, M. S. A. & Malik, M. A. (2009). Acta Cryst. E65, 0481.
- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- An, L.-T., Gong, G.-X., Liu, X., Xia, M. & Zhou, J.-F. (2008). Acta Cryst. E64, 01320.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cytlak, T., Skibińska, M., Kaczmarek, P., Kaźmierczak, M., Rapp, M., Kubicki, M. & Koroniak, H. (2018). *RSC Adv.* 8, 11957–11974.
- Dunitz, J. D. (2015). IUCrJ, 2, 157-158.
- Edwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Faraday Discuss.* **203**, 93–112.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Fang, H., Chen, W., Hong, B., Zhao, Y. & Fang, M. (2010). *Phosphorus Sulfur Silicon*, 185, 2182–2193.
- Fang, H., Fang, M.-J., Luo, S.-N., Huang, R.-B. & Zhao, Y.-F. (2006*a*). *Acta Cryst.* E62, 0637–0638.
- Fang, H., Fang, M.-J., Zeng, Z.-P., Wei, Z.-B. & Zhao, Y.-F. (2006b). Acta Cryst. E62, 01378–01379.
- Fang, M.-J., Fang, H., Zeng, Z.-P., Luo, S.-N. & Zhao, Y.-F. (2006c). Acta Cryst. E62, 01998–01999.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Frechette, R. F., Ackerman, C., Beers, S., Look, R. & Moore, J. (1997). Bioorg. Med. Chem. Lett. 7, 2169–2172.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Höhne, E. & Lohs, K. (1969). Z. Naturforsch. Teil B, 24, 1071-1074.
- Hudson, H. R., Yusuf, R. O. & Matthews, R. W. (2008). *Phosphorus Sulfur Silicon*, 183, 1527–1540.
- Kaboudin, B. & Nazari, R. (2002). J. Chem. Res. (S), pp. 291-292.
- Kalla, R. M. N., Lee, H. R., Cao, J., Yoo, W. & Kim, I. (2015). New J. Chem. **39**, 3916–3922.
- Kálmán, A., Párkányi, L. & Argay, G. (1993). Acta Cryst. B49, 1039– 1049.
- Kategaonkar, A. H., Pokalwar, R. U., Sonar, S. S., Gawali, V. U., Shingate, B. B. & Shingare, M. S. (2010). *Eur. J. Med. Chem.* 45, 1128–1132.
- Keglevich, G., Rádai, Z. & Kiss, N. Z. (2017). Green Process Synth. 6, 197–201.
- Keglevich, G., Róza Tóth, V. & Drahos, L. (2011). *Heteroatom Chem.* **22**, 15–17.
- Kharasch, M. S., Mosher, R. A. & Bengelsdorf, I. S. (1960). J. Org. Chem. 25, 1000–1006.
- Kong, D. L., Liu, R. D., Li, G. Z., Zhang, P. W. & Wu, M. S. (2014). Asian J. Chem. 26, 1246–1248.

- Kong, S., Fan, W., Wu, G. & Miao, Z. (2012). Angew. Chem. Int. Ed. 51, 8864–8867.
- Kulkarni, M. A., Lad, U. P., Desai, U. V., Mitragotri, S. D. & Wadgaonkar, P. P. (2013). C. R. Chim. 16, 148–152.
- Kumar, K. S., Reddy, C. B., Reddy, M. V. N., Rani, C. R. & Reddy, C. S. (2012). Org. Commun. 5, 50–57.
- Lane, T. M., Levsen, S. M., Tasz, M. K., Cremer, S. E., Hussain, M. S. & Mazhar-ul-Haque (1996). *Heteroatom Chem.* 7, 9–16.
- Lecomte, C., Espinosa, E. & Matta, C. F. (2015). IUCrJ, 2, 161-163.
- Liu, C., Zhang, Y., Qian, Q., Yuan, D. & Yao, Y. (2014). Org. Lett. 16, 6172–6175.
- Lorenz, W., Henglein, A. & Schrader, G. (1995). J. Am. Chem. Soc. 77, 2554–2556.
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *IUCrJ*, **4**, 575–587.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Naidu, K. R. M., Kumar, K. S., Arulselvan, P., Reddy, C. B. & Lasekan, O. (2012). Arch. Pharm. Chem. Life Sci. 345, 957–963.
- Nandre, K. P., Nandre, J. P., Patil, V. S. & Bhosale, S. V. (2012). *Chem. Biol. Interface*, **2**, 314–321.
- Ouksel, L., Chafaa, S., Bourzami, R., Hamdouni, N., Sebais, M. & Chafai, N. (2017). J. Mol. Struct. 1144, 389–395.
- Patel, D. V., Rielly-Gauvin, K., Ryono, D. E., Free, C. A., Rogers, W. L., Smith, S. A., DeForrest, J. M., Oehl, R. S. & Petrillo, E. W. Jr (1995). J. Med. Chem. 38, 4557–4569.
- Pawar, V. D., Bettigeri, S., Weng, S. S., Kao, J. Q. & Chen, C. T. (2006). J. Am. Chem. Soc. 128, 6308–6309.
- Pokalwar, R. U., Hangarge, R. V., Maske, P. V. & Shingare, M. S. (2006). Arkivoc, **11**, 196–204.
- Pudovik, A. N. & Konovalova, I. V. (1979). Synthesis, pp. 81-96.
- Rádai, Z. & Keglevich, G. (2018). Molecules, 23, 1493-1521.
- Rádai, Z., Szeles, P., Kiss, N. Z., Hegedűs, L., Windt, T., Nagy, V. & Keglevich, G. (2018). *Heteroatom Chem.* 29, e21436.
- Ramananarivo, H. R., Solhy, A., Sebti, J., Smahi, A., Zahouily, M., Clark, J. & Sebti, S. (2013). ACS Sustainable Chem. Eng. 1, 403–409.
- Rao, K. U. M., Sundar, C. S., Prasad, S. S., Rani, C. R. & Reddy, C. S. (2011). Bull. Korean Chem. Soc. 32, 3343–3347.
- Rowe, B. J. & Spilling, C. D. (2001). *Tetrahedron Asymmetry*, **12**, 1701–1708.
- Ruveda, M. A. & De Licastro, S. A. (1972). *Tetrahedron*, **28**, 6012–6018.
- Santhisudha, S., Sreelakshmi, P., Jayaprakash, S. H., Vijaya Kumar, B. & Suresh Reddy, C. (2015). *Phosphorus Sulfur Silicon*, **190**, 1479– 1488.
- Sardarian, A. R. & Kaboudin, B. (1997). Synth. Commun. 27, 543-551.
- Sarkar, S. & Row, T. N. G. (2017). IUCrJ, 4, 37-49.
- Seven, O., Polat-Cakir, S., Hossain, M. S., Emrullahoglu, M. & Demir, A. S. (2011). *Tetrahedron*, 67, 3464–3469.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Smahi, A., Solhy, A., Tahir, R., Sebti, S., Mayoral, J. A., García, J. I., Fraile, J. M. & Zahouily, M. (2008). *Catal. Commun.* 9, 2503–2508.
- Solhy, A., Sebti, S., Tahir, R., Sebti, J., Ould Abba, M., Bousmina, M., Vaudreuil, S. & Zahouily, M. (2010). *Curr. Org. Chem.* 14, 1517– 1522.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Hussain, G. (2009b). Acta Cryst. E65, 0939.
- Tahir, M. N., Acar, N., Yilmaz, H., Tariq, M. I. & Ülkü, D. (2009a). Acta Cryst. E65, 0562.
- Tahir, M. N., Acar, N., Yilmaz, H. & Tariq, R. H. (2009c). Acta Cryst. E65, o2051.
- Texierboullet, F. & Foucard, A. (1980). *Tetrahedron Lett.* **21**, 2161–2164.
- Texierboullet, F. & Foucard, A. (1982a). Synthesis, p. 916.
- Texierboullet, F. & Foucard, A. (1982b). Synthesis, pp. 165-166.

- Thakur, T. S., Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 159-160.
- Timmler, H. & Kurz, J. (1971). *Chem. Ber.* 104, 3740–3749.
 Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017).

CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.

Ye, M.-Y., Yao, G.-Y., Pan, Y.-M., Liao, Z.-X., Zhang, Y. & Wang, H. S. (2014). Eur. J. Med. Chem. 83, 116-128.

Acta Cryst. (2019). C75, 283-293 [https://doi.org/10.1107/S2053229619001839]

The typical crystal structures of a few representative α -aryl- α -hydroxyphosphonates

Zita Rádai, Nóra Zsuzsa Kiss, Mátyás Czugler, Konstantin Karaghiosoff and György Keglevich

Computing details

For all structures, data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *ORTEP* (Burnett & Johnson, 1996), *ORTEP-3* (Farrugia, 2012), *PLATON* (Spek, 2009) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *PLATON* (Spek, 2009).

Dibenzyl [hydroxy(4-methylphenyl)methyl]phosphonate (3c)

Crystal data

 $C_{22}H_{23}O_4P$ $M_r = 382.37$ Orthorhombic, *Pbca* a = 16.7332 (8) Å b = 8.2012 (3) Å c = 28.0902 (13) Å V = 3854.9 (3) Å³ Z = 8F(000) = 1616

Data collection

Agilent Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 15.9809 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.980, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.150$ S = 1.024758 reflections 265 parameters 0 restraints $D_x = 1.318 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4004 reflections $\theta = 4.5-27.9^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 173 KBlock, colorless $0.37 \times 0.15 \times 0.05 \text{ mm}$

29616 measured reflections 4758 independent reflections 3133 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 28.3^\circ$, $\theta_{min} = 4.4^\circ$ $h = -22 \rightarrow 21$ $k = -10 \rightarrow 10$ $l = -36 \rightarrow 37$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0669P)^2 + 1.3244P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.26$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An Xcalibur, Sapphire3 detector equipped diffractometer was used with an Enhance Mo K α X-ray radiation to collect all the intensity data. The program CrysAlis PRO (CrysAlisPro, Agilent, 2014) was used for data collection, space group determination and all data reduction purposes including empirical absorption correction using spherical harmonics. The initial structure models were provided by direct methods using SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares on F^2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined anisotropically.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
P1	0.86630(3)	0.11650 (7)	0.74859 (2)	0.02500 (16)	
01	0.88249 (10)	0.28792 (18)	0.76026 (6)	0.0334 (4)	
O2	0.83579 (9)	0.00874 (17)	0.79113 (5)	0.0314 (4)	
03	0.79822 (9)	0.09657 (16)	0.71029 (5)	0.0288 (4)	
C5	1.02433 (14)	0.1749 (3)	0.58777 (8)	0.0340 (5)	
O4	1.01055 (11)	0.0164 (2)	0.76139 (6)	0.0395 (4)	
C10	0.71903 (14)	0.1766 (3)	0.64312 (9)	0.0332 (5)	
C3	1.03925 (14)	0.1711 (3)	0.67304 (9)	0.0335 (5)	
H3	1.0670 (8)	0.2088 (10)	0.7011 (8)	0.040*	
C11	0.73182 (17)	0.1995 (3)	0.59491 (10)	0.0421 (6)	
H11	0.7791 (15)	0.2462 (15)	0.5842 (4)	0.051*	
C1	0.95057 (13)	-0.0002(3)	0.72631 (8)	0.0285 (5)	
H1	0.9350	-0.1175	0.7237	0.034*	
C18	0.87025 (14)	0.1879 (3)	0.87877 (9)	0.0363 (5)	
H18	0.9039 (10)	0.2212 (10)	0.8520 (8)	0.044*	
C2	0.97640 (13)	0.0618 (2)	0.67771 (8)	0.0272 (5)	
C7	0.93737 (14)	0.0092 (3)	0.63681 (8)	0.0303 (5)	
H7	0.8948 (12)	-0.065 (2)	0.63923 (10)	0.036*	
C4	1.06260 (15)	0.2263 (3)	0.62880 (9)	0.0369 (6)	
H4	1.1080 (12)	0.305 (2)	0.62631 (11)	0.044*	
C17	0.79922 (14)	0.1056 (3)	0.87028 (8)	0.0308 (5)	
C19	0.89383 (17)	0.2232 (3)	0.92481 (9)	0.0398 (6)	
H19	0.9437 (15)	0.2807 (17)	0.93039 (19)	0.048*	
C6	0.96076 (14)	0.0661 (3)	0.59253 (8)	0.0339 (5)	
H6	0.9318 (8)	0.0289 (10)	0.5637 (8)	0.041*	
C22	0.75307 (15)	0.0584 (3)	0.90880 (9)	0.0366 (6)	
H22	0.7036 (14)	-0.0020 (17)	0.90344 (18)	0.044*	
C16	0.77049 (14)	0.0704 (3)	0.82078 (8)	0.0334 (5)	
H16A	0.7267 (8)	-0.0121 (14)	0.82201 (8)	0.040*	
H16B	0.7485 (4)	0.1722 (18)	0.8064 (3)	0.040*	
C15	0.64759 (15)	0.1085 (3)	0.65822 (10)	0.0381 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H15	0.6377 (3)	0.0941 (5)	0.6925 (10)	0.046*
C21	0.77629 (16)	0.0958 (3)	0.95484 (9)	0.0439 (6)
H21	0.7423 (10)	0.0644 (10)	0.9818 (8)	0.053*
C20	0.84685 (17)	0.1770 (3)	0.96282 (10)	0.0439 (6)
H20	0.8624 (6)	0.2000 (8)	0.9928 (10)	0.053*
C13	0.6045 (2)	0.0829 (3)	0.57840 (12)	0.0545 (8)
H13	0.5656 (14)	0.0496 (12)	0.5561 (8)	0.065*
C12	0.6739 (2)	0.1524 (4)	0.56281 (11)	0.0543 (8)
H12	0.6819 (4)	0.1678 (7)	0.5310 (12)	0.065*
C14	0.59054 (18)	0.0609 (3)	0.62603 (11)	0.0496 (7)
H14	0.5416 (16)	0.0130 (16)	0.6367 (4)	0.060*
C8	1.05096 (18)	0.2326 (3)	0.53963 (10)	0.0510(7)
H8A	1.0775 (11)	0.332 (2)	0.54271 (13)	0.076*
H8B	1.0066 (8)	0.246 (2)	0.5200 (4)	0.076*
H8C	1.0853 (11)	0.1559 (17)	0.5263 (4)	0.076*
C9	0.78111 (16)	0.2317 (3)	0.67775 (9)	0.0365 (6)
H9A	0.8320 (9)	0.2650 (7)	0.6600 (3)	0.044*
H9B	0.7608 (4)	0.3304 (18)	0.6965 (3)	0.044*
H40	1.0494 (17)	-0.069 (3)	0.7537 (9)	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0241 (3)	0.0235 (3)	0.0274 (3)	0.0000 (2)	-0.0007 (2)	-0.0014 (2)
01	0.0343 (10)	0.0261 (8)	0.0398 (10)	-0.0042 (6)	-0.0002 (7)	-0.0049 (6)
O2	0.0307 (9)	0.0317 (8)	0.0318 (9)	0.0046 (7)	0.0043 (7)	0.0026 (6)
O3	0.0263 (8)	0.0233 (7)	0.0368 (9)	-0.0008 (6)	-0.0052 (6)	0.0032 (6)
C5	0.0316 (13)	0.0319 (12)	0.0385 (14)	0.0058 (10)	0.0097 (10)	0.0033 (10)
O4	0.0338 (10)	0.0462 (10)	0.0385 (10)	0.0099 (8)	-0.0069 (7)	-0.0040 (7)
C10	0.0333 (14)	0.0245 (11)	0.0417 (14)	0.0078 (9)	-0.0096 (10)	0.0001 (9)
C3	0.0285 (13)	0.0348 (12)	0.0371 (13)	-0.0001 (9)	-0.0003 (10)	-0.0092 (10)
C11	0.0348 (15)	0.0412 (14)	0.0503 (17)	0.0066 (11)	0.0032 (12)	0.0078 (11)
C1	0.0293 (12)	0.0288 (11)	0.0274 (12)	0.0041 (9)	-0.0030 (9)	-0.0032 (8)
C18	0.0315 (14)	0.0395 (13)	0.0379 (14)	0.0007 (10)	0.0035 (10)	0.0022 (10)
C2	0.0273 (12)	0.0253 (10)	0.0291 (12)	0.0046 (9)	0.0008 (9)	-0.0027 (8)
C7	0.0295 (13)	0.0295 (11)	0.0320 (12)	-0.0046 (9)	0.0000 (9)	-0.0016 (9)
C4	0.0314 (14)	0.0321 (12)	0.0472 (15)	-0.0043 (10)	0.0073 (11)	-0.0036 (10)
C17	0.0264 (12)	0.0300 (11)	0.0359 (13)	0.0063 (9)	0.0029 (9)	0.0002 (9)
C19	0.0376 (15)	0.0400 (14)	0.0417 (15)	0.0007 (11)	-0.0044 (11)	0.0001 (11)
C6	0.0356 (14)	0.0360 (12)	0.0302 (13)	0.0009 (10)	-0.0026 (10)	-0.0040 (9)
C22	0.0312 (14)	0.0390 (13)	0.0395 (15)	0.0023 (10)	0.0060 (10)	0.0030 (10)
C16	0.0274 (13)	0.0374 (12)	0.0355 (13)	0.0003 (10)	0.0059 (9)	0.0000 (10)
C15	0.0391 (15)	0.0325 (13)	0.0428 (15)	0.0028 (10)	0.0006 (11)	0.0084 (10)
C21	0.0387 (15)	0.0571 (17)	0.0358 (14)	0.0085 (12)	0.0103 (11)	0.0075 (11)
C20	0.0468 (17)	0.0520 (15)	0.0331 (14)	0.0113 (13)	-0.0048 (12)	-0.0001 (11)
C13	0.0544 (19)	0.0442 (16)	0.065 (2)	0.0061 (14)	-0.0302 (16)	-0.0060 (14)
C12	0.069 (2)	0.0599 (18)	0.0341 (15)	0.0163 (16)	-0.0069 (14)	0.0032 (12)
C14	0.0355 (16)	0.0376 (14)	0.076 (2)	-0.0033 (11)	-0.0111 (14)	0.0075 (13)

C8	0.0470 (17)	0.0616 (18)	0.0443 (17)	0.0012 (14)	0.0132 (13)	0.0092 (13)
C9	0.0404 (15)	0.0244 (11)	0.0447 (14)	0.0007 (10)	-0.0088 (11)	0.0073 (10)

Geometric parameters (Å, °)

P101	1.4687 (16)	С7—Н7	0.94 (3)	
P1—O2	1.5716 (16)	C4—H4	1.00 (3)	
P1—O3	1.5754 (15)	C17—C22	1.385 (3)	
P1—C1	1.815 (2)	C17—C16	1.499 (3)	
O2—C16	1.464 (3)	C19—C20	1.379 (4)	
O3—C9	1.465 (3)	C19—H19	0.97 (3)	
C5—C4	1.384 (3)	C6—H6	0.99 (3)	
C5—C6	1.395 (3)	C22—C21	1.385 (4)	
C5—C8	1.501 (3)	C22—H22	0.98 (3)	
O4—C1	1.413 (3)	C16—H16A	0.998 (17)	
O4—H40	0.98 (3)	C16—H16B	0.998 (17)	
C10-C11	1.384 (4)	C15—C14	1.372 (4)	
C10—C15	1.386 (3)	C15—H15	0.98 (3)	
C10—C9	1.493 (3)	C21—C20	1.374 (4)	
C3—C4	1.379 (3)	C21—H21	0.98 (3)	
C3—C2	1.388 (3)	C20—H20	0.90 (3)	
С3—Н3	0.97 (3)	C13—C12	1.365 (4)	
C11—C12	1.379 (4)	C13—C14	1.370 (4)	
C11—H11	0.93 (3)	C13—H13	0.94 (3)	
C1—C2	1.520 (3)	C12—H12	0.91 (3)	
C1—H1	1.0000	C14—H14	0.96 (3)	
C18—C19	1.383 (4)	C8—H8A	0.930 (16)	
C18—C17	1.388 (3)	C8—H8B	0.930 (15)	
C18—H18	0.98 (3)	C8—H8C	0.930 (15)	
C2—C7	1.390 (3)	С9—Н9А	1.024 (18)	
С7—С6	1.385 (3)	С9—Н9В	1.024 (18)	
O1—P1—O2	115.37 (9)	C18—C19—H19	119.9	
O1—P1—O3	112.66 (9)	C7—C6—C5	121.1 (2)	
O2—P1—O3	103.06 (8)	С7—С6—Н6	119.4	
O1—P1—C1	115.99 (10)	С5—С6—Н6	119.4	
O2—P1—C1	102.59 (9)	C17—C22—C21	120.8 (2)	
O3—P1—C1	105.77 (9)	C17—C22—H22	119.6	
C16—O2—P1	118.73 (13)	C21—C22—H22	119.6	
C9—O3—P1	119.27 (13)	O2-C16-C17	110.78 (19)	
C4—C5—C6	117.9 (2)	O2-C16-H16A	109.5	
C4—C5—C8	121.1 (2)	C17—C16—H16A	109.5	
C6—C5—C8	121.0 (2)	O2-C16-H16B	109.5	
C1—O4—H40	104.4 (15)	C17—C16—H16B	109.5	
C11—C10—C15	119.2 (2)	H16A—C16—H16B	108.1	
С11—С10—С9	119.3 (2)	C14—C15—C10	120.9 (3)	
С15—С10—С9	121.5 (2)	C14—C15—H15	119.6	
C4—C3—C2	120.8 (2)	C10-C15-H15	119.6	

C4 C2 U2	110 (C20 C21 C22	120.0 (2)
C4—C3—H3	119.6	$C_{20} = C_{21} = C_{22}$	120.0 (2)
С2—С3—Н3	119.6	C20—C21—H21	120.0
C12—C11—C10	119.6 (3)	C22—C21—H21	120.0
C12—C11—H11	120.2	C21—C20—C19	119.8 (3)
C10-C11-H11	120.2	C21—C20—H20	120.1
O4—C1—C2	113.10 (19)	С19—С20—Н20	120.1
O4—C1—P1	105.11 (14)	C12—C13—C14	120.9 (3)
C2—C1—P1	110.74 (14)	C12—C13—H13	119.6
O4—C1—H1	109.3	C14—C13—H13	119.6
C2—C1—H1	109.3	C13—C12—C11	120.3 (3)
P1—C1—H1	109.3	C13—C12—H12	119.8
C19 - C18 - C17	120 5 (2)	C11—C12—H12	119.8
C19 - C18 - H18	119.8	C_{13} C_{14} C_{15}	119.2 (3)
C_{17} C_{18} H_{18}	119.8	C_{13} C_{14} H_{14}	120.4
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	119.6 (2)	$C_{15} = C_{14} = H_{14}$	120.4
$C_{3} = C_{2} = C_{1}$	110.0(2)	C_{13} C_{14} H_{14}	120.4
$C_3 = C_2 = C_1$	121.1(2)		109.3
	120.3 (2)	C5—C8—H8B	109.5
C6—C7—C2	120.3 (2)	Н8А—С8—Н8В	109.5
С6—С7—Н7	119.8	C5—C8—H8C	109.5
С2—С7—Н7	119.8	H8A—C8—H8C	109.5
C3—C4—C5	121.2 (2)	H8B—C8—H8C	109.5
C3—C4—H4	119.4	O3—C9—C10	108.29 (18)
C5—C4—H4	119.4	O3—C9—H9A	110.0
C22—C17—C18	118.6 (2)	С10—С9—Н9А	110.0
C22—C17—C16	119.5 (2)	O3—C9—H9B	110.0
C18—C17—C16	121.9 (2)	С10—С9—Н9В	110.0
C20—C19—C18	120.3 (3)	H9A—C9—H9B	108.4
C20—C19—H19	119.9		
O1—P1—O2—C16	48.40 (18)	C8—C5—C4—C3	-178.7(2)
O3—P1—O2—C16	-74.80(17)	C19—C18—C17—C22	-0.6(3)
C1 - P1 - O2 - C16	175 47 (16)	C_{19} C_{18} C_{17} C_{16}	177.9(2)
01 - P1 - 03 - C9	23 70 (19)	C17 - C18 - C19 - C20	-0.1(4)
$O_2 P_1 O_3 C_9$	1/8 60 (16)	C_{1}^{2} C_{1}^{2} C_{2}^{2} C_{2}^{2} C_{3}^{2} C_{5}^{2}	10(3)
C1 P1 O3 C9	-103.07(17)	$C_{2} = C_{1} = C_{0} = C_{3}$	-10(3)
$C_1 = 1 = 03 = 03$	103.37(17)	$C_{+-}C_{5-}C_{6-}C_{7$	1.0(3)
$C_{13} = C_{10} = C_{11} = C_{12}$	-0.8(4)	$C_{0} = C_{0} = C_{0} = C_{1}$	1/0.5(2)
C_{9}	-1/8.4(2)	C16 - C17 - C22 - C21	1.3(3)
01 - P1 - C1 - O4	55.39 (17)	C16-C1/-C22-C21	-1/7.0(2)
02—P1—C1—O4	-/1.29 (16)	P1	-113.16(18)
O3—P1—C1—O4	-178.96 (13)	C22—C17—C16—O2	-136.4 (2)
O1—P1—C1—C2	-67.08 (17)	C18—C17—C16—O2	45.1 (3)
O2—P1—C1—C2	166.25 (15)	C11—C10—C15—C14	1.3 (4)
O3—P1—C1—C2	58.57 (17)	C9—C10—C15—C14	178.9 (2)
C4—C3—C2—C7	0.0 (3)	C17—C22—C21—C20	-1.7 (4)
C4—C3—C2—C1	179.7 (2)	C22—C21—C20—C19	1.0 (4)
O4—C1—C2—C3	-20.6 (3)	C18—C19—C20—C21	-0.1 (4)
P1—C1—C2—C3	97.0 (2)	C14—C13—C12—C11	1.0 (4)
O4—C1—C2—C7	159.11 (19)	C10—C11—C12—C13	-0.4 (4)
	· /		~ /

P1—C1—C2—C7	-83.2(2)	C12—C13—C14—C15	-0.5(4)
C3—C2—C7—C6	-0.4(3)	C10—C15—C14—C13	-0.7(4)
$C_{1} = C_{2} = C_{7} = C_{0}$ $C_{1} = C_{2} = C_{7} = C_{0}$	179.8 (2)	P1	175.76 (15)
C2-C3-C4-C5	0.0 (4)	C11—C10—C9—O3	-129.7 (2)
C6-C5-C4-C3	0.5 (3)	C15—C10—C9—O3	52.6 (3)

F(000) = 420

 $\theta = 4.4 - 25.4^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$

Block, colorless

 $0.30 \times 0.22 \times 0.20$ mm

T = 133 K

 $D_{\rm x} = 1.393 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2191 reflections

Dibenzyl [(3-chlorophenyl)(hydroxy)methyl]phosphonate (3b)

Crystal data

C₂₁H₂₀ClO₄P $M_r = 402.79$ Monoclinic, P2₁ a = 10.4239 (8) Å b = 7.8757 (5) Å c = 12.0461 (7) Å $\beta = 103.775$ (7)° V = 960.49 (11) Å³ Z = 2

Data collection

Agilent Xcalibur Sapphire3	6934 measured reflections
diffractometer	3407 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2955 reflections with $I > 2\sigma(I)$
Detector resolution: 15.9809 pixels mm ⁻¹	$R_{\rm int} = 0.028$
ω scans	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 4.3^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 13$
(CrysAlis PRO; Agilent, 2014)	$k = -8 \rightarrow 9$
$T_{\min} = 0.991, T_{\max} = 1.000$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2 + 0.2038P]$
$wR(F^2) = 0.114$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3407 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
255 parameters	$\Delta \rho_{\min} = -0.20 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Refined as an inversion twin
Hydrogen site location: inferred from	Absolute structure parameter: 0.35 (12)
neighbouring sites	• · · · ·

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

An Xcalibur, Sapphire3 detector equipped diffractometer was used with an Enhance Mo K α X-ray radiation to collect all the intensity data. The program CrysAlis PRO (CrysAlisPro, Agilent, 2014) was used for data collection, space group determination and all data reduction purposes including empirical absorption correction using spherical harmonics. The initial structure models were provided by direct methods using SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares on F² using SHELXL (Sheldrick, 2015b). All non-H atoms were refined anisotropically.

				TT +/TT	
	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
P1	0.39196 (10)	0.20951 (14)	0.13606 (8)	0.0314 (3)	
Cl1	0.87251 (14)	0.3666 (2)	0.47865 (10)	0.0640 (4)	
02	0.4032 (3)	0.2610 (4)	0.2646 (2)	0.0368 (7)	
04	0.5090 (3)	0.2690 (5)	-0.0254 (2)	0.0483 (9)	
H4	0.5506	0.3370	-0.0576	0.072*	
01	0.3842 (3)	0.0246 (4)	0.1175 (2)	0.0404 (7)	
03	0.2705 (3)	0.3148 (4)	0.0693 (3)	0.0458 (8)	
C2	0.6585 (4)	0.2610 (5)	0.1657 (3)	0.0315 (9)	
C3	0.7023 (4)	0.3308 (6)	0.2740 (4)	0.0357 (9)	
H3	0.652 (3)	0.410 (5)	0.2999 (15)	0.043*	
C9	0.4049 (4)	0.2024 (6)	0.4615 (3)	0.0366 (9)	
C4	0.8229 (4)	0.2798 (7)	0.3431 (4)	0.0405 (10)	
C5	0.9030 (5)	0.1650 (6)	0.3042 (4)	0.0444 (12)	
H5	0.986 (5)	0.1341 (18)	0.350 (3)	0.053*	
C14	0.2867 (4)	0.2884 (7)	0.4557 (4)	0.0464 (11)	
H14	0.2292	0.3133	0.3837	0.056*	
C21	-0.0793 (4)	0.2817 (6)	-0.0668 (4)	0.0407 (10)	
H21	-0.1135 (18)	0.337 (3)	-0.011 (3)	0.049*	
C20	-0.1603 (5)	0.2497 (7)	-0.1726 (4)	0.0483 (12)	
H20	-0.245 (5)	0.2777 (18)	-0.1868 (9)	0.058*	
C13	0.2537 (5)	0.3374 (7)	0.5567 (5)	0.0565 (14)	
H13	0.1733	0.3965	0.5528	0.068*	
C10	0.4860 (5)	0.1684 (6)	0.5690 (4)	0.0409 (11)	
H10	0.5671	0.1100	0.5752	0.049*	
C17	0.1022 (5)	0.1597 (6)	-0.1257 (4)	0.0397 (11)	
H17	0.192 (5)	0.1288 (17)	-0.1098 (9)	0.048*	
C1	0.5270 (4)	0.3155 (6)	0.0922 (3)	0.0363 (10)	
H1	0.5172	0.4412	0.0983	0.044*	
C16	0.0516 (4)	0.2340 (6)	-0.0423 (3)	0.0364 (10)	
C11	0.4485 (5)	0.2199 (7)	0.6674 (4)	0.0502 (12)	
H11	0.5044	0.1964	0.7404	0.060*	
C18	0.0214 (5)	0.1302 (7)	-0.2335 (4)	0.0481 (12)	
H18	0.058 (2)	0.079 (3)	-0.292 (3)	0.058*	
C8	0.4424 (5)	0.1376 (6)	0.3573 (4)	0.0460 (11)	
H8A	0.548 (4)	0.1175 (10)	0.3753 (7)	0.055*	
H8B	0.3941 (17)	0.018 (4)	0.3320 (9)	0.055*	
C15	0.1368 (4)	0.2643 (7)	0.0766 (4)	0.0454 (12)	
H15A	0.0933 (15)	0.364 (3)	0.1186 (15)	0.054*	
H15B	0.1420 (4)	0.149 (4)	0.1272 (18)	0.054*	
C7	0.7381 (4)	0.1431 (6)	0.1276 (4)	0.0419 (10)	
H7	0.7094	0.0942	0.0538	0.050*	
C19	-0.1103 (5)	0.1741 (7)	-0.2565 (4)	0.0494 (13)	
H19	-0.164 (3)	0.1531 (14)	-0.327 (4)	0.059*	
C6	0.8590 (5)	0.0974 (6)	0.1974 (4)	0.0470 (12)	
H6	0.918 (3)	0.009 (5)	0.1677 (16)	0.056*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C12	0 3337 (6)	0 3025 (8)	0 6596 (5)	0 0594 (15)
H12	0.3088	0.3365	0.7272	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
P1	0.0336 (5)	0.0304 (6)	0.0304 (5)	-0.0026 (4)	0.0082 (4)	0.0004 (4)
C11	0.0613 (8)	0.0802 (11)	0.0410 (6)	-0.0028 (7)	-0.0065 (5)	-0.0050 (6)
O2	0.0463 (17)	0.0322 (17)	0.0348 (14)	0.0037 (12)	0.0154 (12)	0.0014 (12)
O4	0.060 (2)	0.056 (2)	0.0313 (15)	-0.0126 (16)	0.0151 (14)	-0.0007 (14)
01	0.0498 (19)	0.0327 (18)	0.0408 (16)	-0.0045 (14)	0.0149 (14)	-0.0031 (13)
O3	0.0353 (16)	0.047 (2)	0.0509 (17)	-0.0045 (14)	0.0029 (13)	0.0120 (15)
C2	0.030(2)	0.031 (2)	0.0358 (19)	-0.0061 (16)	0.0123 (16)	0.0046 (16)
C3	0.032 (2)	0.030(2)	0.046 (2)	-0.0003 (17)	0.0084 (18)	0.0003 (18)
C9	0.046 (2)	0.030 (2)	0.038 (2)	-0.010 (2)	0.0198 (18)	-0.005 (2)
C4	0.039 (2)	0.041 (3)	0.039 (2)	-0.0078 (19)	0.0048 (18)	0.0057 (19)
C5	0.034 (2)	0.032 (3)	0.067 (3)	-0.0012 (18)	0.012 (2)	0.011 (2)
C14	0.043 (3)	0.042 (3)	0.053 (3)	0.000 (2)	0.008 (2)	-0.002 (2)
C21	0.041 (2)	0.035 (3)	0.051 (3)	0.0006 (19)	0.020(2)	0.003 (2)
C20	0.036 (2)	0.047 (3)	0.059 (3)	0.002 (2)	0.007 (2)	0.005 (2)
C13	0.049 (3)	0.045 (3)	0.086 (4)	-0.008(2)	0.038 (3)	-0.015 (3)
C10	0.042 (2)	0.033 (3)	0.048 (2)	-0.0031 (18)	0.0109 (19)	0.0041 (18)
C17	0.039 (2)	0.042 (3)	0.039 (2)	0.0072 (19)	0.0093 (18)	0.0051 (18)
C1	0.039 (2)	0.037 (3)	0.033 (2)	-0.0066 (19)	0.0087 (17)	0.0011 (17)
C16	0.033 (2)	0.036 (3)	0.041 (2)	-0.0009 (18)	0.0114 (17)	0.0069 (19)
C11	0.072 (3)	0.042 (3)	0.038 (2)	-0.021 (3)	0.014 (2)	-0.005 (2)
C18	0.060 (3)	0.042 (3)	0.045 (2)	0.002 (2)	0.019 (2)	-0.005 (2)
C8	0.063 (3)	0.037 (3)	0.043 (2)	0.014 (2)	0.022 (2)	0.010(2)
C15	0.036 (2)	0.059 (3)	0.045 (2)	-0.002(2)	0.0163 (19)	0.001 (2)
C7	0.044 (3)	0.038 (3)	0.048 (2)	-0.007(2)	0.019 (2)	-0.0059 (19)
C19	0.055 (3)	0.047 (3)	0.039 (2)	-0.006(2)	-0.003 (2)	0.001 (2)
C6	0.043 (3)	0.034 (3)	0.070 (3)	0.001 (2)	0.026 (2)	-0.001 (2)
C12	0.080 (4)	0.055 (4)	0.055 (3)	-0.022 (3)	0.038 (3)	-0.022 (3)

Geometric parameters (Å, °)

P1-01	1.473 (3)	C20—C19	1.378 (7)
P1—O3	1.566 (3)	C20—H20	0.88 (5)
P1—O2	1.578 (3)	C13—C12	1.347 (8)
P1—C1	1.819 (4)	C13—H13	0.9500
Cl1—C4	1.732 (5)	C10—C11	1.394 (6)
O2—C8	1.463 (5)	C10—H10	0.9500
O4—C1	1.432 (5)	C17—C16	1.372 (6)
O4—H4	0.8400	C17—C18	1.389 (6)
O3—C15	1.472 (5)	C17—H17	0.94 (5)
C2—C3	1.389 (6)	C1—H1	1.0000
C2—C7	1.394 (6)	C16—C15	1.514 (6)
C2—C1	1.506 (6)	C11—C12	1.346 (8)

$C_2 = C_4$	1 201 (6)	C11 H11	0.0500
$C_3 = C_4$	1.391(0)	C18 $C10$	0.9300
C_{3}	0.92(3)	C_{10} U_{10}	1.379(7)
C_{9}	1.393 (0)		0.97(3)
C_{2}	1.393 (6)		1.08 (4)
C9—C8	1.492 (6)	C8—H8B	1.08 (4)
C4—C5	1.386 (7)	CI5—HISA	1.09 (4)
C5—C6	1.367 (7)	CI5—HI5B	1.09 (4)
С5—Н5	0.94 (5)	С7—С6	1.386 (7)
C14—C13	1.395 (7)	С7—Н7	0.9500
C14—H14	0.9500	C19—H19	0.92 (5)
C21—C20	1.374 (7)	С6—Н6	1.04 (5)
C21—C16	1.377 (6)	C12—H12	0.9500
C21—H21	0.94 (5)		
01—P1—03	115 92 (18)	C18—C17—H17	1199
01 - P1 - 02	113.06 (17)	04-C1-C2	113.3 (3)
$O_3 P_1 O_2$	103.20(17)	O4 C1 P1	104.0(3)
03 - 11 - 02	105.29(17) 115.22(10)	04-01-11	104.0(3)
$O_1 = P_1 = C_1$	113.33 (19)		110.9 (5)
03-PI-CI	101.24 (19)		109.5
02-PI-CI	106.57 (18)	C2—C1—HI	109.5
C8-02-P1	121.3 (3)		109.5
C1—O4—H4	109.5	C17—C16—C21	119.6 (4)
C15—O3—P1	119.2 (3)	C17—C16—C15	121.2 (4)
C3—C2—C7	119.0 (4)	C21—C16—C15	119.2 (4)
C3—C2—C1	119.3 (4)	C12—C11—C10	120.4 (5)
C7—C2—C1	121.7 (4)	C12—C11—H11	119.8
C2—C3—C4	119.7 (4)	C10-C11-H11	119.8
С2—С3—Н3	120.2	C19—C18—C17	119.9 (5)
С4—С3—Н3	120.2	C19—C18—H18	120.0
C14—C9—C10	118.3 (4)	C17—C18—H18	120.0
C14—C9—C8	122.0 (4)	O2—C8—C9	109.5 (4)
С10—С9—С8	119.6 (4)	O2—C8—H8A	109.8
C5—C4—C3	121.2 (4)	С9—С8—Н8А	109.8
C5-C4-C11	120.5 (4)	O2—C8—H8B	109.8
C3—C4—C11	118.3 (4)	C9—C8—H8B	109.8
C6-C5-C4	118.6 (5)	H8A—C8—H8B	108.2
C6-C5-H5	120.7	03-C15-C16	100.2 109.7(3)
C4-C5-H5	120.7	03-C15-H15A	109.7 (3)
$C_{1} = C_{1} = C_{1}$	110 3 (5)	C16_C15_H15A	109.7
C_{0} C_{14} H_{14}	120.3	O_3 C_{15} H_{15R}	109.7
$C_{2} = C_{14} = H_{14}$	120.3	C16 C15 U15D	109.7
$C_{13} - C_{14} - H_{14}$	120.5		109.7
$C_{20} = C_{21} = C_{10}$	120.3 (4)		108.2
C_{20} C_{21} H_{21}	119.8	$C_{0} - C_{1} - C_{2}$	120.0 (4)
C10-C21-H21	119.8		120.0
C21—C20—C19	120.3 (4)	С2—С/—Н/	120.0
C21—C20—H20	119.9	C20—C19—C18	119.5 (4)
С19—С20—Н20	119.9	C20—C19—H19	120.2
C12—C13—C14	121.2 (5)	С18—С19—Н19	120.2

C12—C13—H13	119.4	C5—C6—C7	121.5 (4)
C14—C13—H13	119.4	C5—C6—H6	119.2
C9—C10—C11	120.3 (5)	C7—C6—H6	119.2
C9—C10—H10	119.9	C11—C12—C13	120.5 (5)
C11—C10—H10	119.9	C11—C12—H12	119.7
C16—C17—C18	120.2 (4)	C13—C12—H12	119.7
C16—C17—H17	119.9		
O1—P1—O2—C8	17.5 (4)	O2—P1—C1—O4	-178.1 (3)
O3—P1—O2—C8	143.6 (3)	O1—P1—C1—C2	-66.5 (3)
C1—P1—O2—C8	-110.2 (3)	O3—P1—C1—C2	167.5 (3)
O1—P1—O3—C15	51.4 (4)	O2—P1—C1—C2	59.8 (3)
O2—P1—O3—C15	-72.8 (3)	C18—C17—C16—C21	-1.1 (7)
C1—P1—O3—C15	177.0 (3)	C18—C17—C16—C15	178.7 (4)
C7—C2—C3—C4	-1.3 (6)	C20—C21—C16—C17	2.4 (7)
C1—C2—C3—C4	179.3 (4)	C20—C21—C16—C15	-177.4 (5)
C2-C3-C4-C5	2.5 (6)	C9—C10—C11—C12	0.1 (7)
C2-C3-C4-C11	-178.7 (3)	C16—C17—C18—C19	-0.7 (7)
C3-C4-C5-C6	-2.3 (7)	P1—O2—C8—C9	-162.5 (3)
C11-C4-C5-C6	178.9 (3)	C14—C9—C8—O2	39.0 (6)
$\begin{array}{c} C10-C9-C14-C13\\ C8-C9-C14-C13\\ C16-C21-C20-C19\\ C0-C14-C12\\ C12-C20-C19\\ C12-C12\\ C12-$	$\begin{array}{c} 0.1 (7) \\ 176.4 (5) \\ -2.0 (7) \\ 0.2 (8) \end{array}$	C10-C9-C8-O2 P1-O3-C15-C16 C17-C16-C15-O3	-144.8(4) -124.0(4) 37.6(6)
C14—C13—C12	-0.3 (8)	C21-C16-C15-O5	-142.6(4)
C14—C9—C10—C11	0.0 (7)	C3-C2-C7-C6	-0.1(6)
C8—C9—C10—C11	-176.4 (4)	C1-C2-C7-C6	179.4(4)
C3—C2—C1—O4	164.9 (4)	C21-C20-C19-C18	0.2(8)
C7—C2—C1—O4	-14.5 (6)	C17—C18—C19—C20	1.1 (8)
C3—C2—C1—P1	-78.6 (4)	C4—C5—C6—C7	0.9 (7)
C7—C2—C1—P1	102.0 (4)	C2—C7—C6—C5	0.2 (7)
O1—P1—C1—O4	55.6 (3)	C10—C11—C12—C13	-0.3 (8)
O3—P1—C1—O4	-70.4 (3)	C14—C13—C12—C11	0.4 (8)

Dibenzyl [hydroxy(2-nitrophenyl)methyl]phosphonate (3a)

Crystal data

 $C_{21}H_{20}NO_6P$ $M_r = 413.35$ Triclinic, *P*1 *a* = 10.0795 (3) Å *b* = 13.8530 (6) Å *c* = 15.9354 (5) Å *a* = 111.110 (4)° β = 90.852 (3)° γ = 106.326 (3)° *V* = 1975.23 (13) Å³ Z = 4 F(000) = 864 $D_x = 1.390 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8023 reflections $\theta = 4.2-31.4^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 133 K Block, colorless $0.43 \times 0.30 \times 0.25 \text{ mm}$ Data collection

Agilent Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 15.9809 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{min} = 0.980, T_{max} = 1.000$ Refinement	39828 measured reflections 11989 independent reflections 8512 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 30.5^{\circ}, \theta_{min} = 4.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -19 \rightarrow 19$ $l = -22 \rightarrow 22$
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.046$	and constrained refinement
$wR(F^2) = 0.124$	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 0.5554P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
11989 reflections	$(\Delta/\sigma)_{max} < 0.001$
565 parameters	$\Delta\rho_{max} = 0.60$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.30$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An Xcalibur, Sapphire3 detector equipped diffractometer was used with an Enhance Mo K α X-ray radiation to collect all the intensity data. The program CrysAlis PRO (CrysAlisPro, Agilent, 2014) was used for data collection, space group determination and all data reduction purposes including empirical absorption correction using spherical harmonics. The initial structure models were provided by direct methods using SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares on F^2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.34036 (4)	0.33610 (3)	0.24334 (2)	0.01798 (9)
H400	0.484 (2)	0.5613 (17)	0.3690 (13)	0.033 (5)*
P2	0.65755 (4)	0.70132 (3)	0.27149 (2)	0.01823 (9)
H100	0.496 (2)	0.4733 (18)	0.1433 (14)	0.049 (6)*
09	0.81171 (10)	0.77607 (8)	0.30493 (7)	0.0215 (2)
O2	0.19137 (10)	0.25153 (8)	0.20799 (7)	0.0211 (2)
08	0.59353 (10)	0.76486 (8)	0.22569 (7)	0.0227 (2)
04	0.44813 (11)	0.50956 (9)	0.38479 (7)	0.0235 (2)
O3	0.41292 (10)	0.28115 (9)	0.29324 (8)	0.0236 (2)
C23	0.78247 (15)	0.60271 (11)	0.11945 (10)	0.0191 (3)
O10	0.53685 (11)	0.53214 (9)	0.12951 (7)	0.0246 (2)
O7	0.57636 (11)	0.67567 (9)	0.34107 (7)	0.0258 (2)
N1	-0.00314 (13)	0.38299 (11)	0.28147 (9)	0.0257 (3)
05	0.06966 (12)	0.42184 (10)	0.23397 (8)	0.0307 (3)

C22	0.67239 (15)	0.58044 (11)	0.18032 (10)	0.0194 (3)
H22	0.6919 (4)	0.5306 (9)	0.2066 (5)	0.023*
N2	0.98969 (14)	0.62531 (11)	0.22338 (9)	0.0252 (3)
C24	0.92640 (15)	0.62283 (12)	0.13842 (10)	0.0212 (3)
C7	0.25435 (16)	0.42323 (12)	0.47355 (10)	0.0229 (3)
H7	0.3525 (19)	0.4450 (4)	0.4915 (4)	0.027*
C1	0.31458 (14)	0.45437 (11)	0.33225 (9)	0.0183 (3)
H1	0.2883 (5)	0.5001 (8)	0.3057 (5)	0.022*
C16	0.03692 (16)	0.07050 (12)	0.12503 (10)	0.0239 (3)
C2	0.20635 (14)	0.42283 (11)	0.39074 (9)	0.0184 (3)
C37	0.40708 (15)	0.77098 (13)	0.13515 (11)	0.0247 (3)
01	0.41947 (11)	0.36438 (9)	0.17393 (7)	0.0252 (2)
C4	-0.03052 (17)	0.35731 (14)	0.42395 (11)	0.0271 (3)
H4	-0.126 (2)	0.3347 (5)	0.4066 (4)	0.033*
C10	0.59503 (17)	0.26396 (14)	0.44355 (12)	0.0303 (4)
H10	0.5792 (4)	0.3293 (14)	0.4789 (8)	0.036*
C3	0.06145 (15)	0.38843 (12)	0.36733 (10)	0.0207 (3)
С9	0.59567 (15)	0.23593 (13)	0.35077 (11)	0.0247 (3)
011	0.91432 (13)	0.58963 (11)	0.27171 (8)	0.0348 (3)
O12	1.11618 (13)	0.66325 (12)	0.24296 (9)	0.0416 (3)
C17	-0.08745 (17)	0.08349 (13)	0.10044 (11)	0.0281 (3)
H17	-0.08650 (17)	0.1468 (13)	0.0867 (3)	0.034*
C25	1.01936 (17)	0.64088 (13)	0.07796 (11)	0.0275 (3)
H25	1.116 (2)	0.6549 (3)	0.0933 (3)	0.033*
C28	0.73746 (17)	0.60301 (12)	0.03646 (10)	0.0235 (3)
H28	0.6423 (19)	0.5915 (3)	0.0215 (3)	0.028*
C36	0.44344 (16)	0.74987 (15)	0.21718 (12)	0.0296 (4)
H36A	0.4195 (4)	0.8019 (7)	0.2729 (7)	0.036*
H36B	0.3898 (7)	0.6737 (10)	0.20999 (14)	0.036*
C14	0.62044 (16)	0.13931 (13)	0.29942 (11)	0.0278 (3)
H14	0.62187 (17)	0.1196 (4)	0.2354 (13)	0.033*
C31	1.00525 (19)	1.04519 (13)	0.37666 (11)	0.0303 (4)
H31	0.9248 (17)	1.0712 (6)	0.37619 (11)	0.036*
C8	0.56506 (16)	0.30702 (14)	0.30601 (13)	0.0307 (4)
H8A	0.6094 (6)	0.3856 (10)	0.3453 (5)	0.037*
H8B	0.6020 (5)	0.2920 (2)	0.2461 (8)	0.037*
C21	0.03337 (19)	-0.01984 (14)	0.14458 (11)	0.0311 (4)
H21	0.1159 (19)	-0.0290 (2)	0.1615 (4)	0.037*
C30	0.98821 (15)	0.94508 (12)	0.38278 (10)	0.0229 (3)
C26	0.97016 (18)	0.63830 (14)	-0.00458 (11)	0.0305 (4)
H26	1.0352 (13)	0.6495 (3)	-0.0487 (9)	0.037*
C35	1.10341 (17)	0.90917 (14)	0.38432 (11)	0.0292 (3)
H35	1.0927 (3)	0.8399 (15)	0.38963 (16)	0.035*
C29	0.84652 (17)	0.87533 (13)	0.38640 (11)	0.0305 (4)
H29A	0.84691 (17)	0.8581 (3)	0.4398 (8)	0.037*
H29B	0.7788 (10)	0.9130 (5)	0.38844 (12)	0.037*
C19	-0.21548 (19)	-0.08318 (14)	0.11459 (11)	0.0327 (4)
H19	-0.3023 (19)	-0.1358 (11)	0.11095 (14)	0.039*

C42	0.39673 (17)	0.69247 (14)	0.04910 (12)	0.0288 (3)
H42	0.4117 (3)	0.6234 (14)	0.04279 (17)	0.035*
O6	-0.12840 (13)	0.33932 (14)	0.26055 (10)	0.0544 (4)
C6	0.16325 (17)	0.39282 (14)	0.53056 (11)	0.0276 (3)
H6	0.1977 (8)	0.39435 (14)	0.5845 (12)	0.033*
C18	-0.21298 (18)	0.00679 (14)	0.09529 (12)	0.0321 (4)
H18	-0.3014 (19)	0.0165 (3)	0.0777 (4)	0.038*
C11	0.61763 (19)	0.19606 (16)	0.48406 (13)	0.0372 (4)
H11	0.61670 (19)	0.2154 (5)	0.5471 (14)	0.045*
C27	0.82926 (18)	0.61991 (14)	-0.02487 (11)	0.0286 (3)
H27	0.7955 (7)	0.61882 (14)	-0.0800 (12)	0.034*
C20	-0.0929 (2)	-0.09669 (14)	0.13900 (12)	0.0355 (4)
H20	-0.0943 (2)	-0.1560 (14)	0.1515 (3)	0.043*
C5	0.02075 (18)	0.36026 (14)	0.50618 (11)	0.0304 (4)
Н5	-0.0428 (13)	0.3397 (4)	0.5464 (8)	0.036*
C38	0.38634 (18)	0.86858 (15)	0.14305 (12)	0.0330 (4)
H38	0.3931 (2)	0.9250 (12)	0.2036 (13)	0.040*
C15	0.17277 (18)	0.15174 (14)	0.12808 (12)	0.0358 (4)
H15A	0.2467 (11)	0.1232 (4)	0.13115 (12)	0.043*
H15B	0.17338 (19)	0.1671 (3)	0.0749 (8)	0.043*
C41	0.36579 (19)	0.71037 (16)	-0.02724 (12)	0.0358 (4)
H41	0.3578 (3)	0.6543 (12)	-0.0872 (13)	0.043*
C34	1.23371 (19)	0.97247 (17)	0.37825 (12)	0.0382 (4)
H34	1.3155 (18)	0.9466 (6)	0.37877 (12)	0.046*
C13	0.64307 (19)	0.07126 (15)	0.33998 (12)	0.0337 (4)
H13	0.6594 (4)	0.0058 (15)	0.3047 (8)	0.040*
C33	1.2494 (2)	1.07134 (17)	0.37148 (12)	0.0412 (5)
H33	1.337 (2)	1.1134 (10)	0.36705 (16)	0.049*
C12	0.64167 (19)	0.09951 (17)	0.43228 (13)	0.0368 (4)
H12	0.6571 (4)	0.0532 (11)	0.4601 (7)	0.044*
C39	0.3561 (2)	0.88701 (17)	0.06609 (13)	0.0415 (5)
H39	0.3421 (4)	0.9554 (16)	0.0719 (2)	0.050*
C40	0.3460 (2)	0.80819 (17)	-0.01888 (13)	0.0411 (5)
H40	0.3252 (5)	0.8212 (3)	-0.0722 (13)	0.049*
C32	1.1362 (2)	1.10841 (15)	0.37123 (12)	0.0387 (4)
H32	1.1473 (3)	1.1748 (16)	0.36747 (15)	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.01575 (17)	0.01667 (17)	0.02039 (18)	0.00240 (13)	0.00380 (13)	0.00764 (14)
P2	0.01637 (17)	0.01721 (17)	0.01916 (18)	0.00092 (13)	0.00155 (13)	0.00790 (14)
09	0.0162 (5)	0.0184 (5)	0.0230 (5)	0.0006 (4)	-0.0003 (4)	0.0035 (4)
O2	0.0166 (5)	0.0184 (5)	0.0228 (5)	0.0021 (4)	0.0029 (4)	0.0040 (4)
08	0.0172 (5)	0.0242 (5)	0.0291 (6)	0.0043 (4)	0.0033 (4)	0.0145 (5)
O4	0.0189 (5)	0.0210 (5)	0.0242 (5)	-0.0032 (4)	-0.0018 (4)	0.0086 (4)
03	0.0146 (5)	0.0244 (5)	0.0361 (6)	0.0051 (4)	0.0053 (4)	0.0169 (5)
C23	0.0208 (7)	0.0149 (6)	0.0190 (7)	0.0026 (5)	0.0011 (5)	0.0058 (5)

O10	0.0203 (5)	0.0218 (5)	0.0253 (5)	-0.0033 (4)	-0.0036 (4)	0.0093 (5)
07	0.0269 (6)	0.0245 (5)	0.0235 (5)	0.0020 (4)	0.0068 (4)	0.0106 (4)
N1	0.0200 (6)	0.0308 (7)	0.0273 (7)	0.0079 (5)	0.0010 (5)	0.0119 (6)
05	0.0269 (6)	0.0434 (7)	0.0304 (6)	0.0131 (5)	0.0052 (5)	0.0219 (5)
C22	0.0190 (7)	0.0165 (6)	0.0196 (7)	0.0009 (5)	-0.0006(5)	0.0071 (5)
N2	0.0247 (7)	0.0295 (7)	0.0239 (6)	0.0123 (6)	0.0016 (5)	0.0100 (6)
C24	0.0221 (7)	0.0208 (7)	0.0197 (7)	0.0064 (6)	0.0013 (5)	0.0067 (6)
C7	0.0212 (7)	0.0230 (7)	0.0212 (7)	0.0023 (6)	0.0008 (6)	0.0080 (6)
C1	0.0172 (6)	0.0167 (6)	0.0194 (7)	0.0019 (5)	0.0017 (5)	0.0075 (5)
C16	0.0235 (7)	0.0184 (7)	0.0208 (7)	0.0014 (6)	0.0047 (6)	0.0010 (6)
C2	0.0187 (7)	0.0161 (6)	0.0192 (7)	0.0039 (5)	0.0033 (5)	0.0066 (5)
C37	0.0167 (7)	0.0290 (8)	0.0304 (8)	0.0088 (6)	0.0044 (6)	0.0122 (7)
01	0.0262 (6)	0.0236(5)	0.0251 (5)	0.0040 (4)	0.0088 (4)	0.0110 (4)
C4	0.0183(7)	0.0324(8)	0.0281 (8)	0.0044 (6)	0.0058 (6)	0.0109(7)
C10	0.0227 (8)	0.0283(8)	0.0328(9)	0.0087(7)	0.0030 (6)	0.0031(7)
C3	0.0227(3)	0.0209(0) 0.0219(7)	0.0320(5) 0.0195(7)	0.0007(6)	0.0030(0)	0.0031(7)
C9	0.0137(6)	0.0247(7)	0.0340(8)	0.0043 (6)	0.0010 (6)	0.0072(0)
011	0.0137(6)	0.0217(7)	0.0299 (6)	0.0225 (6)	0.0010(0)	0.0100(7)
012	0.0323(0) 0.0249(6)	0.0561(0)	0.0299(0) 0.0417(7)	0.0223 (0)	-0.0000(5)	0.0232(0) 0.0215(7)
C17	0.0249(0)	0.0302(7)	0.0417(7)	0.0000 (0)	0.0000(5)	0.0219(7)
C25	0.0320(9) 0.0222(8)	0.0220(7) 0.0307(8)	0.0310(0)	0.0091(0) 0.0075(6)	0.0075 (7)	0.0109(7) 0.0093(7)
C28	0.0222(0) 0.0230(7)	0.0307(0)	0.0216(7)	0.0075 (6)	0.0000 (6)	0.0095(7)
C26	0.0230(7)	0.0237(7) 0.0417(10)	0.0210(7) 0.0339(9)	0.0028(0) 0.0135(7)	0.0000 (0)	0.0097(0)
C_{14}	0.0200(7)	0.0417(10) 0.0303(8)	0.0359(9)	0.0105(7)	0.0070(0)	0.0100(0)
C_{14}	0.0232(0)	0.0303(8) 0.0247(8)	0.0230(8) 0.0271(8)	0.0107(7)	-0.0007(0)	0.0050(7)
	0.0330(3) 0.0143(7)	0.0247(8) 0.0323(0)	0.0271(8)	0.0033(7)	0.0001(7)	0.0039(7)
C_0	0.0145(7)	0.0323(9)	0.0300(11)	0.0047(0)	-0.0049(7)	0.0223(8)
C21	0.0345(9)	0.0292(8) 0.0213(7)	0.0205(8)	0.0112(7)	0.0011(7)	0.0000(7)
C26	0.0200(7)	0.0213(7)	0.0130(7)	0.0000(0)	0.0011(3) 0.0079(7)	0.0025(0)
C20	0.0301(8)	0.0344(9) 0.0281(8)	0.0231(8) 0.0282(8)	0.0030(7)	0.0079(7)	0.0123(7)
C20	0.0295(8)	0.0261(8)	0.0232(8)	-0.0079(7)	0.0047(7)	-0.0091(7)
C29	0.0230(8)	0.0203(8)	0.0243(8)	-0.0039(0)	0.0045(0)	0.0011(0)
C19 C42	0.0340(9)	0.0247(8)	0.0277(8)	-0.0018(7)	0.0070(7)	0.0033(7)
06	0.0247(8)	0.0233(8)	0.0334(9)	-0.00107(0)	-0.0043(7)	0.0083(7)
00	0.0213(0) 0.0270(8)	0.0009(12)	0.0300(9)	-0.0042(7)	-0.0089(0)	0.0404(9)
C_{10}	0.0279(8)	0.0330(8)	0.0203(7)	0.0042(7)	0.0028(0)	0.0127(7)
C10	0.0200(8) 0.0357(10)	0.0333(9)	0.0319(9)	0.0082(7)	0.0030(7)	0.0077(7)
C11 C27	0.0337(10)	0.0480(11)	0.0203(9)	0.0138(9)	0.0033(7)	0.0115(8)
C27	0.0320(9)	0.0307(8)	0.0210(7)	0.0042(7)	0.0017(0)	0.0123(7)
C20	0.0343(12)	0.0212(8)	0.0293(9)	0.0002(8)	0.0048(8)	0.0119(7)
C5 C29	0.0277(8)	0.0350 (9)	0.0204 (8)	0.0038(7)	0.0095 (7)	0.0135(7)
C38	0.0359 (9)	0.0319(9)	0.0304 (9)	0.01/1(8)	0.0012(7)	0.0062 (7)
C15	0.0307(9)	0.0243 (8)	0.0328 (9)	-0.0021(7)	0.0109 (7)	-0.0038(7)
C41	0.036/(10)	0.0427(10)	0.0282 (9)	0.0221 (8)	0.0050 (7)	0.0061 (8)
C34	0.0230 (8)	0.0537 (12)	0.0311 (9)	0.0096 (8)	0.0042 (7)	0.0101 (8)
C13	0.0360 (9)	0.0317 (9)	0.0345 (9)	0.0186 (8)	0.0004 (7)	0.0076 (7)
C33	0.0300 (9)	0.0445 (11)	0.0302 (9)	-0.0106 (8)	0.0033 (7)	0.0095 (8)
CI2	0.0356 (10)	0.0463 (11)	0.0381 (10)	0.0201 (9)	0.0009 (8)	0.0214 (9)
C39	0.0545 (12)	0.0402 (10)	0.0408 (10)	0.0311 (10)	0.0054 (9)	0.0155 (9)

C40	0.0489 (12)	0.0548 (12)	0.0339 (10)	0.0331 (10)	0.0084 (8)	0.0198 (9)
C32	0.0515 (12)	0.0240 (8)	0.0293 (9)	-0.0042 (8)	0.0022 (8)	0.0094 (7)

Geometric parameters (Å, °)

P1—O1	1.4749 (11)	C28—C27	1.391 (2)
P1—O2	1.5670 (10)	C28—H28	0.940 (18)
P1—O3	1.5743 (11)	C36—H36A	1.005 (13)
P1—C1	1.8269 (14)	C36—H36B	1.005 (13)
P2—O7	1.4739 (11)	C14—C13	1.383 (2)
P2—O9	1.5634 (10)	C14—H14	0.958 (19)
P2—O8	1.5785 (11)	C31—C32	1.387 (2)
P2—C22	1.8255 (15)	C31—C30	1.388 (2)
O9—C29	1.4590 (18)	C31—H31	0.98 (2)
O2—C15	1.4653 (18)	C8—H8A	1.002 (13)
O8—C36	1.4654 (18)	C8—H8B	1.002 (13)
O4—C1	1.4228 (17)	C21—C20	1.388 (2)
O4—H400	0.83 (2)	C21—H21	0.93 (2)
O3—C8	1.4665 (18)	C30—C35	1.389 (2)
C23—C28	1.394 (2)	C30—C29	1.498 (2)
C23—C24	1.405 (2)	C26—C27	1.382 (2)
C23—C22	1.5238 (19)	C26—H26	0.992 (19)
O10—C22	1.4257 (17)	C35—C34	1.386 (2)
O10—H100	0.91 (2)	С35—Н35	0.97 (2)
N1—O6	1.2182 (17)	C29—H29A	0.963 (13)
N105	1.2202 (17)	C29—H29B	0.963 (13)
N1—C3	1.4740 (19)	C19—C20	1.372 (3)
С22—Н22	0.987 (17)	C19—C18	1.381 (3)
N2—O12	1.2216 (17)	С19—Н19	0.95 (2)
N2—O11	1.2229 (17)	C42—C41	1.374 (2)
N2—C24	1.4729 (19)	C42—H42	0.98 (2)
C24—C25	1.392 (2)	C6—C5	1.382 (2)
C7—C6	1.389 (2)	С6—Н6	0.913 (19)
C7—C2	1.396 (2)	C18—H18	0.99 (2)
С7—Н7	0.955 (18)	C11—C12	1.386 (3)
C1—C2	1.5183 (19)	C11—H11	0.94 (2)
C1—H1	0.968 (17)	C27—H27	0.93 (2)
C16—C17	1.386 (2)	C20—H20	0.91 (2)
C16—C21	1.386 (2)	С5—Н5	0.971 (19)
C16—C15	1.495 (2)	C38—C39	1.386 (3)
C2—C3	1.401 (2)	C38—H38	0.99 (2)
C37—C38	1.387 (2)	C15—H15A	0.945 (14)
C37—C42	1.390 (2)	C15—H15B	0.945 (14)
C37—C36	1.500 (2)	C41—C40	1.384 (3)
C4—C5	1.384 (2)	C41—H41	0.98 (2)
C4—C3	1.393 (2)	C34—C33	1.377 (3)
C4—H4	0.926 (19)	С34—Н34	0.99 (2)
C10—C11	1.381 (3)	C13—C12	1.380 (3)

С10—С9	1.387 (2)	С13—Н13	0.94 (2)
C10—H10	0.94 (2)	C33—C32	1.378 (3)
C9—C14	1.389 (2)	С33—Н33	0.93 (2)
С9—С8	1.498 (2)	С12—Н12	0.94 (2)
C17—C18	1.384 (2)	C39—C40	1.380 (3)
С17—Н17	0.98 (2)	С39—Н39	0.97 (2)
C25—C26	1.383 (2)	C40—H40	0.96(2)
С25—Н25	0.948 (19)	C32—H32	0.92(2)
020 1120		002 1102	0.92 (2)
01—P1—02	115.93 (6)	C32—C31—C30	120.22 (17)
01—P1—O3	113.27 (6)	C32—C31—H31	119.9
02—P1—O3	102.41 (6)	C30—C31—H31	119.9
01-P1-C1	112.69(6)	03-08-09	106 44 (12)
$\Omega^2 - P_1 - C_1$	105 42 (6)	O3-C8-H8A	110.4
$O_3 P_1 C_1$	106.07(6)	C9 C8 H8A	110.1
$07_{2}^{-}P_{2}^{-}O_{9}^{0}$	116 27 (6)	$O_3 = C_8 = H_8B$	110.4
07 - 12 - 09	110.27(0) 112.73(6)		110.4
$0/-r^2 = 0^8$	112.75(0) 102.01(6)		110.4
09 - P2 - 08	102.91 (6)	$H\delta A = C\delta = H\delta B$	108.0
0/-P2-C22	112.87 (6)	C16 - C21 - C20	120.52 (17)
09—P2—C22	104.04 (6)	C16—C21—H21	119.7
08—P2—C22	10/.00 (6)	C20—C21—H21	119.7
C29—O9—P2	121.07 (9)	C31—C30—C35	119.51 (15)
C15—O2—P1	119.34 (9)	C31—C30—C29	120.41 (15)
C36—O8—P2	121.24 (9)	C35—C30—C29	120.07 (15)
C1—O4—H400	106.0 (14)	C27—C26—C25	119.23 (15)
C8—O3—P1	121.25 (9)	C27—C26—H26	120.4
C28—C23—C24	116.06 (13)	C25—C26—H26	120.4
C28—C23—C22	117.55 (13)	C34—C35—C30	119.92 (17)
C24—C23—C22	126.39 (13)	С34—С35—Н35	120.0
C22—O10—H100	105.9 (14)	С30—С35—Н35	120.0
O6—N1—O5	122.33 (14)	O9—C29—C30	107.49 (12)
O6—N1—C3	118.26 (13)	O9—C29—H29A	110.2
O5—N1—C3	119.42 (12)	С30—С29—Н29А	110.2
O10—C22—C23	110.48 (11)	O9—C29—H29B	110.2
O10—C22—P2	103.59 (9)	С30—С29—Н29В	110.2
C23—C22—P2	114.88 (10)	H29A—C29—H29B	108.5
010—C22—H22	109.2	C20—C19—C18	119.87 (16)
C^{23} C^{22} H^{22}	109.2	C20-C19-H19	120.1
P2-C22-H22	109.2	C18 - C19 - H19	120.1
012 - N2 - 011	$122 \ 37 \ (14)$	C_{41} C_{42} C_{37}	120.89 (16)
012 N2 011	118 50 (13)	C41 - C42 - U37	119.6
012 N2 C24	110.30 (13)	$C_{11} C_{12} H_{12}$ $C_{17} C_{12} H_{12}$	119.6
$C_{25} = C_{24} = C_{23}$	117.13(13) 122.44(14)	C_{5} C_{6} C_{7}	119.0 120.42(15)
$C_{23} = C_{24} = C_{23}$	122.77(17) 115 16 (13)	$C_{5} = C_{6} = C_{7}$	120.42 (13)
$C_{23} = C_{24} = 1N_2$	113.10(13) 122.40(13)	C_{7} C_{6} H_{6}	117.0
$C_{2} = C_{2} = C_{2}$	122.40(13) 121.76(14)	$C_1 = C_0 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	117.0
$C_{0} = C_{1} = C_{2}$	121.70 (14)	$C_{19} = C_{10} = C_{17}$	120.38 (17)
	119.1		119.8
C2-C/-H'	119.1	C1/C18H18	119.8

O4—C1—C2	110.39 (11)	C10-C11-C12	120.18 (17)
O4—C1—P1	103.70 (9)	C10—C11—H11	119.9
C2—C1—P1	112.43 (9)	C12—C11—H11	119.9
04—C1—H1	110.1	C26—C27—C28	120.53 (15)
C2-C1-H1	110.1	C26—C27—H27	1197
P1-C1-H1	110.1	C_{28} C_{27} H_{27}	119.7
C_{17} C_{16} C_{21}	119.06 (15)	C19-C20-C21	120.02(17)
C17 - C16 - C15	120.16 (16)	C_{19} C_{20} H_{20}	120.02 (17)
C_{21} C_{16} C_{15}	120.76 (16)	C_{21} C_{20} H_{20}	120.0
C_{7} C_{2} C_{3}	116 59 (13)	$C_{21} C_{20} I_{120}$	119 38 (15)
$C_1 = C_2 = C_3$	110.57(13) 117.57(13)	C6 $C5$ $H5$	120.3
$C_{1}^{-} C_{2}^{-} C_{1}^{-}$	117.57(13) 125.77(13)	C4 - C5 - H5	120.3
$C_{3}^{2} = C_{2}^{2} = C_{1}^{2}$	123.77 (13)	$C_{1}^{20} = C_{2}^{20} = C_{2}^{20}$	120.3 120.22(17)
$C_{38} C_{37} C_{42}$	121 30 (15)	$C_{39} = C_{38} = C_{37}$	120.22 (17)
$C_{38} = C_{37} = C_{36}$	121.39(13) 110.67(15)	$C_{37} = C_{38} = H_{38}$	119.9
$C_{42} = C_{37} = C_{30}$	119.07 (15)	$C_{3} = C_{30} = H_{30}$	119.9
C_{5}	119.00 (13)	02 - C15 - U15	109.09 (12)
C3—C4—H4	120.1	O2—CI5—HI5A	109.9
C_{3} — C_{4} — H_{4}	120.1	C16— $C15$ — $H15A$	109.9
CII_CI0_C9	120.30 (16)	02-C15-H15B	109.9
C11—C10—H10	119.9	C16—C15—H15B	109.9
С9—С10—Н10	119.9	HI5A—CI5—HI5B	108.3
C4—C3—C2	121.95 (14)	C42—C41—C40	119.88 (17)
C4—C3—N1	115.85 (13)	C42—C41—H41	120.1
C2—C3—N1	122.20 (13)	C40—C41—H41	120.1
C10—C9—C14	119.18 (16)	C33—C34—C35	120.16 (18)
C10—C9—C8	120.42 (15)	C33—C34—H34	119.9
C14—C9—C8	120.37 (15)	C35—C34—H34	119.9
C18—C17—C16	120.15 (16)	C12—C13—C14	119.93 (17)
C18—C17—H17	119.9	C12—C13—H13	120.0
C16—C17—H17	119.9	C14—C13—H13	120.0
C26—C25—C24	119.74 (15)	C34—C33—C32	120.37 (17)
С26—С25—Н25	120.1	С34—С33—Н33	119.8
С24—С25—Н25	120.1	С32—С33—Н33	119.8
C27—C28—C23	121.98 (15)	C13—C12—C11	119.87 (18)
C27—C28—H28	119.0	C13—C12—H12	120.1
C23—C28—H28	119.0	C11—C12—H12	120.1
O8—C36—C37	107.48 (12)	C40—C39—C38	120.17 (18)
O8—C36—H36A	110.2	С40—С39—Н39	119.9
С37—С36—Н36А	110.2	С38—С39—Н39	119.9
O8—C36—H36B	110.2	C39—C40—C41	119.91 (18)
C37—C36—H36B	110.2	C39—C40—H40	120.0
H36A—C36—H36B	108.5	C41—C40—H40	120.0
C13—C14—C9	120.53 (16)	C33—C32—C31	119.81 (18)
C13—C14—H14	119.7	C33—C32—H32	120.1
C9—C14—H14	119.7	C31—C32—H32	120.1
O7—P2—O9—C29	-46.67 (14)	C11—C10—C9—C8	177.34 (15)
08—P2—O9—C29	77.05 (13)	C21—C16—C17—C18	-0.2(2)
			\ /

C22—P2—O9—C29	-171.44 (12)	C15—C16—C17—C18	178.28 (15)
O1—P1—O2—C15	47.15 (14)	C23—C24—C25—C26	-0.6 (2)
O3—P1—O2—C15	-76.68 (13)	N2-C24-C25-C26	178.85 (15)
C1—P1—O2—C15	172.54 (12)	C24—C23—C28—C27	1.3 (2)
O7—P2—O8—C36	-29.37 (13)	C22—C23—C28—C27	-178.43 (14)
O9—P2—O8—C36	-155.41 (11)	P2-08-C36-C37	-151.53 (11)
C22—P2—O8—C36	95.30 (12)	C38—C37—C36—O8	-101.89 (17)
O1—P1—O3—C8	30.14 (14)	C42—C37—C36—O8	76.69 (18)
O2—P1—O3—C8	155.73 (12)	C10-C9-C14-C13	0.5 (2)
C1—P1—O3—C8	-93.98 (12)	C8—C9—C14—C13	-177.33 (15)
C28—C23—C22—O10	17.28 (18)	P1	-176.94 (10)
C24—C23—C22—O10	-162.46 (13)	C10-C9-C8-O3	-80.39 (18)
C28—C23—C22—P2	-99.44 (14)	C14—C9—C8—O3	97.46 (16)
C24—C23—C22—P2	80.82 (17)	C17—C16—C21—C20	0.5 (2)
O7—P2—C22—O10	73.45 (10)	C15—C16—C21—C20	-178.07(15)
O9—P2—C22—O10	-159.63(9)	C32—C31—C30—C35	0.6 (2)
08-P2-C22-010	-51.13(10)	C_{32} — C_{31} — C_{30} — C_{29}	-178.51(15)
07 - P2 - C22 - C23	-165.96(10)	C_{24} C_{25} C_{26} C_{27}	1.3 (3)
09 - P2 - C22 - C23	-39.04(12)	C_{31} C_{30} C_{35} C_{34}	-1.1(2)
08-P2-C22-C23	69 46 (11)	C_{29} C_{30} C_{35} C_{34}	178.09(15)
$C_{28} = C_{23} = C_{24} = C_{25}$	-0.7(2)	$P_{2}=09=C_{2}9=C_{3}0$	-161.51(11)
C_{22} C_{23} C_{24} C_{25}	179.04(14)	$C_{31} - C_{30} - C_{29} - O_{9}$	115 86 (16)
$C_{28} = C_{23} = C_{24} = N_2$	179.89 (13)	C_{35} C_{30} C_{29} C_{9} C_{9}	-63.28(19)
$C_{22} = C_{23} = C_{24} = N_2$	-0.4(2)	$C_{38} - C_{37} - C_{42} - C_{41}$	-0.3(2)
012 - N2 - C24 - C25	143(2)	$C_{36} - C_{37} - C_{42} - C_{41}$	-17894(15)
012 N2 C24 C25	-16573(14)	$C_{2} - C_{7} - C_{6} - C_{5}$	0.4(2)
012 - N2 - C24 - C23	-166.23(14)	C_{20} C_{19} C_{18} C_{17}	0.1(2)
012 N2 C24 C23	137(2)	C_{16} C_{17} C_{18} C_{19}	0.0(2)
01 - P1 - C1 - O4	-74.02(10)	C9-C10-C11-C12	0.0(2)
$0^{2}-P_{1}-C_{1}-O_{4}$	158 60 (9)	C_{25} C_{26} C_{27} C_{28}	-0.7(3)
$03_{P1}_{C1}_{O4}$	50.46 (10)	C_{23} C_{28} C_{27} C_{26}	-0.7(3)
01 - P1 - C1 - C2	166 73 (10)	$C_{23} = C_{23} = C$	0.7(2)
0^{2} P1 $-C1$ $-C2$	39 35 (12)	$C_{16} - C_{21} - C_{20} - C_{21}$	-0.4(3)
$O_2 = P_1 = C_1 = C_2$	-68.79(11)	$C_{10} = C_{21} = C_{20} = C_{13}$	0.4(3)
$C_{1} = C_{1} = C_{2}$	-10(2)	$C_{1}^{} = C_{1}^{} = C_{$	-0.9(3)
$C_{0} - C_{1} - C_{2} - C_{3}$	-178.26(14)	C_{4}^{-} C_{5}^{-} C_{6}^{-} C_{6	-0.1(3)
$C_{0} - C_{1} - C_{2} - C_{1}$	-17.19(18)	$C_{42} = C_{37} = C_{38} = C_{39}$	178 44 (16)
$P_1 = C_1 = C_2 = C_7$	17.19(10)	$P_1 = O_2 = C_{15} = C_{16}$	1/8.44(10) 162.34(11)
11 - C1 - C2 - C7	165.85(13)	11 - 02 - 013 - 010	102.34(11)
$D_{4} - C_{1} - C_{2} - C_{3}$	-79.89(16)	$C_{11} = C_{10} = C_{15} = O_2$	-107.72(17)
$F_1 = C_1 = C_2 = C_3$	-78.88(10)	$C_{21} = C_{10} = C_{13} = O_2$	-107.72(17)
$C_{5} = C_{4} = C_{5} = C_{2}$	0.2(2) -170.72(15)	C_{3}^{-} C_{42}^{-} C_{41}^{-} C_{40}^{-} C_{30}^{-} C_{35}^{-} C_{34}^{-} C_{33}^{-}	0.7(3)
C_{3} C_{4} C_{3} C_{4} C_{4}	-1/9.72(13)	$C_{30} = C_{33} = C_{34} = C_{33}$	0.0(3)
$C_{-}C_{2} - C_{3} - C_{4}$	0.7(2)	$C_{2} = C_{14} = C_{13} = C_{12}$	-0.3(3)
$C_1 - C_2 - C_3 - C_4$	1/7.00(14) 170.25(12)	$C_{33} - C_{34} - C_{33} - C_{32}$	0.4(3)
$C_1 = C_2 = C_3 = N_1$	-1/9.35(13)	C_{14} C_{13} C_{12} C	0.0(3)
$C_1 = C_2 = C_3 = C_1$	-2.4(2)	C10-C11-C12-C13	0.0(3)
$U_0 - N_1 - U_3 - U_4$	-9.3 (2)	$C_{3}/-C_{3}$	0.3 (3)
U3—N1—C3—C4	170.73 (14)	C38—C39—C40—C41	0.1 (3)

O6—N1—C3—C2	170.71 (16)	C42—C41—C40—C39	-0.6 (3)
O5—N1—C3—C2	-9.2 (2)	C34—C33—C32—C31	-0.8 (3)
C11—C10—C9—C14	-0.5 (2)	C30—C31—C32—C33	0.3 (3)

Z = 2

F(000) = 288 $D_x = 1.450 \text{ Mg m}^{-3}$

 $\theta = 4.6 - 31.3^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$

Block, colorless

 $0.40 \times 0.35 \times 0.20 \text{ mm}$

T = 173 K

Mo *Ka* radiation. $\lambda = 0.71073$ Å

Cell parameters from 3426 reflections

Dimethyl [1-hydroxy-1-(4-nitrophenyl)ethyl]phosphonate (2b)

Crystal data

 $C_{10}H_{14}NO_6P$ $M_r = 275.19$ Triclinic, P1 a = 8.1800 (4) Å b = 8.4006 (6) Å c = 9.9661 (4) Å $a = 102.173 (5)^{\circ}$ $\beta = 94.897 (4)^{\circ}$ $\gamma = 107.504 (5)^{\circ}$ $V = 630.26 (6) \text{ Å}^{3}$

Data collection

Agilent Xcalibur Sapphire3	12564 measured reflections
diffractometer	3827 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3070 reflections with $I > 2\sigma(I)$
Detector resolution: 15.9809 pixels mm ⁻¹	$R_{\rm int} = 0.028$
ω scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(CrysAlis PRO; Agilent, 2014)	$k = -11 \rightarrow 11$
$T_{\min} = 0.948, \ T_{\max} = 1.000$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.041$	and constrained refinement
$wR(F^2) = 0.114$	$w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 0.1729P]$
<i>S</i> = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
3827 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
176 parameters	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An Xcalibur, Sapphire3 detector equipped diffractometer was used with an Enhance Mo K α X-ray radiation to collect all the intensity data. The program CrysAlis PRO (CrysAlisPro, Agilent, 2014) was used for data collection, space group determination and all data reduction purposes including empirical absorption correction using spherical harmonics. The initial structure models were provided by direct methods using SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares on F^2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined anisotropically.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.25993 (4)	0.15887 (5)	0.41073 (4)	0.02383 (11)
O4	-0.01562 (13)	0.24691 (13)	0.42662 (11)	0.0275 (2)
C3	0.12907 (16)	0.32849 (17)	0.24037 (13)	0.0214 (2)
O2	0.37141 (13)	0.12800 (15)	0.29430 (11)	0.0336 (3)
C5	0.07201 (16)	0.18886 (17)	0.31853 (13)	0.0207 (2)
O1	0.21030 (13)	0.02257 (14)	0.48551 (11)	0.0315 (2)
O3	0.37375 (14)	0.33881 (14)	0.50550 (11)	0.0367 (3)
C8	0.22597 (19)	0.57705 (19)	0.09385 (15)	0.0274 (3)
C9	0.10946 (19)	0.48879 (18)	0.28755 (15)	0.0279 (3)
H9	0.0657 (9)	0.5115 (5)	0.3667 (17)	0.033*
C10	-0.04346 (18)	0.01791 (18)	0.22095 (15)	0.0272 (3)
H10A	-0.0811 (12)	-0.0655 (10)	0.2735 (6)	0.041*
H10B	0.0208 (8)	-0.0219 (9)	0.1534 (10)	0.041*
H10C	-0.1422 (13)	0.0343 (4)	0.1749 (10)	0.041*
C11	0.20148 (18)	0.29652 (18)	0.11999 (14)	0.0258 (3)
H11	0.2176 (3)	0.185 (2)	0.0872 (6)	0.031*
N1	0.27623 (19)	0.70781 (18)	0.01358 (14)	0.0357 (3)
C13	0.25077 (19)	0.42079 (19)	0.04627 (15)	0.0282 (3)
H13	0.2968 (10)	0.4007 (5)	-0.0291 (16)	0.034*
O6	0.2299 (2)	0.83360 (17)	0.04140 (15)	0.0505 (3)
C15	0.1568 (2)	0.6144 (2)	0.21369 (16)	0.0312 (3)
H15	0.1421 (4)	0.723 (2)	0.2447 (7)	0.037*
O5	0.3616 (3)	0.6835 (2)	-0.07774 (19)	0.0765 (6)
C17	0.5299 (2)	0.0903 (3)	0.3215 (2)	0.0542 (6)
H17A	0.6078 (14)	0.1807 (16)	0.3884 (15)	0.081*
H17B	0.5770 (13)	0.075 (2)	0.2408 (12)	0.081*
H17C	0.5063 (5)	-0.0089 (18)	0.3526 (17)	0.081*
C18	0.3562 (3)	0.3990 (3)	0.64670 (19)	0.0507 (5)
H18A	0.2565 (18)	0.429 (2)	0.64949 (19)	0.076*
H18B	0.4518 (17)	0.4942 (18)	0.6898 (8)	0.076*
H18C	0.349 (2)	0.3126 (14)	0.6924 (8)	0.076*
H1A	-0.069 (3)	0.159 (3)	0.456 (3)	0.061*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.01850 (16)	0.02768 (19)	0.02616 (18)	0.00507 (13)	0.00364 (12)	0.01212 (14)
O4	0.0301 (5)	0.0268 (5)	0.0299 (5)	0.0110 (4)	0.0150 (4)	0.0100 (4)
C3	0.0201 (6)	0.0243 (6)	0.0213 (6)	0.0088 (5)	0.0027 (4)	0.0072 (5)
O2	0.0254 (5)	0.0518 (7)	0.0353 (6)	0.0211 (5)	0.0108 (4)	0.0208 (5)
C5	0.0190 (5)	0.0221 (6)	0.0225 (6)	0.0075 (5)	0.0058 (4)	0.0065 (5)
01	0.0246 (5)	0.0351 (6)	0.0406 (6)	0.0087 (4)	0.0068 (4)	0.0225 (5)
03	0.0315 (6)	0.0364 (6)	0.0300 (5)	-0.0065 (5)	-0.0012 (4)	0.0105 (5)
C8	0.0290 (7)	0.0301 (7)	0.0275 (7)	0.0110 (6)	0.0065 (5)	0.0137 (6)
C9	0.0340 (7)	0.0280 (7)	0.0276 (7)	0.0147 (6)	0.0130 (6)	0.0097 (5)

C10	0.0236 (6)	0.0252 (7)	0.0293 (7)	0.0048 (5)	0.0022 (5)	0.0051 (5)
C11	0.0311 (7)	0.0252 (6)	0.0231 (6)	0.0119 (5)	0.0063 (5)	0.0058 (5)
N1	0.0443 (8)	0.0364 (7)	0.0346 (7)	0.0165 (6)	0.0127 (6)	0.0189 (6)
C13	0.0345 (7)	0.0333 (7)	0.0216 (6)	0.0149 (6)	0.0096 (5)	0.0090 (5)
O6	0.0756 (10)	0.0413 (7)	0.0533 (8)	0.0321 (7)	0.0246 (7)	0.0267 (6)
C15	0.0400 (8)	0.0279 (7)	0.0333 (7)	0.0170 (6)	0.0134 (6)	0.0120 (6)
O5	0.1234 (15)	0.0685 (10)	0.0812 (11)	0.0551 (11)	0.0753 (11)	0.0527 (9)
C17	0.0344 (9)	0.0907 (16)	0.0652 (13)	0.0394 (10)	0.0210 (9)	0.0448 (12)
C18	0.0494 (11)	0.0493 (11)	0.0326 (9)	-0.0051 (8)	0.0025 (8)	-0.0009 (8)

Geometric parameters (Å, °)

P1—O1	1.4708 (10)	С9—Н9	0.902 (18)
P1—O2	1.5625 (11)	C10—H10A	0.955 (10)
P1—O3	1.5636 (11)	C10—H10B	0.955 (10)
P1—C5	1.8330 (13)	C10—H10C	0.955 (10)
O4—C5	1.4258 (15)	C11—C13	1.3831 (19)
O4—H1A	0.86 (3)	C11—H11	0.979 (17)
С3—С9	1.3914 (19)	N1—O6	1.2135 (18)
C3—C11	1.3940 (18)	N1—O5	1.2137 (19)
C3—C5	1.5228 (18)	С13—Н13	0.876 (19)
O2—C17	1.4414 (18)	С15—Н15	0.944 (19)
C5—C10	1.5292 (19)	C17—H17A	0.922 (13)
O3—C18	1.426 (2)	C17—H17B	0.922 (13)
C8—C13	1.380 (2)	C17—H17C	0.922 (13)
C8—C15	1.382 (2)	C18—H18A	0.926 (13)
C8—N1	1.4732 (18)	C18—H18B	0.926 (13)
C9—C15	1.3916 (19)	C18—H18C	0.926 (13)
O1—P1—O2	115.61 (6)	C5-C10-H10C	109.5
O1—P1—O3	114.01 (6)	H10A—C10—H10C	109.5
O2—P1—O3	102.79 (6)	H10B-C10-H10C	109.5
O1—P1—C5	112.77 (6)	C13—C11—C3	120.80 (13)
O2—P1—C5	103.31 (6)	C13—C11—H11	119.6
O3—P1—C5	107.26 (6)	C3—C11—H11	119.6
C5—O4—H1A	107.4 (16)	O6—N1—O5	123.31 (14)
C9—C3—C11	119.21 (12)	O6—N1—C8	118.61 (13)
C9—C3—C5	120.69 (12)	O5—N1—C8	118.08 (13)
C11—C3—C5	120.10 (12)	C8—C13—C11	118.65 (13)
C17—O2—P1	121.67 (11)	C8—C13—H13	120.7
O4—C5—C3	108.65 (10)	C11—C13—H13	120.7
O4—C5—C10	111.20 (10)	C8—C15—C9	118.46 (13)
C3—C5—C10	111.47 (11)	C8—C15—H15	120.8
O4—C5—P1	104.11 (8)	C9—C15—H15	120.8
C3—C5—P1	111.08 (8)	O2—C17—H17A	109.5
C10—C5—P1	110.10 (9)	O2—C17—H17B	109.5
C18—O3—P1	123.59 (11)	H17A—C17—H17B	109.5
C13—C8—C15	122.26 (13)	O2—C17—H17C	109.5

C13—C8—N1	118.35 (13)	H17A—C17—H17C	109.5
C15—C8—N1	119.39 (13)	H17B—C17—H17C	109.5
C3—C9—C15	120.60 (13)	O3—C18—H18A	109.5
С3—С9—Н9	119.7	O3—C18—H18B	109.5
С15—С9—Н9	119.7	H18A—C18—H18B	109.5
С5—С10—Н10А	109.5	O3—C18—H18C	109.5
C5-C10-H10B	109.5	H18A—C18—H18C	109.5
H10A—C10—H10B	109.5	H18B—C18—H18C	109.5
O1—P1—O2—C17	-53.42 (16)	O1—P1—O3—C18	-33.54 (16)
O3—P1—O2—C17	71.43 (15)	O2—P1—O3—C18	-159.44 (14)
C5—P1—O2—C17	-177.09 (14)	C5—P1—O3—C18	92.04 (15)
C9—C3—C5—O4	6.74 (17)	C11—C3—C9—C15	1.8 (2)
C11—C3—C5—O4	-173.11 (11)	C5—C3—C9—C15	-178.05 (13)
C9—C3—C5—C10	129.61 (13)	C9—C3—C11—C13	-1.1 (2)
C11—C3—C5—C10	-50.23 (16)	C5—C3—C11—C13	178.70 (12)
C9—C3—C5—P1	-107.20 (13)	C13—C8—N1—O6	168.34 (15)
C11—C3—C5—P1	72.95 (14)	C15—C8—N1—O6	-12.0 (2)
O1—P1—C5—O4	64.33 (10)	C13—C8—N1—O5	-11.3 (2)
O2—P1—C5—O4	-170.16 (8)	C15—C8—N1—O5	168.37 (18)
O3—P1—C5—O4	-62.00 (10)	C15—C8—C13—C11	1.3 (2)
O1—P1—C5—C3	-178.91 (9)	N1-C8-C13-C11	-179.05 (13)
O2—P1—C5—C3	-53.40 (10)	C3—C11—C13—C8	-0.4 (2)
O3—P1—C5—C3	54.76 (10)	C13—C8—C15—C9	-0.6 (2)
O1—P1—C5—C10	-54.94 (11)	N1-C8-C15-C9	179.69 (13)
O2—P1—C5—C10	70.57 (10)	C3—C9—C15—C8	-0.9 (2)
O3—P1—C5—C10	178.73 (9)		

F(000) = 488

 $\theta = 4.4 - 32.3^{\circ}$

 $\mu = 0.23 \text{ mm}^{-1}$

Block, colorless

 $0.40\times0.35\times0.25~mm$

T = 173 K

 $D_x = 1.341 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8846 reflections

Dimethyl (1-hydroxy-1-phenylethyl)phosphonate (2a)

Crystal data

C₁₀H₁₅O₄P $M_r = 230.19$ Monoclinic, $P2_1/c$ a = 8.4780 (3) Å b = 17.2370 (6) Å c = 8.1357 (3) Å $\beta = 106.484$ (4)° V = 1140.05 (7) Å³ Z = 4

Data collection

Agilent Xcalibur Sapphire3	22954 measured reflections
diffractometer	3450 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3080 reflections with $I > 2\sigma(I)$
Detector resolution: 15.9809 pixels mm ⁻¹	$R_{\rm int} = 0.025$
ω scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 4.3^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(CrysAlis PRO; Agilent, 2014)	$k = -24 \longrightarrow 24$
$T_{\min} = 0.933, \ T_{\max} = 1.000$	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.031$	and constrained refinement
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 0.2717P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
3450 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
150 parameters	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An Xcalibur, Sapphire3 detector equipped diffractometer was used with an Enhance Mo K α X-ray radiation to collect all the intensity data. The program CrysAlis PRO (CrysAlisPro, Agilent, 2014) was used for data collection, space group determination and all data reduction purposes including empirical absorption correction using spherical harmonics. The initial structure models were provided by direct methods using SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares on F^2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.81342 (3)	0.05200 (2)	0.72375 (3)	0.01989 (8)
O4	0.74312 (9)	0.04889 (5)	1.01317 (9)	0.02685 (16)
O3	0.66366 (9)	0.00078 (4)	0.62661 (10)	0.02942 (17)
O2	0.81828 (10)	0.11643 (4)	0.58901 (9)	0.02953 (17)
C1	0.75367 (11)	0.10611 (5)	0.89008 (11)	0.02041 (17)
C3	0.58302 (11)	0.14067 (5)	0.81672 (12)	0.02116 (17)
C2	0.88556 (13)	0.16627 (7)	0.97005 (14)	0.0311 (2)
H2A	0.8507 (6)	0.1966 (5)	1.0536 (12)	0.047*
H2B	0.9018 (9)	0.2002 (5)	0.8813 (9)	0.047*
H2C	0.9878 (10)	0.1401 (3)	1.0259 (12)	0.047*
C8	0.44531 (12)	0.10121 (6)	0.83454 (13)	0.0263 (2)
H8	0.4588 (2)	0.0529 (7)	0.8961 (9)	0.032*
C7	0.28845 (13)	0.13134 (7)	0.76373 (16)	0.0346 (2)
H7	0.1968 (16)	0.1046 (5)	0.7770 (3)	0.042*
C6	0.26717 (15)	0.20044 (7)	0.67392 (17)	0.0387 (3)
Н6	0.1594 (19)	0.2211 (4)	0.6262 (8)	0.046*
C5	0.40312 (16)	0.23950 (7)	0.65363 (16)	0.0375 (3)
Н5	0.3892 (3)	0.2861 (8)	0.5917 (11)	0.045*
C4	0.55997 (14)	0.20979 (6)	0.72474 (14)	0.0300 (2)
H4	0.6522 (15)	0.2369 (4)	0.7105 (3)	0.036*
C10	0.64171 (17)	-0.07743 (7)	0.67685 (18)	0.0402 (3)
H10A	0.7407 (11)	-0.1029 (3)	0.7034 (14)	0.060*

H10B	0.5680 (13)	-0.1025 (3)	0.5883 (11)	0.060*
H10C	0.6025 (14)	-0.07680 (7)	0.7709 (14)	0.060*
С9	0.8454 (2)	0.09599 (9)	0.42782 (16)	0.0458 (3)
H9A	0.9519 (13)	0.0810(7)	0.4456 (3)	0.069*
H9B	0.8243 (14)	0.1378 (5)	0.3565 (10)	0.069*
H9C	0.7773 (13)	0.0563 (6)	0.3793 (9)	0.069*
01	0.96698 (9)	0.00774 (5)	0.79093 (9)	0.02834 (16)
H1A	0.834 (2)	0.0365 (9)	1.059 (2)	0.034*

Atomic displacement parameters $(Å^2)$
--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.01892 (12)	0.02348 (13)	0.01659 (12)	0.00242 (8)	0.00395 (8)	-0.00086 (7)
O4	0.0205 (3)	0.0382 (4)	0.0223 (3)	0.0058 (3)	0.0068 (3)	0.0099 (3)
O3	0.0266 (3)	0.0256 (4)	0.0292 (4)	0.0006 (3)	-0.0032 (3)	-0.0042 (3)
O2	0.0403 (4)	0.0299 (4)	0.0225 (3)	0.0049 (3)	0.0154 (3)	0.0024 (3)
C1	0.0182 (4)	0.0251 (4)	0.0184 (4)	-0.0002 (3)	0.0060 (3)	-0.0005 (3)
C3	0.0218 (4)	0.0218 (4)	0.0202 (4)	0.0020 (3)	0.0064 (3)	-0.0010 (3)
C2	0.0264 (5)	0.0357 (5)	0.0301 (5)	-0.0071 (4)	0.0061 (4)	-0.0110 (4)
C8	0.0220 (4)	0.0273 (5)	0.0297 (5)	0.0022 (3)	0.0077 (4)	0.0032 (4)
C7	0.0207 (5)	0.0405 (6)	0.0416 (6)	0.0033 (4)	0.0070 (4)	0.0007 (5)
C6	0.0316 (5)	0.0393 (6)	0.0400 (6)	0.0145 (5)	0.0018 (5)	0.0007 (5)
C5	0.0462 (7)	0.0269 (5)	0.0361 (6)	0.0116 (5)	0.0065 (5)	0.0058 (4)
C4	0.0346 (5)	0.0237 (4)	0.0325 (5)	0.0007 (4)	0.0106 (4)	0.0031 (4)
C10	0.0422 (6)	0.0278 (5)	0.0454 (7)	-0.0065 (5)	0.0040 (5)	-0.0034 (5)
C9	0.0717 (9)	0.0474 (7)	0.0268 (5)	0.0092 (6)	0.0277 (6)	0.0031 (5)
01	0.0212 (3)	0.0388 (4)	0.0240 (3)	0.0085 (3)	0.0048 (3)	-0.0004 (3)

Geometric parameters (Å, °)

P101	1.4738 (7)	C8—C7	1.3911 (14)
P1—O3	1.5641 (8)	C8—H8	0.962 (14)
P1—O2	1.5692 (8)	С7—С6	1.3821 (18)
P1—C1	1.8294 (9)	С7—Н7	0.936 (16)
O4—C1	1.4265 (11)	C6—C5	1.385 (2)
O4—H1A	0.787 (16)	С6—Н6	0.955 (16)
O3—C10	1.4362 (14)	C5—C4	1.3887 (16)
О2—С9	1.4381 (13)	С5—Н5	0.938 (17)
C1—C3	1.5212 (13)	C4—H4	0.946 (15)
C1—C2	1.5284 (13)	C10—H10A	0.917 (10)
C3—C4	1.3910 (14)	C10—H10B	0.917 (10)
С3—С8	1.3938 (13)	C10—H10C	0.917 (10)
C2—H2A	0.968 (9)	С9—Н9А	0.910 (11)
C2—H2B	0.968 (9)	С9—Н9В	0.910 (11)
C2—H2C	0.968 (9)	С9—Н9С	0.910 (11)
O1—P1—O3	113.59 (5)	С3—С8—Н8	119.8
O1—P1—O2	115.46 (4)	C6—C7—C8	120.44 (11)

O3—P1—O2	103.00 (4)	С6—С7—Н7	119.8
O1—P1—C1	112.98 (4)	С8—С7—Н7	119.8
O3—P1—C1	107.82 (4)	C7—C6—C5	119.60 (11)
O2—P1—C1	102.92 (4)	С7—С6—Н6	120.2
C1—O4—H1A	105.5 (11)	С5—С6—Н6	120.2
C10—O3—P1	122.56 (7)	C6—C5—C4	120.14 (11)
C9—O2—P1	120.42 (8)	С6—С5—Н5	119.9
O4—C1—C3	107.70 (7)	C4—C5—H5	119.9
O4—C1—C2	110.75 (8)	C5—C4—C3	120.78 (10)
C3—C1—C2	113.63 (8)	С5—С4—Н4	119.6
O4—C1—P1	104.62 (6)	C3—C4—H4	119.6
C3—C1—P1	109.97 (6)	O3-C10-H10A	109.5
C2—C1—P1	109.76 (7)	O3-C10-H10B	109.5
C4—C3—C8	118.68 (9)	H10A—C10—H10B	109.5
C4—C3—C1	121.28 (9)	O3—C10—H10C	109.5
C8—C3—C1	119.97 (8)	H10A—C10—H10C	109.5
C1—C2—H2A	109.5	H10B—C10—H10C	109.5
C1—C2—H2B	109.5	O2—C9—H9A	109.5
H2A—C2—H2B	109.5	O2—C9—H9B	109.5
C1—C2—H2C	109.5	H9A—C9—H9B	109.5
H2A—C2—H2C	109.5	O2—C9—H9C	109.5
H2B—C2—H2C	109.5	Н9А—С9—Н9С	109.5
C7—C8—C3	120.35 (10)	H9B—C9—H9C	109.5
С7—С8—Н8	119.8		
O1—P1—O3—C10	34.73 (11)	O4—C1—C3—C4	164.60 (9)
O2—P1—O3—C10	160.34 (9)	C2—C1—C3—C4	41.53 (12)
C1—P1—O3—C10	-91.28 (10)	P1-C1-C3-C4	-81.95 (10)
O1—P1—O2—C9	62.50 (11)	O4—C1—C3—C8	-18.28 (11)
O3—P1—O2—C9	-61.89 (10)	C2—C1—C3—C8	-141.34 (9)
C1—P1—O2—C9	-173.93 (10)	P1—C1—C3—C8	95.17 (9)
O1—P1—C1—O4	-56.46 (7)	C4—C3—C8—C7	-1.01 (15)
O3—P1—C1—O4	69.91 (6)	C1—C3—C8—C7	-178.21 (9)
O2—P1—C1—O4	178.34 (6)	C3—C8—C7—C6	0.44 (17)
O1—P1—C1—C3	-171.88 (6)	C8—C7—C6—C5	0.42 (19)
O3—P1—C1—C3	-45.51 (7)	C7—C6—C5—C4	-0.70 (19)
O2—P1—C1—C3	62.92 (7)	C6—C5—C4—C3	0.12 (18)
O1—P1—C1—C2	62.41 (8)	C8—C3—C4—C5	0.73 (15)
O3—P1—C1—C2	-171.22 (7)	C1—C3—C4—C5	177.90 (10)
O2—P1—C1—C2	-62.79 (8)		. /

Dimethyl [(3,4-dimethoxyphenyl)(hydroxy)methyl]phosphonate (1b)

Crystal data	
$C_{11}H_{17}O_6P$	c = 8.0044 (3) Å
$M_r = 276.21$	$\beta = 100.620 \ (5)^{\circ}$
Monoclinic, $C2/c$	V = 2643.2 (2) Å ³
a = 39.464 (3) Å	Z = 8
b = 8.5132 (4) Å	F(000) = 1168

 $D_x = 1.388 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2697 reflections $\theta = 4.9-30.5^{\circ}$

Data collection

Agilent Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 15.9809 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.956, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.126$ S = 1.034023 reflections 178 parameters 0 restraints

Special details

 $\mu = 0.23 \text{ mm}^{-1}$ T = 173 KBlock, colorless $0.30 \times 0.20 \times 0.05 \text{ mm}$

13696 measured reflections 4023 independent reflections 2812 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 30.5^\circ, \ \theta_{min} = 4.2^\circ$ $h = -56 \rightarrow 52$ $k = -9 \rightarrow 12$ $l = -8 \rightarrow 11$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 1.0539P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e} \text{ Å}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An Xcalibur, Sapphire3 detector equipped diffractometer was used with an Enhance Mo K α X-ray radiation to collect all the intensity data. The program CrysAlis PRO (CrysAlisPro, Agilent, 2014) was used for data collection, space group determination and all data reduction purposes including empirical absorption correction using spherical harmonics. The initial structure models were provided by direct methods using SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares on F² using SHELXL (Sheldrick, 2015b). All non-H atoms were refined anisotropically.

	r	1/	7	I. */I/
	\mathcal{A}	y	2	0 ₁₅₀ / 0 eq
P1	0.56049 (2)	0.22453 (5)	0.55325 (5)	0.02391 (13)
05	0.69582 (3)	0.23316 (15)	0.89486 (15)	0.0296 (3)
03	0.56238 (3)	0.39780 (15)	0.48490 (15)	0.0307 (3)
O2	0.52552 (3)	0.16331 (17)	0.44805 (17)	0.0345 (3)
C1	0.59193 (5)	0.1112 (2)	0.4634 (2)	0.0250 (3)
H1	0.58536 (13)	0.1140 (2)	0.334 (2)	0.030*
O6	0.72468 (3)	0.37616 (17)	0.67767 (17)	0.0361 (3)
C5	0.69270 (5)	0.3178 (2)	0.6143 (2)	0.0263 (4)
C2	0.62749 (4)	0.1814 (2)	0.5161 (2)	0.0240 (3)
04	0.59076 (4)	-0.04869 (15)	0.51955 (17)	0.0326 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	0.67557 (5)	0.3291 (2)	0.4488 (2)	0.0309 (4)
H6	0.6857 (2)	0.3837 (13)	0.3684 (18)	0.037*
C4	0.67689 (5)	0.23697 (19)	0.7345 (2)	0.0235 (3)
C7	0.64311 (5)	0.2601 (2)	0.3991 (2)	0.0280 (4)
H7	0.6329 (3)	0.2664 (3)	0.296 (3)	0.034*
C3	0.64461 (4)	0.1704 (2)	0.6854 (2)	0.0229 (3)
H3	0.6339 (2)	0.1161 (11)	0.7680 (17)	0.028*
C11	0.49302 (6)	0.2215 (3)	0.4808 (3)	0.0526 (6)
H11A	0.4912 (2)	0.200 (2)	0.592 (2)	0.079*
H11B	0.4751 (3)	0.1731 (18)	0.408 (2)	0.079*
H11C	0.4918 (2)	0.3290 (18)	0.463 (2)	0.079*
C10	0.58384 (6)	0.5159 (2)	0.5824 (3)	0.0385 (5)
H10A	0.5758 (3)	0.5353 (13)	0.6871 (17)	0.058*
H10B	0.5827 (3)	0.6118 (15)	0.5174 (11)	0.058*
H10C	0.6074 (3)	0.4793 (9)	0.6075 (16)	0.058*
C9	0.74214 (5)	0.4591 (3)	0.5627 (3)	0.0408 (5)
H9A	0.7451 (4)	0.3913 (11)	0.4715 (17)	0.061*
H9B	0.7642 (4)	0.4929 (17)	0.6217 (10)	0.061*
H9C	0.7288 (3)	0.5483 (16)	0.5184 (17)	0.061*
C8	0.68164 (6)	0.1518 (3)	1.0207 (2)	0.0416 (5)
H8A	0.6591 (4)	0.1996 (13)	1.0309 (14)	0.062*
H8B	0.6977 (3)	0.1593 (16)	1.1319 (16)	0.062*
H8C	0.6782 (4)	0.0395 (16)	0.9877 (11)	0.062*
01	0.56403 (3)	0.21578 (15)	0.73921 (16)	0.0307 (3)
H1A	0.5808 (6)	-0.101 (3)	0.434 (3)	0.037*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0241 (2)	0.0244 (2)	0.0232 (2)	0.00164 (18)	0.00415 (16)	0.00097 (17)
O5	0.0308 (7)	0.0330 (7)	0.0233 (6)	-0.0076 (6)	0.0009 (5)	0.0031 (5)
O3	0.0371 (7)	0.0265 (6)	0.0277 (6)	0.0023 (6)	0.0042 (5)	0.0041 (5)
O2	0.0236 (6)	0.0410 (8)	0.0383 (7)	-0.0003 (6)	0.0043 (6)	-0.0048 (6)
C1	0.0261 (8)	0.0247 (8)	0.0236 (8)	0.0011 (7)	0.0034 (7)	-0.0020 (6)
06	0.0300 (7)	0.0413 (8)	0.0373 (7)	-0.0113 (6)	0.0071 (6)	0.0067 (6)
C5	0.0259 (8)	0.0237 (8)	0.0302 (9)	-0.0010 (7)	0.0078 (7)	0.0013 (7)
C2	0.0236 (8)	0.0238 (8)	0.0249 (8)	0.0029 (7)	0.0054 (6)	-0.0031 (6)
O4	0.0377 (8)	0.0238 (6)	0.0343 (7)	-0.0005 (6)	0.0010 (6)	-0.0050 (5)
C6	0.0328 (10)	0.0323 (9)	0.0299 (9)	0.0021 (8)	0.0114 (8)	0.0065 (8)
C4	0.0269 (8)	0.0208 (7)	0.0233 (8)	0.0007 (7)	0.0057 (6)	-0.0004 (6)
C7	0.0282 (9)	0.0344 (10)	0.0216 (8)	0.0045 (8)	0.0049 (7)	0.0015 (7)
C3	0.0248 (8)	0.0214 (7)	0.0237 (8)	0.0006 (7)	0.0075 (7)	-0.0003 (6)
C11	0.0258 (10)	0.0718 (17)	0.0603 (15)	0.0026 (11)	0.0086 (10)	-0.0110 (12)
C10	0.0515 (12)	0.0224 (9)	0.0418 (11)	-0.0006 (9)	0.0089 (10)	-0.0023 (8)
C9	0.0329 (10)	0.0377 (11)	0.0538 (12)	-0.0058 (9)	0.0131 (9)	0.0176 (10)
C8	0.0386 (11)	0.0609 (14)	0.0251 (9)	-0.0103 (10)	0.0053 (8)	0.0068 (9)
O1	0.0356 (7)	0.0311 (7)	0.0267 (6)	0.0046 (6)	0.0088 (5)	0.0039 (5)

Geometric parameters (Å, °)

P1—O1	1.4711 (13)	С6—С7	1.399 (3)
P1—O2	1.5676 (14)	С6—Н6	0.94 (2)
P1—O3	1.5797 (13)	C4—C3	1.383 (2)
P1—C1	1.8213 (18)	С7—Н7	0.85 (2)
O5—C4	1.362 (2)	С3—Н3	0.967 (19)
O5—C8	1.420 (2)	C11—H11A	0.926 (15)
O3—C10	1.447 (2)	C11—H11B	0.926 (15)
O2—C11	1.443 (2)	C11—H11C	0.926 (15)
C1—O4	1.437 (2)	C10—H10A	0.965 (13)
C1—C2	1.512 (2)	C10—H10B	0.965 (13)
C1—H1	1.018 (19)	C10—H10C	0.965 (13)
O6—C5	1.364 (2)	С9—Н9А	0.954 (13)
O6—C9	1.433 (2)	С9—Н9В	0.954 (14)
C5—C6	1.375 (3)	С9—Н9С	0.954 (13)
C5—C4	1.417 (2)	C8—H8A	0.995 (13)
C2—C7	1.385 (2)	C8—H8B	0.995 (13)
C2—C3	1.401 (2)	C8—H8C	0.995 (13)
04—H1A	0.85 (2)		
01—P1—O2	115.90 (8)	С2—С7—Н7	119.7
O1—P1—O3	113.32 (7)	С6—С7—Н7	119.7
O2—P1—O3	102.56 (8)	C4—C3—C2	120.14 (15)
O1—P1—C1	115.36 (8)	С4—С3—Н3	119.9
O2—P1—C1	102.01 (8)	С2—С3—Н3	119.9
O3—P1—C1	106.20 (8)	O2-C11-H11A	109.5
C4—O5—C8	117.46 (14)	O2-C11-H11B	109.5
C10—O3—P1	121.49 (12)	H11A—C11—H11B	109.5
C11—O2—P1	120.82 (14)	O2—C11—H11C	109.5
O4—C1—C2	111.66 (14)	H11A—C11—H11C	109.5
O4—C1—P1	108.34 (11)	H11B—C11—H11C	109.5
C2—C1—P1	110.16 (11)	O3—C10—H10A	109.5
O4—C1—H1	108.9	O3—C10—H10B	109.5
C2—C1—H1	108.9	H10A—C10—H10B	109.5
P1—C1—H1	108.9	O3—C10—H10C	109.5
C5—O6—C9	117.53 (15)	H10A—C10—H10C	109.5
O6—C5—C6	126.12 (16)	H10B—C10—H10C	109.5
O6—C5—C4	114.67 (16)	O6—C9—H9A	109.5
C6—C5—C4	119.21 (17)	O6—C9—H9B	109.5
C7—C2—C3	119.39 (16)	H9A—C9—H9B	109.5
C7—C2—C1	120.54 (16)	O6—C9—H9C	109.5
C3—C2—C1	120.05 (15)	Н9А—С9—Н9С	109.5
C1—O4—H1A	106.1 (15)	H9B—C9—H9C	109.5
C5—C6—C7	120.41 (17)	O5—C8—H8A	109.5
С5—С6—Н6	119.8	O5—C8—H8B	109.5
С7—С6—Н6	119.8	H8A—C8—H8B	109.5
O5—C4—C3	125.08 (15)	O5—C8—H8C	109.5

O5—C4—C5 C3—C4—C5 C2—C7—C6	114.69 (15) 120.23 (16) 120.61 (17)	H8A—C8—H8C H8B—C8—H8C	109.5 109.5
$\begin{array}{c} 01 - P1 - 03 - C10 \\ 02 - P1 - 03 - C10 \\ 01 - P1 - 03 - C10 \\ 01 - P1 - 02 - C11 \\ 03 - P1 - 02 - C11 \\ 01 - P1 - 02 - C11 \\ 01 - P1 - C1 - 04 \\ 02 - P1 - C1 - 04 \\ 03 - P1 - C1 - 04 \\ 03 - P1 - C1 - C2 \\ 02 - P1 - C1 - C2 \\ 03 - P1 - C1 - C2 - C7 \\ P1 - C1 $	$\begin{array}{c} 33.33\ (16)\\ 159.02\ (14)\\ -94.32\ (15)\\ 52.68\ (19)\\ -71.31\ (18)\\ 178.83\ (17)\\ 54.60\ (14)\\ -71.91\ (13)\\ -178.97\ (11)\\ -67.82\ (14)\\ 165.67\ (12)\\ 58.62\ (13)\\ 0.8\ (3)\\ 179.93\ (16)\\ 131.07\ (17)\\ -108\ 49\ (16)\\ \end{array}$	P1-C1-C2-C3 $O6-C5-C6-C7$ $C4-C5-C6-C7$ $C8-O5-C4-C3$ $C8-O5-C4-C5$ $O6-C5-C4-O5$ $O6-C5-C4-O5$ $O6-C5-C4-C3$ $C3-C2-C7-C6$ $C1-C2-C7-C6$ $C5-C4-C3-C2$ $O5-C4-C3-C2$ $C5-C4-C3-C2$ $C7-C2-C3-C4$ $C1-C2-C3-C4$	70.10 (18) 178.26 (17) -0.8 (3) 1.3 (3) -179.03 (17) 1.2 (2) -179.60 (16) -179.11 (15) 0.0 (3) -0.5 (3) 178.12 (16) 1.0 (3) -179.91 (16) 0.5 (3) -0.3 (3) -178.88 (15)
04—C1—C2—C3	-50.3 (2)		

Dimethyl [(hydroxy)(phenyl)methyl]phosphonate (1a)

Crystal data

C₉H₁₃O₄P $M_r = 216.16$ Monoclinic, $P2_1/n$ a = 8.4039 (5) Å b = 7.7007 (3) Å c = 16.6012 (7) Å $\beta = 99.149$ (4)° V = 1060.69 (9) Å³ Z = 4

Data collection

Agilent Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 15.9809 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.846, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.108$ S = 1.023209 reflections F(000) = 456 $D_x = 1.354 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4166 reflections $\theta = 4.6-30.9^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 173 KBlock, colorless $0.40 \times 0.20 \times 0.04 \text{ mm}$

20344 measured reflections 3209 independent reflections 2491 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 30.5^{\circ}, \ \theta_{min} = 4.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -10 \rightarrow 10$ $l = -23 \rightarrow 23$

139 parameters0 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0551P)^2 + 0.2064P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An Xcalibur, Sapphire3 detector equipped diffractometer was used with an Enhance Mo K α X-ray radiation to collect all the intensity data. The program CrysAlis PRO (CrysAlisPro, Agilent, 2014) was used for data collection, space group determination and all data reduction purposes including empirical absorption correction using spherical harmonics. The initial structure models were provided by direct methods using SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares on F^2 using SHELXL (Sheldrick, 2015b). All non-H atoms were refined anisotropically.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
P1	0.88836 (4)	0.22015 (5)	0.36890 (2)	0.02690 (11)
O4	0.69794 (12)	0.26302 (13)	0.23287 (6)	0.0324 (2)
O2	0.74859 (13)	0.27837 (13)	0.41599 (6)	0.0360 (2)
O1	0.90892 (11)	0.03033 (13)	0.36664 (5)	0.0307 (2)
O3	1.03594 (13)	0.32532 (14)	0.41315 (6)	0.0371 (2)
C1	0.85171 (16)	0.32552 (17)	0.26993 (8)	0.0278 (3)
H1	0.8441 (2)	0.451 (2)	0.27822 (17)	0.033*
C2	0.98395 (16)	0.29140 (17)	0.22002 (8)	0.0278 (3)
C3	0.97089 (19)	0.1600 (2)	0.16223 (8)	0.0349 (3)
Н3	0.8787 (18)	0.0862 (14)	0.15465 (17)	0.042*
C8	0.6006 (2)	0.1790 (2)	0.40829 (11)	0.0458 (4)
H8A	0.5292	0.2134	0.3583	0.069*
H8B	0.5471	0.2013	0.4556	0.069*
H8C	0.6254	0.0549	0.4058	0.069*
C4	1.0920 (2)	0.1360 (3)	0.11544 (10)	0.0473 (4)
H4	1.0819 (3)	0.047 (2)	0.0756 (9)	0.057*
C7	1.12124 (19)	0.3953 (2)	0.23104 (10)	0.0408 (3)
H7	1.1322 (3)	0.4860 (19)	0.2714 (8)	0.049*
C9	1.1277 (2)	0.2684 (3)	0.48861 (11)	0.0541 (5)
H9A	1.0634 (10)	0.2545 (19)	0.5249 (6)	0.081*
H9B	1.2013 (16)	0.3464 (15)	0.5061 (6)	0.081*
H9C	1.1747 (16)	0.1692 (18)	0.4810 (2)	0.081*
C6	1.2420 (2)	0.3695 (3)	0.18461 (11)	0.0515 (5)
H6	1.333 (2)	0.4388 (17)	0.1927 (2)	0.062*
C5	1.2269 (2)	0.2405 (3)	0.12611 (11)	0.0523 (5)
Н5	1.313 (2)	0.2229 (5)	0.0918 (8)	0.063*
H1A	0.653 (3)	0.334 (3)	0.1967 (13)	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.03003 (18)	0.02395 (17)	0.02590 (17)	-0.00095 (12)	0.00192 (12)	-0.00101 (12)
O4	0.0263 (5)	0.0321 (5)	0.0364 (5)	-0.0014 (4)	-0.0027 (4)	0.0061 (4)
O2	0.0401 (6)	0.0332 (5)	0.0364 (5)	-0.0027 (4)	0.0116 (4)	-0.0085 (4)
01	0.0361 (5)	0.0253 (5)	0.0297 (5)	0.0015 (4)	0.0020 (4)	0.0011 (4)
O3	0.0405 (6)	0.0364 (5)	0.0310 (5)	-0.0091 (4)	-0.0049 (4)	0.0013 (4)
C1	0.0286 (6)	0.0221 (6)	0.0310 (6)	-0.0013 (5)	-0.0005(5)	0.0013 (5)
C2	0.0288 (6)	0.0267 (6)	0.0261 (6)	-0.0014 (5)	-0.0010 (5)	0.0071 (5)
C3	0.0392 (8)	0.0368 (7)	0.0285 (6)	-0.0040 (6)	0.0046 (5)	0.0017 (5)
C8	0.0396 (8)	0.0516 (10)	0.0493 (9)	-0.0081 (7)	0.0172 (7)	-0.0115 (7)
C4	0.0526 (10)	0.0572 (11)	0.0341 (8)	0.0033 (8)	0.0129 (7)	0.0006 (7)
C7	0.0357 (8)	0.0413 (8)	0.0434 (8)	-0.0100 (6)	0.0001 (6)	0.0031 (7)
C9	0.0508 (10)	0.0636 (12)	0.0408 (9)	-0.0117 (9)	-0.0145 (8)	0.0096 (8)
C6	0.0335 (8)	0.0672 (12)	0.0531 (10)	-0.0107 (8)	0.0050 (7)	0.0173 (9)
C5	0.0421 (9)	0.0774 (13)	0.0404 (8)	0.0057 (9)	0.0159 (7)	0.0189 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

P1—O1	1.4731 (10)	C8—H8A	0.9800	
P1—O3	1.5633 (10)	C8—H8B	0.9800	
P1—O2	1.5760 (11)	C8—H8C	0.9800	
P1—C1	1.8144 (14)	C4—C5	1.378 (3)	
O4—C1	1.4238 (16)	C4—H4	0.95 (2)	
O4—H1A	0.85 (2)	С7—С6	1.383 (2)	
O2—C8	1.4485 (19)	С7—Н7	0.962 (19)	
О3—С9	1.4315 (19)	С9—Н9А	0.878 (13)	
C1—C2	1.5111 (19)	С9—Н9В	0.878 (13)	
C1—H1	0.977 (17)	С9—Н9С	0.878 (13)	
С2—С3	1.386 (2)	C6—C5	1.381 (3)	
С2—С7	1.3918 (19)	С6—Н6	0.92 (2)	
C3—C4	1.388 (2)	С5—Н5	1.00 (2)	
С3—Н3	0.953 (18)			
01—P1—O3	116.01 (6)	H8A—C8—H8B	109.5	
O1—P1—O2	113.24 (6)	O2—C8—H8C	109.5	
O3—P1—O2	102.58 (6)	H8A—C8—H8C	109.5	
O1—P1—C1	115.11 (6)	H8B—C8—H8C	109.5	
O3—P1—C1	101.63 (6)	C5—C4—C3	120.78 (17)	
O2—P1—C1	106.82 (6)	С5—С4—Н4	119.6	
C1	110.7 (15)	C3—C4—H4	119.6	
C8—O2—P1	120.21 (10)	C6—C7—C2	120.72 (16)	
C9—O3—P1	121.95 (10)	С6—С7—Н7	119.6	
O4—C1—C2	113.60 (11)	С2—С7—Н7	119.6	
O4—C1—P1	104.58 (9)	O3—C9—H9A	109.5	
C2-C1-P1	112.65 (9)	O3—C9—H9B	109.5	
O4—C1—H1	108.6	Н9А—С9—Н9В	109.5	

C2—C1—H1	108.6	О3—С9—Н9С	109.5
P1—C1—H1	108.6	H9A—C9—H9C	109.5
C3—C2—C7	118.89 (14)	H9B—C9—H9C	109.5
C3—C2—C1	121.47 (12)	C5—C6—C7	120.09 (17)
C7—C2—C1	119.63 (13)	С5—С6—Н6	120.0
C2—C3—C4	120.01 (15)	С7—С6—Н6	120.0
С2—С3—Н3	120.0	C4—C5—C6	119.50 (17)
С4—С3—Н3	120.0	С4—С5—Н5	120.2
O2—C8—H8A	109.5	С6—С5—Н5	120.2
O2—C8—H8B	109.5		
O1—P1—O2—C8	-38.37 (13)	O4—C1—C2—C3	-22.67 (17)
O3—P1—O2—C8	-164.16 (12)	P1-C1-C2-C3	96.02 (13)
C1—P1—O2—C8	89.38 (13)	O4—C1—C2—C7	156.34 (12)
O1—P1—O3—C9	-42.43 (15)	P1-C1-C2-C7	-84.97 (14)
O2—P1—O3—C9	81.54 (14)	C7—C2—C3—C4	-1.3 (2)
C1—P1—O3—C9	-168.06 (14)	C1—C2—C3—C4	177.76 (13)
O1—P1—C1—O4	66.37 (10)	C2—C3—C4—C5	0.6 (2)
O3—P1—C1—O4	-167.41 (9)	C3—C2—C7—C6	0.7 (2)
O2—P1—C1—O4	-60.28 (10)	C1—C2—C7—C6	-178.31 (14)
O1—P1—C1—C2	-57.47 (11)	C2—C7—C6—C5	0.5 (3)
O3—P1—C1—C2	68.76 (10)	C3—C4—C5—C6	0.6 (3)
O2—P1—C1—C2	175.88 (9)	C7—C6—C5—C4	-1.1 (3)