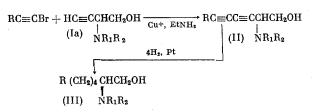
SYNTHESIS OF HYDROXYAMINES OF


DIACETYLENE SERIES

M. V. Mavrov, É. S. Voskanyan, T. A. Severina, and V. F. Kucherov

Previously [1, 2] we have proposed a general method for the synthesis of 3,4-disubstituted 1-butyne derivatives of the (I) type, based on the reaction of the appropriate substituted α -bromoallenes with various amines

BrCH=C=CHCH₂X $\xrightarrow{\text{HNR}_1R_1}$ HC=CCHCH₂X (I) NR₁R₂ X=OH (a); NR₃R₄ (b)

In making a further study of the properties of this class of compounds it seemed of interest to use them in the Cadiot – Chodkiewicz unsymmetrical condensation reaction [3, 4] for the synthesis of various diacetylene derivatives. It proved that 4-hydroxy-3-alkylamino (or dialkylamino) butynes (Ia) easily condense with various bromoacetylenes and give polyfunctional compounds of the diacetylene series (II) in high yield

The best yields of the desired products (70-90%) were obtained by the condensation of (Ia) in methanol solution, in the presence of catalytic amounts of Cu_2Cl_2 and aqueous ethylamine solution, with a 1.5 to 2-fold excess of the appropriate bromoacetylene components at a temperature not exceeding 8-10°. Running the reaction at a higher temperature (above 20°) leads to considerable tarring of the end products. The obtained hydroxyamines of the diacetylene series are quite stable compounds, and can be stored at ordinary temperatures. As a rule, the crystalline products are more stable than the liquid products, which lend themselves with great difficulty to distillation. Their structure is corroborated by the elemental analysis and the data of the IR and UV spectra (Table 1).

The IR spectra of these compounds have absorption bands of medium intensity in the $2200-2260 \text{ cm}^{-1}$ region, which correspond to the conjugated substituted diacetylene grouping, and absorption bands that correspond to the stretching vibrations of the functional groups. The UV spectra are characterized by the presence of absorption maxima in the 220-250 nm region, with low intensities that are close in value (not exceeding 1000), which is characteristic for diacetylenic systems of bonds.

When the diacetylenic hydroxyamines are subjected to exhaustive catalytic hydrogenation in alcohol solution, in the presence of Pt catalyst, they easily absorb 4 moles of H_2 with the formation of the previously unknown corresponding hydroxyamines of the aliphatic series (III) (Table 2), for the synthesis of which there have been lacking sufficiently accessible methods up to now.

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No.5, pp. 1088-1091, May, 1971. Original article submitted June 18, 1970.

● 1971 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

					$^{1}_{ m NR_{1}R_{2}}$				
ĸ	R1	R2	Yield, γ_0	Mp, °C (recrystallization solvent)	$\lambda_{\max}, nm(\varepsilon)$	ν, cim ⁻¹	Found N, γ_{0}	Found N, Empirical for- Calcula- η_o mula mula induced N, η_o	Calcula- ted N, 7/0
AcOCH2CH2	H	C4H	68	(100 - 20) (100 - 20)	229, 242, 258, 278	1740, 2255	6,10	C14H21O3N	5,57
AcOCH2CH2	н	C_2H_5	11	(penoteun curet)	(039, 014, 309, 39) 240, 252, 266, 282 7560 540 599 460	1742, 2255	6,35	$C_{12}H_{17}O_3N$	6,27
C4H5	Ħ	C2H3	76	0005 005	(303, 310, 320, 100) 242, 256, 286 255, 250, 453	2257, 3420	7,41	C ₁₂ H ₁₉ ON	7,25
C ₂ H ₆ C (OH)	H	C ₂ H ₅	82		(320, 423, 152) 231, 243, 258, 290 (470, 381, 292, 192)	2250, 3325 3600	7,18	C12H19O2N	6,69
C.H.	H	C4H	85	47,549	243, 271, 256, 287	2255	6,45	$C_{14}H_{23}ON$	6,33
с,н,с (он)	н	C4H9	86	(inexaue) ‡	230, 244, 257 230, 244, 257 1027, 770, 577	2252, 3320 3600	5,37	$C_{14}H_{23}O_2N$	5,90
HOCH2CH2	<u> </u>	CH ₂)s	92	*	244, 257	2238, 3420	5,81	C13H19O2N	6,33
HOCH2CH2	н	C4H9	06	77-77.5	(1330, 530) 230, 242, 257 775, 603 360	2235, 3370	6,62	$C_{12}H_{19}O_2N$	6,69
CH ₈ O ₂ CCH ₂	н	C_4H_9	(fair)	(aqueous alconol)	(142, 000, 209) 	1745, 2200			
HOCH2CH2	Н	C ₆ H ₅ CH ₂	80	110-112	259, 265,	2260, 3270	5,96	$C_{15}H_{17}O_2N$	5,76
C ₄ H ₆	H	C ₆ H ₅ CH ₂	74	(aqueous arcount) 73-74 (hexane)	244, 258, 265, 269 (842, 538, 281, 166)	2252, 3270 3600	5,49	C17H21ON	5,49
* Oil, n_{D}^{25} 1, 5290, † Oil, n_{D}^{25} 1, 5244, ‡ Oil, n_{D}^{25} 1, 5160, ** Oil, n_{D}^{25} 1, 5458,	*								

TABLE 1. Hydroxyamines of Diacetylene Series $RC \equiv CC \equiv CCHCH_2OH$

1003

TABLE 2. Hydroxyamines of Aliphatic Series $R(CH_2)_4 - CHCH_2OH$ NR₁R₂

R	Rı	、R2	Bp (in bath), °C (3 mm)	n_{D}^{20}	Found, %			Empirical	Calculated, %		
					c	н	N	formula	c	н	N
HOCH ₂ CH, C ₄ H, C ₄ H, HOCH ₂ CH, HOCH ₂ CH, C ₂ H ₅ C(OH)	Н Н (СН ₂)5 Н	C4H, C2H5 C4H, H C4H,	175-185 130-135 130-140* 120-140* 180-190	1,4698 1,4651 1,4702	66,57 71,15 73,39 68,25 54,65 54,65 68,34	12,37 12,97 13,67 11,79 11,83 12,53	6,05 6,78 6,00 6,23 8,42 5,46	$\begin{array}{c} C_{12}H_{27}O_2N\\ C_{16}H_{27}O_2N\\ C_{14}H_{31}ON\\ C_{15}H_{27}O_2N\\ C_{8}H_{19}O_2N\\ C_{8}H_{10}O_2N\\ C_{14}H_{31}O_2N\\ \end{array}$	66, 31 71, 58 73, 30 68, 07 59, 59 68, 52	12,52 13,52 13,62 11,87 11,88 12,73	6,45 6,96 6,1 1 6,11 8,69 5,71

* Mp. 47-49°. † Mp. 38-39°.

EXPERIMENTAL

The IR spectra were taken on a DS-301 double-beam spectrophotometer (Japanese): for the liquid products as such, and for the crystalline products as KBr pellets or in CHCl₃ solution. The UV spectra were taken on a "Unicam" spectrophotometer (British) in C_2H_5OH solution.

The starting compounds used in the work, namely (Ia) and the methyl ester of 4-bromo-3-butynoic acid, were obtained as described in [1, 5]. The known bromoacetylene derivatives were obtained by the bromination of the corresponding acetylene compounds in potassium hypobromite solution [6]. 1-Bromo-4-acetoxy-1-butyne was obtained by the acetylation of 1-bromo-1-butyn-4-ol with excess acetyl chloride in the presence of triethylamine. Yield 85%, bp 35-38° (3 mm); $n_D^{21,5}$ 1.4800. Found: C 37.95; H 3.75; Br 41.96, C₆H₇O₂Br. Calculated: C 37.70; H 3.66; Br 41.88%.

Preparation of Hydroxyamines of Diacetylene Series (II). To a solution of 0.01 mole of 4-hydroxy-3alkyl (or dialkyl)amino-1-butyne (Ia) in 10 ml of CH₃OH, containing 0.002 mole of Cu₂Cl₂, 0.002 mole of hydroxylamine hydrochloride and 0.04 mole of ethylamine (as 40% aqueous solution), in a nitrogen atmosphere, was added in drops, with cooling (8-10°) and vigorous stirring, a solution of 0.015-0.02 mole of the appropriate bromoacetylene derivative in 10 ml of methanol. The reaction mixture was kept at 10-15° for 1 h, treated with 10% HCl solution under ether, and the neutral layer was separated. The acid portion was saturated with K₂CO₃ and the reaction product was repeatedly extracted with ether.

The crystalline products were recrystallized from a suitable solvent, while the liquid products were dried well in vacuo. The obtained substituted diacetylenes are listed in Table 1.

Hydrogenation of Hydroxyamines of Diacetylene Series. A solution of 0.005 mole of the appropriate hydroxyamine (II) in 20 ml of alcohol was hydrogenated at room temperature in the presence of PtO₂ until the hydrogen absorption was complete (1.5-2 h). The catalyst was filtered and the hydrogenation product was vacuum-distilled. Some of the compounds obtained by us are listed in Table 2.

CONCLUSIONS

We synthesized some previously unknown types of polyfunctionally substituted compounds of the diacetylene series by the condensation of 4-hydroxy-3-alkyl (or dialkyl)amino-1-butynes with various bromoacetylenes under the conditions of the Cadiot - Chodkiewicz reaction.

LITERATURE CITED

- M. V. Mayrov, É. S. Voskanyan, and V. F. Kucherov, Izv. Akad. Nauk SSSR, Ser. Khim., 2774 1. (1967).
- M. V. Mavrov, É. S. Voskanyan, and V. F. Kucherov, Tetrahedron, 25, 3277 (1969). 2.
- W. Chodkiewicz, Ann. Chim., [13], 2, 819 (1957). 3.
- G. Eglinton and W. McCrae, Advan. Org. Chem., 4, 225-328 (1963); C. A., 59, 13777c (1963). 4.
- M. V. Mavrov and V. F. Kucherov, Izv. Akad. Nauk SSSR, Ser. Khim., 1494 (1965). 5.
- F. Straus, L. Kollek, and W. Heyn, Chem. Ber., 63, 1868 (1930). 6.