Tetrahedron: Asymmetry 23 (2012) 1380-1384

Contents lists available at SciVerse ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Asymmetric and diastereoselective Mannich reactions using hydantoin as a chiral auxiliary

Xuan-Ran Li, Cui-Fen Lu, Zu-Xing Chen, Yan Li, Gui-Chun Yang*

Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

ARTICLE INFO	ABSTRACT
Article history: Received 3 August 2012 Accepted 13 September 2012	The Mannich reaction of titanium enolates of a chiral hydantoin with various aldimines smoothly occurred in good yields and with high <i>anti</i> -diastereoselectivity. The Mannich adducts can be readily cleaved by alcoholysis to afford several β -amino ester derivatives in good yields and in almost enantiomerically pure form.

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

β-Amino ester derivatives are key synthons in the synthesis of β-lactam antibiotics, which are important components of many natural products and therapeutic agents.¹ Therefore, the asymmetric synthesis of β-amino ester derivatives has become a field of increasing interest in organic synthetic chemistry over the past few years.² In fact, the asymmetric Mannich reaction is one of the most general methods widely used in these syntheses.³

Previously⁴ we reported asymmetric aldol reactions which utilized hydantion as a chiral auxiliary to give aldols in reasonable yields and with high diastereoselectivity. When the aldol adducts were subjected to hydrolysis, the chiral auxiliary could be recovered quantitatively, and β -hydroxy acid derivatives were obtained as almost pure enantiomers. It has been proven that hydantoin is an excellent chiral auxiliary in asymmetric synthesis. With these results in mind, we herein report asymmetric Mannich reactions that utilize hydantoin as a chiral auxiliary, with a series of aldimines using a $TiCl_4/DIPEA$ reagent system.

2. Results and discussion

Previously,⁴ *N*-propionylhydantoin **3** was derived from L-valine methyl ester hydrochloride **1** (Scheme 1). The Mannich reaction of *N*-propionylhydantoin **3** with *N*-(4-methoxyphenyl)benzaldimine was examined first (Scheme 2). At first, TiCl₄ and the base [1 equiv of TiCl₄ and 2.5 equiv of the base] were added.⁵ The use of diisopropylethylamine afforded higher chemical yields than the use of (–)-sparteine, since many by-products were obtained when we used (–)-sparteine. We attempted to use *n*-Bu₂BOTf or Sn(OTf)₂ as the Lewis acid, but neither of them gave the Mannich adduct **4a**. When the reaction temperature was changed from $-78 \,^{\circ}$ C to 0 °C, the diastereomeric ratio exhibited only small variations, but we obtained lower chemical yields when the reaction temperature was kept at

* Corresponding author. Tel.: +86 27 50865322; fax: +86 27 88663043. *E-mail address*: yangguichun@hubu.edu.cn (G.-C. Yang).

^{0957-4166/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetasy.2012.09.006

-78 °C. The Mannich reactions with other aldimines were next examined; these reactions resulted in similar diastereomeric ratios (91:9-96:4) (Table 1).

 Table 1

 Mannich reactions of N-propionylhydantion 3 with several addimines

Entry	Product	Ar	Diastereomeric ratio ^a	Yield ^b (%)
1	4a	C ₆ H ₅	91:9	71
2	4b	4-ClC ₆ H ₄	96:4	82
3	4c	3-02NC6H4	92:8	74
4	4d	2,3-(CH ₃ O) ₂ C ₆ H ₃	93:7	78
5	4e	2-Furyl	94:6	61
6	4f	2-Thienyl	94:6	58

 a Determined by HPLC (C18 reversed-phase column, 254 nm, methanol/H2O 80:20, 1.00 mL/min).

^b Yield of product after silica gel chromatography.

The Mannich adducts **4a**–**f** were subjected to alcoholysis,⁶ which resulted in the quantitative recovery of chiral auxiliary **2** (Scheme 3), and afforded the corresponding methyl esters **5a**–**f** in good yields and in almost enantiomerically pure forms (Table 2).

Table 2			
Alcoholysis o	f Mannich	adducts	4a-f

Entry	Product	Ar	Ee ^a (%)	Yield ^b (%)
1	5a	C ₆ H ₅	>99	78
2	5b	$4-ClC_6H_4$	>99	85
3	5c	3-02NC6H4	>99	75
4	5d	2,3-(CH ₃ O) ₂ C ₆ H ₃	>99	77
5	5e	2-Furyl	>99	70
6	5f	2-Thienyl	>99	80

^a Determined by HPLC (Chiralcel[®] OD-H column, 254 nm, *n*-hexane/2-propanol 90:10, 1.00 mL/min).

^b Yield of product after silica gel chromatography.

In order to determine the absolute configuration of the Mannich adducts, β -amino ester **5a** was treated with NaHMDS at -20 °C in anhydrous THF to afford the known β -lactam **6a** (Scheme 4).

Comparison of the observed $J_{3,4}$ coupling constants ($J_{3,4} = 1.8 \text{ Hz}$) in the ¹H NMR spectrum with those reported in the literature⁷ ($J_{3,4} = 5.8 \text{ Hz}$ for the *syn*-isomer and $J_{3,4} = 2.2 \text{ Hz}$ for the *anti*-isomer) revealed that the newly prepared β -lactam **6a** was an *anti*-isomer. Furthermore, comparing the specific rotation of the newly prepared β -lactam **6a** {[α]_D²⁰ = -46.1 (*c* 0.89, CHCl₃) versus literature⁷ [α]_D²⁵ = +45.2 (*c* 1.01, CHCl₃) (3*S*, 4*R*)} allowed us to establish the absolute configuration of **6a** to be (3*R*,4*S*), which could be extended to the β -amino esters **5a–f** and the Mannich adducts **4a–f**.

Based on the previous literature^{2a,5} reports of asymmetric Mannich reactions directed by chiral auxiliaries, we proposed that Npropionylhydantoin **3** and the aldimines were subjected to TiCl₄ to form the *Z*-enolate, while the *anti*-products could be rationalized by a chelated transition state involving attack of the preformed *Z*enolate on the less hindered Si face of the aldimines with the C=N azomethine bond in an *E*-configuration, which can place the imine Ar substituent in an axial position in the cyclic transition state and therefore afford the diastereoisomer with the relative *anti*-configuration (Scheme 5).

Scheme 3.

3. Conclusion

In conclusion, a very easy and efficient synthetic protocol for asymmetric Mannich reactions has been developed using hydantoin as a chiral auxiliary. Moreover, the Mannich adducts, after the alcoholysis reaction allowed recovery of the chiral auxiliary hydantoin, and afforded a series of β -amino ester derivatives in almost enantiomerically pure forms.

4. Experimental

4.1. General

The aldimines were prepared by condensation of the corresponding aldehyde and *p*-methoxyphenylamine under standard conditions in the literature.⁸ All other reagents were used as purchased. All solvents were dried or purified by standard procedures before use. Separations by flash chromatography were performed on 300–400 mesh silica gel. Melting points were measured on a WRS-1A digital melting point apparatus. Optical rotations were measured using a sodium D line on WZZ-2B Automatic Polarimeter. HPLC analyses were carried out on a Dionex chromatograph equipped with a diode-array UV detector. IR spectra were obtained on KBr pellets or CH₂Cl₂ solvent. NMR spectra were recorded on a Varian Unity Inova 600 spectrometer in CDCl₃ (¹H at 600 MHz and ¹³C at 150 MHz) using TMS as the internal standard. High-resolution mass spectra (HRMS) were recorded on a Varian 7.0T FTMS mass spectrometer using ESI (electrospray ionization).

4.2. Preparation of (*S*)-5-isopropyl-3-phenyl-1-propionylhydantoin 3

The general procedure for N-propionylhydantoin **3** was described in our previous Letter,⁴ and compound **3** obtained in 64% from L-valine methyl ester hydrochloride **1**. $[\alpha]_D^{20} = +10.4$ (*c* 6.33, CH₂Cl₂); IR: 1792, 1732, 1713 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 0.95 (d, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H), 1.24 (d, *J* = 6.6 Hz, 3H), 2.64 (m, 1H), 3.02 (q, *J* = 7.2 Hz, 2H), 4.63 (d, *J* = 2.4 Hz, 1H), 7.32–7.49 (m, 5H); ¹³C NMR (150 MHz, CDCl₃): δ 8.37, 15.49, 18.01, 29.47, 30.84, 62.97, 126.41, 128.87, 129.23, 130.56, 153.02, 169.28, 173.03.

4.3. General procedure for Mannich reactions

The N-propionylhydantoin 3 (0.548 g, 2.0 mmol) was dissolved in anhydrous CH₂Cl₂ (10 mL) and placed in a dry flask under N₂. The solution was cooled to $0 \,^{\circ}$ C, and TiCl₄ (0.22 mL, 2.0 mmol) was added dropwise. The solution was stirred at 0 °C for 15 min, then diisopropyl-ethylamine (0.87 mL, 5.0 mmoL) was added slowly. The solution was stirred at 0 °C for another 30 min, and then a solution of the corresponding aldimine (2.6 mmol) in anhydrous CH₂Cl₂ (5 mL) was added dropwise. The reaction mixture was stirred at 0 °C for 4-8 h, and then quenched with saturated aqueous NH₄Cl. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ $(3 \times 20 \text{ mL})$. The combined organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over anhydrous MgSO₄, filtered, and concentrated. Purification of the crude product by silica gel column chromatography (n-hexane/EtOAc, 8:1, v/v) gave the Mannich adducts 4a-f.

4.3.1. (55,2'R,3'S)-5-Isopropyl-3-phenyl-1-[2'-methyl-3'-(p-meth-oxyphenylamino)-3'-phenyl-propionyl]hydantoin 4a

Yield: 71%; white solid; Mp 66.2–66.9 °C; $[\alpha]_0^{20} = -21.3$ (*c* 1.04, CH₂Cl₂); IR: 3372, 1787, 1734, 1706 cm⁻¹; ¹H NMR (600 MHz,

CDCl₃): δ 0.70 (d, *J* = 7.2 Hz, 3H), 1.14 (d, *J* = 6.0 Hz, 3H), 1.16 (d, *J* = 7.2 Hz, 3H), 2.52 (m, 1H), 3.65 (s, 3H), 4.46 (m, 1H), 4.49 (d, *J* = 9.6 Hz, 1H), 4.62 (d, *J* = 3.6 Hz, 1H), 6.51 (d, *J* = 9.0 Hz, 2H), 6.65 (d, *J* = 9.0 Hz, 2H), 7.18–7.52 (m, 10H); ¹³C NMR (150 MHz, CDCl₃): δ 15.09, 15.35, 17.91, 29.61, 45.00, 55.53, 63.53, 63.59, 114.55, 115.53, 126.54, 127.03, 127.50, 128.60, 129.13, 129.38, 130.43, 140.72, 141.05, 152.23, 153.79, 169.08, 175.29; HRMS calculated for C₂₉H₃₁N₃O₄ [M+Na]⁺: 508.2213, found 508.2206.

4.3.2. (55,2'R,3'S)-5-Isopropyl-3-phenyl-1-[2'-methyl-3'-(p-meth-oxyphenylamino)-3'-(p-chloro-phenyl)-propionyl]hydantoin 4b

Yield: 82%; white solid; Mp 73.8–74.7 °C; $[\alpha]_D^{20} = -24.2 (c 1.11, CH_2CI_2);$ IR: 3383, 1788, 1732, 1703 cm⁻¹; ¹H NMR (600 MHz, CDCI_3): δ 0.72 (d, *J* = 6.6 Hz, 3H), 1.15 (d, *J* = 6.0 Hz, 3H), 1.17 (d, *J* = 7.2 Hz, 3H), 2.51 (m, 1H), 3.67 (s, 3H), 4.44 (m, 1H), 4.47 (d, *J* = 9.6 Hz, 1H), 4.61 (d, *J* = 3.6 Hz, 1H), 6.49 (d, *J* = 7.2 Hz, 2H), 6.66 (d, *J* = 9.0 Hz, 2H), 7.24–7.53 (m, 9H); ¹³C NMR (150 MHz, CDCI_3): δ 14.96, 15.21, 17.83, 29.57, 44.74, 55.49, 63.41, 63.47, 114.51, 114.57, 126.45, 128.39, 128.71, 129.11, 129.32, 130.29, 133.14, 139.51, 140.14, 152.40, 153.73, 168.88, 174.85; HRMS calculated for C₂₉H₃₀ClN₃O₄ [M+Na]⁺: 542.1823, found 542.1820.

4.3.3. (55,2'R,3'S)-5-Isopropyl-3-phenyl-1-[2'-methyl-3'-(p-meth-oxyphenylamino)-3'-(m-nitro-phenyl)-propionyl]hydantoin 4c

Yield: 74%; yellow solid; Mp 80.3–81.5 °C; $[\alpha]_D^{20} = -23.5 (c 0.92, CH_2Cl_2);$ IR: 3377, 1789, 1732, 1704 cm⁻¹; ¹H NMR (600 MHz, CDCl_3): δ 0.73 (d, *J* = 6.6 Hz, 3H), 1.18 (d, *J* = 6.0 Hz, 6H), 2.55 (m, 1H), 3.67 (s, 3H), 4.51 (m, 1H), 4.63 (d, *J* = 3.6 Hz, 1H), 4.65 (d, *J* = 9.6 Hz, 1H), 6.53 (d, *J* = 7.2 Hz, 2H), 6.66 (d, *J* = 9.0 Hz, 2H), 7.35–8.19 (m, 9H); ¹³C NMR (150 MHz, CDCl_3): δ 15.03, 15.28, 17.83, 29.62, 44.60, 55.48, 63.54, 63.56, 114.70, 115.84, 121.97, 122.77, 126.44, 129.20, 129.38, 129.68, 130.24, 133.36, 139.62, 143.36, 148.42, 153.01, 153.74, 168.80, 174.30; HRMS calculated for C₂₉H₃₀N₄O₆ [M+Na]⁺: 553.2063, found 553.2052.

4.3.4. (5*S*,2'*R*,3'S)-5-Isopropyl-3-phenyl-1-[2'-methyl-3'-(*p*-meth-oxyphenylamino)-3'-(2",3"-dimethoxyphenyl)-propionyl]hydantoin 4d

Yield: 78%; white solid; Mp 71.9–72.6 °C; $[\alpha]_D^{20} = -30.6 (c 1.85, CH_2CI_2)$; IR: 3373, 1788, 1732, 1704 cm⁻¹; ¹H NMR (600 MHz, CDCI_3): δ 0.78 (d, *J* = 6.0 Hz, 3H), 1.09 (d, *J* = 6.6 Hz, 3H), 1.18 (d, *J* = 7.2 Hz, 3H), 2.58 (m, 1H), 3.66 (s, 3H), 3.81 (s, 3H), 3.85 (s, 3H), 4.54 (m, 1H), 4.66 (d, *J* = 3.0 Hz, 1H), 4.89 (d, *J* = 9.6 Hz, 1H), 6.60–7.53 (m, 12H); ¹³C NMR (150 MHz, CDCI_3): δ 15.08, 15.13, 17.88, 29.51, 44.37, 55.47, 55.50, 55.53, 60.90, 63.48, 111.41, 114.38, 115.91, 119.66, 123.97, 126.53, 128.98, 129.28, 130.50, 140.91, 140.99, 147.25, 152.36, 152.39, 153.51, 169.22, 175.62; HRMS calculated for C₃₁H₃₅N₃O₆ [M+Na]⁺: 568.2424, found 568.2417.

4.3.5. (5*S*,2'*R*,3'S)-5-Isopropyl-3-phenyl-1-[2'-methyl-3'-(*p*-methoxyphenylamino)-3'-(2"-furyl)-propionyl]hydantoin 4e

Yield: 61%; white solid; Mp 64.5–66.0 °C; $[\alpha]_D^{20} = -28.4$ (*c* 0.83, CH₂Cl₂); IR: 3364, 1787, 1734, 1706 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 0.81 (d, *J* = 6.6 Hz, 3H), 1.13 (d, *J* = 6.6 Hz, 3H), 1.16 (d, *J* = 6.6 Hz, 3H), 2.54 (m, 1H), 3.68 (s, 3H), 4.56 (m, 1H), 4.59 (d, *J* = 9.6 Hz, 1H), 4.64 (d, *J* = 3.0 Hz, 1H), 6.15–7.50 (m, 12H); ¹³C NMR (150 MHz, CDCl₃): δ 14.58, 15.19, 17.86, 29.40, 43.42, 55.48, 57.74, 63.36, 107.81, 110.01, 114.44, 116.14, 126.48, 129.00, 129.27, 130.43, 140.59, 141.95, 152.75, 153.29, 153.41, 169.10, 174.87; HRMS calculated for C₂₇H₂₉N₃O₅ [M+Na]⁺: 498.2005, found 498.2000.

1383

4.3.6. (5*S*,2′*R*,3′*S*)-5-Isopropyl-3-phenyl-1-[2′-methyl-3′-(*p*-meth-oxyphenylamino)-3′-(2″-thienyl)-propionyl]hydantoin 4f

Yield: 58%; white solid; Mp 62.5–63.1 °C; $[z]_{D}^{20} = -25.9$ (*c* 1.45, CH₂Cl₂); IR: 3367, 1789, 1732, 1698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 0.74 (d, *J* = 6.6 Hz, 3H), 1.16 (d, *J* = 7.2 Hz, 3H), 1.23 (d, *J* = 7.2 Hz, 3H), 2.51 (m, 1H), 3.68 (s, 3H), 4.53 (m, 1H), 4.63 (d, *J* = 3.0 Hz, 1H), 4.79 (d, *J* = 8.4 Hz, 1H), 6.58–7.52 (m, 12H); ¹³C NMR (150 MHz, CDCl₃): δ 15.08, 15.21, 17.83, 29.47, 45.72, 55.41, 59.52, 63.36, 114.47, 115.78, 124.31, 126.45, 126.72, 129.02, 129.27, 130.33, 132.50, 140.39, 140.43, 152.61, 153.43, 168.96, 174.82; HRMS calculated for C₂₇H₂₉N₃O₄ [M+Na]⁺: 514.1777, found 514.1772.

4.4. General procedure for the alcoholysis of Mannich adducts 4a–f

To a solution of Mannich adducts **4a–f** (1.0 mmol) in methanol (50 mL) was added DMAP (0.244 g, 2.0 mmol), after which the reaction mixture was refluxed for 8 h. Next, the mixture was concentrated under reduced pressure. Purification of the crude product by silica gel column chromatography (*n*-hexane/EtOAc, 6:1, v/v) recovered the chiral hydantoin **2** and gave β -amino esters **5a–f**.

4.4.1. (2R,3S)-Methyl 2-methyl-3-(p-methoxyphenylamino)-3-phenylpropanoate 5a

Yield: 78%; $[\alpha]_D^{20} = -50.8$ (*c* 1.02, CH₂Cl₂); IR: 3377, 1731 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.13 (d, *J* = 7.2 Hz, 3H), 2.84 (m, 1H), 3.63 (s, 3H), 3.66 (s, 3H), 4.43 (d, *J* = 7.8 Hz, 1H), 6.50 (d, *J* = 7.8 Hz, 2H), 6.65 (d, *J* = 9.0 Hz, 2H), 7.20–7.30 (m, 5H); ¹³C NMR (150 MHz, CDCl₃): δ 15.20, 46.63, 51.80, 55.55, 61.68, 114.54, 114.99, 126.82, 127.36, 128.48, 140.68, 141.02, 152.02, 175.47.

4.4.2. (2R,3S)-Methyl 2-methyl-3-(p-methoxyphenylamino)-3-(p-chloro-phenyl) propanoate 5b

Yield: 85%; $[\alpha]_D^{20} = -43.1$ (*c* 0.57, CH₂Cl₂); IR: 3393, 1731 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.15 (d, *J* = 7.2 Hz, 3H), 2.81 (m, 1H), 3.64 (s, 3H), 3.67 (s, 3H), 4.41 (d, *J* = 6.6 Hz, 1H), 6.47 (d, *J* = 7.8 Hz, 2H), 6.67 (d, *J* = 9.0 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 15.21, 46.46, 51.87, 55.59, 61.01, 114.62, 114.93, 128.21, 128.70, 133.00, 139.76, 140.44, 152.17, 175.20.

4.4.3. (2R,3S)-Methyl 2-methyl-3-(p-methoxyphenylamino)-3-(m-nitro-phenyl) propanoate 5c

Yield: 75%; $[\alpha]_D^{20} = -48.2$ (*c* 1.16, CH₂Cl₂); IR: 3398, 1733 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.21 (d, *J* = 7.2 Hz, 3H), 2.92 (m, 1H), 3.65 (s, 3H), 3.68 (s, 3H), 4.58 (d, *J* = 7.8 Hz, 1H), 6.49 (d, *J* = 7.8 Hz, 2H), 6.68 (d, *J* = 8.4 Hz, 2H), 7.48-8.21 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 15.21, 46.13, 52.10, 55.62, 61.10, 114.69, 115.00, 121.88, 122.65, 129.51, 133.14, 139.75, 143.29, 148.42, 152.53, 174.67.

4.4.4. (2*R*,3*S*)-Methyl 2-methyl-3-(*p*-methoxyphenylamino)-3-(2',3'-dimethoxyphenyl) propanoate 5d

Yield: 77%; $[\alpha]_D^{20} = -53.7$ (*c* 2.20, CH₂Cl₂); IR: 3390, 1733 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.13 (d, *J* = 7.2 Hz, 3H), 2.97 (m, 1H), 3.63 (s, 3H), 3.67 (s, 3H), 3.83 (s, 3H), 3.90 (s, 3H), 4.77 (d, *J* = 7.8 Hz, 1H), 6.58–6.97 (m, 7H); ¹³C NMR (150 MHz, CDCl₃): δ 15.87, 45.90, 51.99, 55.78, 55.79, 55.84, 60.93, 111.59, 114.82,

114.84, 119.91, 123.80, 124.10, 147.19, 152.37, 152.68, 152.81, 176.28.

4.4.5. (2*R*,3*S*)-Methyl 2-methyl-3-(*p*-methoxyphenylamino)-3-(2'-furyl)-propanoate 5e

Yield: 70%; $[\alpha]_D^{20} = -47.6$ (*c* 1.05, CH₂Cl₂); IR: 3372, 1732 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.12 (d, *J* = 7.2 Hz, 3H), 3.03 (m, 1H), 3.67 (s, 3H), 3.69 (s, 3H), 4.61 (d, *J* = 7.8 Hz, 1H), 6.15 (d, *J* = 3.0 Hz, 1H), 6.24 (dd, *J* = 1.8, 3.0 Hz, 1H), 6.61 (d, *J* = 9.0 Hz, 2H), 6.72 (d, *J* = 9.0 Hz, 2H), 7.31 (d, *J* = 1.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 14.38, 44.33, 51.98, 55.66, 56.10, 107.54, 110.15, 114.68, 115.84, 140.69, 141.96, 152.74, 153.59, 175.27.

4.4.6. (2*R*,3*S*)-Methyl 2-methyl-3-(*p*-methoxyphenylamino)-3- (2'-thienyl)-propanoate 5f

Yield: 80%; $[\alpha]_D^{20} = -45.8$ (*c* 1.10, CH₂Cl₂); IR: 3384, 1732 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.19 (d, *J* = 7.2 Hz, 3H), 2.93 (m, 1H), 3.67 (s, 3H), 3.69 (s, 3H), 4.76 (d, *J* = 7.2 Hz, 1H), 6.60 (d, *J* = 7.8 Hz, 2H), 6.70 (d, *J* = 9.0 Hz, 2H), 6.89–6.92 (m, 2H), 7.15 (d, *J* = 4.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 14.95, 46.98, 52.15, 55.75, 57.89, 114.76, 115.53, 124.46, 125.06, 126.88, 140.63, 145.91, 152.64, 175.26.

4.5. Preparation of (3*R*,4*S*)-1-(4-methoxyphenyl)-3-methyl-4-phenylazetidin-2-one 6a

The β -amino ester **5a** (0.224 g, 0.75 mmol) was dissolved in anhydrous THF (15 mL) and placed in a dry flask under N₂. The solution was cooled to -20 °C, then a solution of NaHMDS (0.75 mmol) in THF (0.38 mL, 2 M) was added dropwise. The reaction mixture was then stirred at -20 °C for 30 min, and then quenched with saturated aqueous NH₄Cl. The mixture was extracted with CH_2Cl_2 (3 \times 10 mL). The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried over anhydrous MgSO₄, filtered, and concentrated. Purification of the crude product by silica gel column chromatography (*n*-hexane/ EtOAc, 8:1, v/v) gave a white needle solid **6a** (0.178 g, 89%). Mp 122–124 °C; $[\alpha]_D^{20} = -46.1$ (*c* 0.89, CHCl₃); IR: 1745 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 1.47 (d, J = 7.2 Hz, 3H), 3.11 (dq, J = 2.4, 7.2 Hz, 1H), 3.73 (s, 3H), 4.54 (d, J=1.8 Hz, 1H), 6.77 (d, J = 9.0 Hz, 2H, 7.22 (d, J = 9.6 Hz, 2H), 7.31–7.38 (m, 5H); ¹³C NMR (150 MHz, CDCl₃): δ 13.23, 55.50, 55.57, 63.03, 114.50, 118.41, 126.02, 128.53, 129.23, 131.69, 138.27, 156.13, 167.85.

Acknowledgments

We gratefully acknowledge the National Natural Sciences Foundation of China (No. 20772026 and 21042005) and the Natural Sciences Foundation of Hubei province in China (No. 2010CDA019) for financial support.

References

- Kambara, T.; Hussein, M. A.; Fujieda, H.; Iida, A.; Tomioka, K. *Tetrahedron Lett.* 1998, 39, 9055–9058.
- (a) Vicario, J. L.; Badia, D.; Carrillo, L. Org. Lett. 2001, 3, 773–776; (b) Vicario, J. L.; Badia, D.; Carrillo, L. J. Org. Chem. 2001, 66, 9030–9032; (c) Iza, A.; Vicario, J. L.; Carrillo, L.; Badia, D. Synthesis 2006, 4065–4074.
- (a) Periasamy, M.; Suresh, S.; Ganesan, S. S. Tetrahedron: Asymmetry 2006, 17, 1323–1331; (b) Tomioka, K.; Hata, S. Tetrahedron 2007, 63, 8514–8520; (c) Periasamy, M.; Ganesan, S. S.; Suresh, S. Tetrahedron: Asymmetry 2010, 21, 385– 392.
- Zhang, J. S.; Lu, C. F.; Chen, Z. X.; Li, Y.; Yang, G. C. Tetrahedron: Asymmetry 2012, 23, 72–75.

- 5. Ferstl, E. M.; Venkatesan, H.; Ambhaikar, N. B.; Snyder, J. P.; Liotta, D. C. Synthesis **2002**, 2075–2083.
- (a) Su, D. W.; Wang, Y. C.; Yan, T. H. Tetrahedron Lett. 1999, 40, 4197–4198; (b)
 Su, D. W.; Wang, Y. C.; Yan, T. H. Chem. Commun. 1999, 545–546; (c) Wu, Y. K.;
 Sun, Y. P.; Yang, Y. Q.; Hu, Q.; Zhang, Q. J. Org. Chem. 2004, 69, 6141–6144. 6.
- 7. Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. J. Am. Chem. Soc. 1997,
- Y. Fujteua, R., Kallal, M., Kallbard, T., Hud, A., Tohnoka, K. J. Am. Chem. Soc. 1997, 119, 2060–2061.
 (a) Kametani, T.; Furuyama, H.; Fukuoka, Y.; Takeda, H.; Suzuki, Y.; Honda, T. J. Heterocycl. Chem. 1986, 23, 185–187; (b) Danheiser, R. L; Okamoto, I.; Lawlor, M. D.; Lee, T. W. Org. Synth. 2003, 80, 160–171.