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ABSTRACT: An isolable pyridinium trifluoromethoxide salt is
prepared from the reaction of 4-dimethylaminopyridine with the
commercially available liquid 2,4-dinitro(trifluoromethoxy)-
benzene. The salt is an effective trifluoromethoxide source for
SN2 reactions to form trifluoromethyl ethers.

The trifluoromethoxy group (OCF3) has emerged as an
important structural motif in scaffolds relevant to both

agrochemical and pharmaceutical development.1 The intro-
duction of an OCF3 substituent has been shown to enhance
the lipophilicity2,3 [Hansch parameter (π) = 1.04], bioavail-
ability, and metabolic stability4,5 of biologically active
molecules.6,7 As a result of the increasing importance of this
functional group, considerable recent attention has been
focused on developing practical and convenient reagents for
introducing OCF3 groups into organic molecules.8−11

Nucleophilic trifluoromethoxide reagents are widely used for
the construction of carbon−OCF3 bonds.12−17 As one
example, SN2 reactions between alkyl electrophiles and
trifluoromethoxide salts serve as an effective route to alkyl
trifluoromethyl ethers (Figure 1A).7,18−20 However, at present,
no trifluoromethoxide salts are commercially available.7,21

Instead, these reagents are typically formed in situ through the
reaction of fluoride or amine nucleophiles with OCF3-
containing electrophiles (Figure 1B), of which common
examples are trifluoromethyl triflate (TFMT),7,22 trifluor-

omethyl arylsulfonate (TFMS),14 trifluoromethyl benzoate
(TFBz),23 or trifluoromethyl methyl ether (MeOCF3).

24 The
practicality and scalability of these in situ protocols are limited
by the OCF3-containing electrophiles, of which many are gases
at room temperature (TFMT and MeOCF3), are expensive/
require costly reagents (TFMT and TFMS), and/or require
multi-step syntheses (TFMS and TFBz), often involving highly
toxic fluorophosgene (TFBz).
Many of these limitations could be addressed by leveraging

commercially available 2,4-dinitro(trifluoromethoxy)benzene
(DNTFB) as an OCF3 electrophile. In contrast to the reagents
in Figure 1B, DNTFB is a convenient-to-handle high boiling
liquid that is relatively inexpensive.25 In 2010, Langlois and co-
workers reported that the SNAr reaction between DNTFB and
tetrabutylammonium triphenyldifluorosilicate (TBAT) releases
Bu4NOCF3.

19 This in situ generated trifluoromethoxide salt
was then used as a nucleophile for SN2 reactions (Scheme 1A).
We noted that DNTFB shares the dinitrobenzene moiety with
2,4-dinitrochlorobenzene, which is the reagent used for the
formation of pyridinium salts in the Zincke reaction.26 As such,
we hypothesized that pyridine nucleophiles could undergo
SNAr with DNTFB to afford isolable trifluoromethoxide salts
with a highly delocalized pyridinium countercation (PyOCF3;
Scheme 1B). The advantages of this approach are 2-fold: (1)
the trifluoromethoxide salt would be generated from two easy-
to-handle, commercially available, and inexpensive precursors,
and (2) the isolation of the salt would enable structural
characterization as well as deployment under a variety of
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Figure 1. (A) SN2 reactions using in situ generated trifluoromethoxide
salts. (B) General procedure for in situ activation of trifluorometh-
oxide electrophiles with nucleophiles to form trifluoromethoxide salts.
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conditions (without limitations to the reaction media required
for salt formation).
Our initial studies explored the reaction of 1 equiv of

DNTFB with 1 equiv of various pyridine derivatives in MeCN
for 1 h at room temperature. As shown in Scheme 2, the

percent conversion of DNTFB under these conditions tracks
closely with the nucleophilicity of the pyridine. For example,
while unsubstituted pyridine affords only 25% conversion, the
more nucleophilic 4-dimethylaminopyridine (DMAP) and 4-
pyrrolidinopyridine result in quantitative conversion of
DNTFB. This is accompanied by the formation of a broad
19F nuclear magnetic resonance (NMR) resonance at −22
ppm, which is consistent with the generation of a
trifluoromethoxide salt.17 DMAP was ultimately selected as
the optimal activator for DNTFB as a result of its low cost27

and ease of handling as a free-flowing solid.
The reaction between DNTFB and DMAP proceeds to high

(>99%) conversion in a variety of polar aprotic solvents,
including N,N-dimethylformamide (DMF), N-methylpyrroli-
done (NMP), and N,N′-dimethylpropyleneurea (DMPU), to
afford soluble PyOCF3. In contrast, when the reaction is
conducted in tetrahydrofuran (THF), PyOCF3 forms as a
yellow precipitate after 30 min at room temperature (Figure
2A). This solid can be collected by filtration and isolated in
90% yield and 94% purity. The major impurities are 1-fluoro-
2,4-dinitrobenzene and DMAP. These arise from decom-
position of trifluoromethoxide to fluorophosgene and fluoride
followed by SNAr reaction of the latter with the pyridinium
cation (Figure S1 of the Supporting Information).

X-ray quality crystals were obtained by slow diffusion of
diethyl ether into a MeCN solution of PyOCF3 at −35 °C. An
Oak Ridge Thermal Ellipsoid Plot (ORTEP) diagram is shown
in Figure 2B. The bond distances and angles for PyOCF3 are
similar to those reported in the literature for tris-
(dimethylamino)sulfonium trifluoromethoxide (TASOCF3).

28

In both structures, the C−O single bond is relatively short
(1.216 Å in PyOCF3 and 1.227 Å in TASOCF3), which is
consistent with significant hyperconjugation. An electrostatic
potential map for this salt (Figure 2C) illustrates that the
conjugated nature of the cation results in substantial
delocalization of the positive charge.29

The stability of PyOCF3 was evaluated in two different ways.
First, a sample of solid PyOCF3 was stored at −35 °C under
nitrogen and periodically assayed by 19F and 1H NMR
spectroscopy. No decomposition of this material was detected
over 1 month. Second, the decomposition of an 8.0 mM
solution of PyOCF3 in MeCN was monitored via 1H NMR
spectroscopy at room temperature. As shown in Figure 2D,
after 30 h, approximately 50% of the salt remained, while full
decomposition was observed after 48 h. These data indicate
that the solution stability of PyOCF3 is considerably lower
than that of the quaternary ammonium trifluoromethoxide
salts reported by Friesen and co-workers.24

Finally, PyOCF3 was employed as a nucleophilic trifluor-
omethoxide source for SN2 reactions (Table 1). We first
examined benzyl bromide as the substrate under conditions
reported by Langlois and co-workers19 [using 2 equiv of
PyOCF3 (generated ex situ from DNTFB and DMAP as a 0.4
M solution in MeCN) at room temperature for 4 days]. This

Scheme 1. DNTFB as a Trifluoromethoxide Source

Scheme 2. Conversion of DNTFB Using Different Pyridine
Derivatives Figure 2. (A) Synthesis of PyOCF3. (B) ORTEP diagram of PyOCF3

(ellipsoids at 50% probability). Selected bond distances (Å): C(1)−
O(1), 1.216; C(1)−F(1), 1.406; C(1)−F(2), 1.402; and C(1)−F(3),
1.408 (hydrogen atoms are omitted for clarity). (C) Electrostatic
potential map of PyOCF3. (D) Decomposition of an 8.0 mM solution
of PyOCF3 in MeCN-d3 at room temperature. Concentrations
determined by 1H NMR spectroscopy with benzene as an internal
standard.
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reaction afforded compound 2a in 38% yield (entry 1 in Table
1). Increasing the temperature to 40 °C and lowering the
reaction time to 24 h resulted in a 58% yield of compound 2a.
The addition of 1.1 equiv of AgOTf led to a further
enhancement in the yield to 70%, likely driving the reaction
by the precipitation of AgBr7,24 (entries 2 and 3 in Table 1).
Under the optimal conditions (1 equiv of benzyl bromide, 2
equiv of ex situ generated PyOCF3 as a 0.4 M solution in
MeCN, and 1.1 equiv of AgOTf at 40 °C for 5 h), product 2a
was formed in 74% yield (entry 4 in Table 1) and only traces
(<5%) of benzyl fluoride were detected.30 Notably, benzyl
fluoride is a common byproduct in other SN2 reactions with
trifluoromethoxide, and it derives from decomposition of
trifluoromethoxide to fluorophosgene and fluoride, followed by
SN2 by the latter.7 We hypothesize that the high chemo-
selectivity with PyOCF3 is due to the cation serving as a
fluoride sponge via SNAr (see the Supporting Information for
further details). Consistent with this proposal, the reaction of
PyOCF3 with 1 equiv of anhydrous NMe4F afforded 1-fluoro-
2,4-dinitrobenzene in 63% yield.31

We evaluated the scope of this reaction with respect to the
alkyl halide electrophile (Scheme 3).32 A variety of
functionalities, including methoxy, nitro, ester, amide, and
nitrile groups, were well-tolerated. We note that the yields with
PyOCF3 under these conditions are comparable to or slightly
lower than those reported with other trifluoromethoxide
salts.33 However, the practicality and synthetic accessibility of
PyOCF3 render it an attractive alternative. In addition, only
traces of benzyl and alkyl fluorides were observed in these
systems, which demonstrates a higher selectivity for trifluor-
omethoxylation over nucleophilic fluorination.
In conclusion, this report describes the synthesis and

characterization of a new pyridinium trifluoromethoxide salt
that is easily prepared from inexpensive and readily available
starting materials. This salt serves as an effective reagent for
SN2 reactions, and we anticipate that it should find broader use
as a practical trifluoromethoxide source for other trans-
formations.
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(32) Secondary alkyl bromides, including bromodiphenylmethane,
1-bromoethylbenzene, and 2-bromopentane, were also evaluated as
substrates for this transformation and yielded trifluoromethoxylated
products 2m, 2n and 2o in 58, 51, and 40% 19F NMR yield,
respectively. The isolation of these products proved difficult as a result
of their volatility and the modest stability of the products to the
isolation conditions (see the Supporting Information for details).
(33) For example, product 2e was formed in 87% yield using
AgOCF3 (generated from TFMT; ref 22a), 78% yield using TFMS
(ref 15), and 73% yield using 1,1-dimethylpyrrolidinium trifluor-
omethoxide (generated from MeOCF3; ref 24).
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