Note

TABLE I

Fourier-transform ¹³C nuclear magnetic resonance spectra of D-glucose 3- and 6-sulfates

S. HONDA, H. YUKI, AND K. TAKIURA

Faculty of Pharmaceutical Sciences, Osaka University, Toneyama, Toyonaka, Osaka-fu (Japan) (Received November 14th, 1972; accepted in revised form January 20th, 1973).

Substituent effects of the methyl group in some methylated inositols¹ and hexopyranosides² have been reported by Dorman *et al.* There are similar reports on substituent effects of the methyl group in methyl glycosides^{3,4}, and the ¹³C chemical shifts of some sugar acetates⁵ and oligosaccharides^{5,6} have been discussed from this viewpoint. Concerning substituent effects of the *O*-sulfate group in carbohydrate sulfates, however, only limited data⁷ have been reported, dealing with heparin and its degradation products. In view of this paucity of data, the Fourier-transform ¹³C n.m.r. spectra of two simple carbohydrate sulfates, *D*-glucose 3- and 6-sulfates, were examined and compared with the spectrum of the parent sugar, D-glucose. Study of substituent effects of the sulfate group on ¹³C chemical shifts can be expected to be useful for placement of sulfate groups in carbohydrate sulfates of biochemical and pharmacological interest.

Table I gives ¹³C shift-data for sulfuric esters of *n*-propanol, cyclopentanol, and cyclohexanol. These esters may be regarded as model compounds for aliphatic primary and secondary sulfates, whose ¹³C chemical shifts are arbitrarily assignable simply by comparing their spectra with those of the parent alcohols. As seen from Table I, there are marked downfield shifts (8–11 p.p.m.) of α -carbon atoms and moderate upfield shifts (2–3 p.p.m.) of β -carbon atoms, whereas no appreciable shifts are observed for γ - and δ -carbon atoms. The shift-directions of α - and β -carbon

	n-Propyl			Cyclopentyl			Cyclohexyl			
	Alcohol	Sulfate	Δ	Alcohol	Sulfate	Δ	Alcohol	Sulfate	Δ	
α-Carbon	128.8	120.4	8.4	118.9	107.9	-11.0	122.4	111.7	-10.7	
β-Carbon	166.7	169.5	+2.8	156.9	158.9	+2.0	156.5	159.5	+3.0	
y-Carbon	182.5	182.0	-0.5	168.6	168.6	0.0	167.4	168.3	+0.9	
δ -Carbon		~		-	-	₁	166.0	166.9	+0.9	

¹³C CHEMICAL SHIFTS⁴ AND SUBSTITUENT SHIFTS (Δ) OF SULFURIC ESTERS OF SIMPLE ALCOHOLS

"Chemical shifts are expressed in p.p.m. upfield from CS₂.

signals upon O-sulfation were the same as those produced by methylation, and the shift-values are also of approximately the same magnitude.

These criteria allowed straightforward assignment of ¹³C signals of D-glucose 3- and 6-sulfates (see Fig. 1). The Fourier-transform spectrum of D-glucose was practically the same as its continuous-wave spectrum (which has been completely assigned^{2,4,8}), except for a newly observable narrow separation of the C-3 β and C-5 β signals. Comparison of the spectrum of the 3-sulfate with that of D-glucose. reveals that the signals of C-1 β , C-1 α , and the C-6 pair of D-glucose correspond directly with the signals a, b, and i, respectively, of the 3-sulfate. The most noteworthy change is the appearance of a new pair of signals, c and d, between the signals of C-1 α and the adjacent signal (C-3 β or C-5 β) of D-glucose. The signals c and d were unambiguously assigned to C-3 of the anomeric 3-sulfates having downfield shifts of 9.5 and 8.5 p.p.m. The signal at lower field (c) was firmly assigned to the β -anomer and that at higher field (d) to the α -anomer, as the anomeric ratio was equal to that in the C-1 pair of signals ($a = C-1\beta$ and $b = C-1\alpha$). The peak *i* could be assigned to the overlapping C-4 signals, displaying an upfield shift of 2.2 p.p.m; this shift value is reasonable for the β -carbon atoms β -disposed to the sulfate group. Of four signals left unassigned, the signal h of the 3-sulfate (absent in the spectrum of D-glucose) is evidently, from its low intensity, a signal of the α -anomer. The signal f, which from its high intensity can be assigned to the β -anomer, has the same shift as C-3 α of D-glucose, but is not C-3 α , as the C-3 α signal of the 3-sulfate is the signal d. On the

Fig. 1. Proton-decoupled, natural-abundance ¹³C n.m.r. spectra of freshly dissolved D-glucose 3-sulfate (A), D-glucose (B), and D-glucose 6-sulfate (C) in D_2O .

other hand, signals e and g for the 3-sulfate were not new but exhibited nearly the same chemical shifts as the signal of C-3 β or C-5 β and the overlapped signal of C-2 α + C-5 α , respectively, in the spectrum of D-glucose. As the substituent effect of the sulfate group on the β -carbon atom (C-2) is greater than on the γ -carbon atom (C-5), and as the shift-direction of the β -carbon is toward high field (on the basis of the results presented in Table I), the signals f and h were assigned to C-2 β and C-2 α , respectively. Accordingly, signals e and g were considered to be the C-5 pair and, from their intensities, were assigned to C-5 β and C-5 α , respectively.

In the spectrum of the 6-sulfate, the C-1, C-2, C-3, and C-4 pairs were found without appreciable shifts from those of D-glucose in the signals k (C-1 β), l (C-1 α), m (C-3 β), n or o (C-2 β), p (C-3 α), q (C-2 α), and s (an overlapped signal of the C-4 pair). Prominent downfield shifts of the α -carbon atoms (the C-6 pair) are evident, their resonances appearing as the overlapping signal t displaying substituent shifts of -6.5 (α -anomer) and -6.6 p.p.m. (β -anomer). The β -carbon atoms (the C-5 pair) gave rise to the signals n or o (C-5 β), and r (C-5 α), which were shifted by 1.6-2.0 and 1.7 p.p.m., respectively, toward high field from the corresponding C-5 carbon atoms in D-glucose. The assignment of the closely neighboring signals n and o was uncertain, although it seemed more probable that C-2 β should correspond to n (substituent shift, 0.0 p.p.m.) rather than to o (substituent shift, +0.3 p.p.m.). Tentative assignments and substituent shifts of carbon atoms in D-glucose 3- and 6-sulfates are shown in Table II.

TABLE II	
----------	--

TENTATIVE ASSIGNMENTS	a AND	SUBSTITUENT	SHIFTS	(⁄_)	FOR	D-GLUCOSE	3-	AND	6-SULFATES
-----------------------	-------	-------------	--------	------	-----	-----------	----	-----	-------------------

	D-Glucose		D-Gluc	D-Glucose 3-sulfate				D-Glucose 6-sulfate			
	α- Anomer	β- Anomer	α- Anomer	Δ	β- Anome	<i>Δ</i>	α- Anome	, ⊿	β- Anome	Δ ,	
C-1 C-2	99.6 120.6	96.1 117.8	99.9 121.7	0.0 +1.1	96.3 119.0	+0.2 +1.2	99.7 120.5	-0.2 -0.1	95.9 117.8	-0.2 0.0	
C-3	119.2	116.1 or 116.2	109.7	-9.5	107.6	-8.5 or -8.6	119.2	0.0	116.3	+0.2 or +0.1	
C-4	122.3	122.3	124.5	+2.2	124.5	+2.2	122.6	+0.3	122.6	+0.3	
C-5	120.6	116.2 or 116.1	120.7	+0.1	116.5	+0.3 or +0.4	122.3	+1.7	118.1	+1.9 or +2.0	
C- 6	131.2	131.3	131.3	+0.1	131.3	0.0	124.7	-6.5	124.7	-6.6	

"Chemical shifts are expressed in p.p.m. upfield from CS2.

EXPERIMENTAL

Materials. — The sodium salt of D-glucose 3-sulfate was synthesized according to the literature⁹. The sodium salt of D-glucose 6-sulfate was prepared by the phenyl-sulfuryl chloride method¹⁰ previously described. The sulfuric esters of *n*-propanol, cyclopentanol, and cyclohexanol were prepared by the pyridine-sulfur trioxide method, and their sodium salts were recrystallized several times from ethanol.

 ${}^{13}C$ n.m.r. spectra. — Natural abundance ${}^{13}C$ n.m.r. spectra were observed at 25.1 MHz with a JEOL JNM-PFT-100 spectrometer with D₂O internal lock. All of the spectra were proton-decoupled by noise-modulation and obtained by accumulating 32 times (*n*-propanol, cyclopentanol, and cyclohexanol) and 2000 times (other examples). The neat samples (*n*-propanol, cyclopentanol, and cyclohexanol) and 40% D₂O solutions (other samples) were measured at room temperature, and chemical shifts are expressed in p.p.m. upfield from a CS₂ standard. The substituent shifts of the sulfuric esters of *n*-propanol, cyclopentanol, and cyclohexanol were calculated without minor corrections for solvent effects.

ACKNOWLEDGMENT

The authors express their sincere gratitude to Japan Electron Optics Laboratories for the measurement of ¹³C n.m.r. spectra.

REFERENCES

- 1 D. E. DORMAN, S. J. ANGYAL, AND J. D. ROBERTS, J. Amer. Chem. Soc., 92 (1970) 1351.
- 2 D. E. DORMAN AND J. D. ROBERTS, J. Amer. Chem. Soc., 92 (1970) 1355.
- 3 L. D. HALL AND L. F. JOHNSON, Chem. Commun., (1969) 509.
- 4 A. S. PERLIN, B. CASU, AND H. J. KOCH, Can. J. Chem., 48 (1970) 2596.
- 5 D. E. DORMAN AND J. D. ROBERTS, J. Amer. Chem. Soc., 93 (1971) 4463.
- 6 N. YAMAOKA, T. USUI, K. MATSUDA, AND K. TSUZIMURA, Tetrahedron Lett., 23 (1971) 2047.
- 7 A. S. PERLIN, N. M. K. NG YING, AND S. S. BHATTACHARJEE, Can. J. Chem., 50 (1972) 2437.
- 8 A. S. PERLIN AND B. CASU, Tetrahedron Lett., 34 (1969) 2921.
- 9 K. B. GUISELEY AND P. M. RUOFF, J. Org. Chem., 26 (1961) 1248.
- 10 K. TAKIURA AND S. HONDA, Yakugaku Zasshi, 87 (1967) 1052.