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The mechanism of the previously developed cross-coupling 
reaction of aryl Grignard reagents with aryl halides was 
explored in more detail. Single electron transfer from an aryl 
Grignard reagent to an aryl halide initiates a radical chain by 10 

giving an anion radical of the aryl halide. The following 
propagation cycle consists entirely of anion radical 
intermediates. 

Cross-coupling of arylmetals with aryl halides is one of the most 
straightforward and reliable methods to obtain biaryls, where 15 

transition metal catalysts have inevitably been used.1 On the other 
hand, we have recently reported the first transition metal-free 
coupling of arylmagnesium bromides (Ar1–MgBr) with aryl 
halides (Ar2–X) (eqn (1)), utilizing activation of Ar2–X by single 
electron transfer (SET).2 We proposed an SRN1 mechanism3 20 

shown as Path A in Scheme 1. Thus, SET from Ar1–MgBr to 
Ar2–X gives [Ar2–X]• – (step a), which is converted to Ar2 • upon 
elimination of X– (step b). After nucleophilic attack of Ar1–MgBr 
to Ar2 • (step c), SET from the resulting [Ar1–Ar2]• – to Ar2–X 
gives coupling product Ar1–Ar2 and regenerates [Ar2–X]• – to 25 

reenter the radical chain (step d).4 We disclosed that addition of 
an anion radical of a biaryl as a single electron equivalent 
drastically accelerates the reaction, and that aryl halides show 
higher reactivities when they have lower reduction potentials. 
These results support that the reaction pathway includes SET as 30 

in steps a and d,5 but elucidation of the rest steps (b and c) are left 
unexplored. Here we report what intermediates are involved in 
the Grignard cross-coupling, where [Ar2–X]• – is transformed not 
through Ar2 • but directly to [Ar1–Ar2]• – as Path B in Scheme 1.6 

The cross-coupling we developed gives biaryls in high 35 

yields.2 For example, the reaction of PhMgBr (1a: 1.5 equiv) with 
2-iodonaphthalene (2m) in toluene in the presence of THF (6 
equiv) at 110 °C for 24 h gave 97% yield of 2-phenylnaphthalene 
(3am) (eqn (2)).7 The yield was reasonably high but GC analysis 
of the reaction mixture showed existence of a trace amount 40 

(0.3%) of a regioisomeric mixture of 2-naphthyltoluenes (4: 
o/m/p = 63/22/15), which is likely to be produced through 
addition of the 2m-derived naphthyl radical to toluene. The 
characteristic high ortho-selectivity strongly supports 
involvement of the radical addition to the benzene ring.8 The 45 

generation of Ar2 • from Ar2–X in the reaction mixture is 
consistent with operation of SRN1 mechanism (Path A of Scheme 
1), on condition that aryl radicals (Ar2 •) react preferentially with 
aryl Grignard reagents (Ar1–MgBr). This requirement seemed to 

be readily fulfilled, considering that the resulting anion radicals, 50 

[Ar1–Ar2]• –, are much more stable than [ArNH2]• –, which is 
reported to be involved as intermediates in the SRN1 reaction.9 
However, the reaction of an aryl radical precursor with an aryl 
Grignard reagent gave a contradictory result. Thus, treatment of 
phenylazo(triphenyl)methane (PAT), which is known to generate 55 

Ph• upon heating,10 with p-methoxyphenylmagnesium bromide 
(1b) in toluene gave 4-methoxybiphenyl (5) only in 2% yield, 
along with a regioisomeric mixture (o/m/p = 63/23/14) of 
methylbiphenyls (6) as a major product (25% yield) (eqn (3)).11 
The result shows that aryl radicals react much preferentially with 60 

a solvent amount of toluene over with aryl Grignard reagents,12 
and thus that Ar2 • derived from Ar2–X is unlikely to be involved 
in the cross-coupling reaction. 

I THF (6 equiv)
toluene
110 °C, 24 h

Ph
+

4
0.3% yield

(o/m/p = 63/22/15)

3am
97% yield

+PhMgBr

1a
(1.5 equiv)

2m

(2)

 

THF
(120 equiv)
toluene
110 °C, 1 h

+ Ph
N

N Ph

PhPh
+ Ph

5
2% yield

6
25% yield

(o/m/p = 63/23/14)

MeO

MgBr

MeO

Ph
PAT1b

(40 equiv)

(3)

 65 

[Ar2–X] • –

[Ar1–Ar2] • –

Ar2 •

X–

Ar1–MgBr

Ar2–X

Ar1–Ar2

Ar2–X

Ar1–MgBr [Ar1–MgBr] • +

SET
(Single Electron Transfer)

Initiation

Propagation

SET

MgBrX

a

b

Path A

Path B

Ar1–MgBr
MgBrX c

d

e

 
Scheme 1 

Ar1–MgBr + Ar2–X
THF (6 equiv)
toluene, 110 °C

Ar1–Ar2 (1)
1 2 3  
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 No involvement of aryl radical intermediates was further 
confirmed by a radical clock reaction using 2-(3-butenyl)phenyl 
iodide (2n), the corresponding aryl radical of which is known to 
readily cyclize (kc = 5 x 108 s–1 at 50 °C).13 The reaction of 2n 
with 1a gave no cyclization products but direct phenylation 5 

product 3an (eqn (4)). Considering the observation that aryl 
radicals do not react smoothly with aryl Grignard reagents, no 
production of cyclization products supports no involvement of 
aryl radicals.14 

I
PhMgBr +

THF (6 equiv)
toluene (0.1 M)
110 °C, 13 h

Ph
+

R

1a
(1.5 equiv)

3an
90% yield

(R = H, Ph)
<1% yield

2n

(4)

 
10 

Taking into account the previous conclusion that SET to  
Ar2–X to give [Ar2–X]• –

 as steps a and d in Scheme 1 is operative, 
no participation of Ar2 • implies that [Ar2–X]• – reacts directly 
with Ar1–MgBr as shown in step e in Scheme 1.15 In that event, 
the kind of X possibly affects the reaction with aryl Grignard 15 

reagents. This holds true, thus in competition reactions between 
tolylmagnesium bromides 1c and 1d, both 2-naphthyl iodide 
(2m) and chloride (2'm) reacted preferentially with less hindered 
p-tolyl derivative 1c, where the selectivity was considerably 
higher in the reaction of 2'm (74:26) than 2m (62:38) (Scheme 20 

2).16–18 

 

 In the previous report,2 we demonstrated the involvement of 
anion radical intermediates by the fact that addition of a similar 
anion radical accelerates the reaction (Scheme 3). Thus, the rate 25 

of the reaction of PhMgBr (1a) with unreactive 2-
bromonaphthalene (2"m) was drastically increased by addition of 
lithium di-tert-butylbiphenylide (LDBB: 0.2 equiv). In contrast, 
addition of PAT (0.2 equiv) did not accelerate the reaction, where 
the generated phenyl radical was converted mainly to 30 

methylbiphenyls (6).19 The result is rationally understood that 
acceleration is possible with addition of an anion radical 
intermediate but not with addition of an aryl radical, which is not 
an intermediate. 

In this cross-coupling, an oxidative homocoupling product 35 

(Ar1–Ar1) of Ar1–MgBr is always produced in a small but certain 
amount.20 In the previous report, we took this result as a proof 
that SET from Ar1–MgBr to Ar2–X is operative in the initiation 
step (a in Scheme 1), considering that Ar1–Ar1 is produced 
through fragmentation of [Ar1–MgBr]• + followed by the reaction 40 

of the resulting Ar1 • with Ar1–MgBr. However, an isomeric 
mixture of Ar1–C6H4Me is produced only in a much less amount 

than Ar1–Ar1.21 Taking it into account that aryl radicals react 
preferentially with a solvent amount of toluene over with aryl 
Grignard reagents (eqn (3)), this result shows that Ar1 • is 45 

generated only in a trace amount. Consequently, Ar1–Ar1 is likely 
to be produced by the reaction of [Ar1–MgBr]• + with Ar1–MgBr 
in a similar manner that the reaction of [Ar2–X]• – with Ar1–MgBr 
gives Ar1–Ar2. 

Aryl Grignard reagents are known to act as single electron 50 

donors toward certain electrophiles.22 For example, SET from 
PhMgBr (1a) to cinnamyl chloride (7) to give [PhMgBr]• + and 
[7]• –, respectively, is reported to take place during substitution 
reaction between 1a and 7.22b In this report, homocoupling 
products (9 and 9') of 7 are regarded as end products of 55 

intermediate [7]• –, but the course of cation radical [PhMgBr]• + is 
not disclosed. Then we conducted the reaction in our hands, 
paying attention to the course of [PhMgBr]• + (Scheme 4). The 
reaction of 1a (0.60 mmol) with 7 (0.20 mmol) under the reported 
conditions gave Ph–Ph (10) in an amount (0.048 mmol) 60 

comparable to that (0.044 mmol) of 9/9' in addition to 
substitution product 8. The yields of 10 and 9/9' were increased 
by use of the solvent system (toluene with 6 equiv of THF) used 
in the cross-coupling, giving no methylbiphenyls (6). No 
production of methylbiphenyls in use of toluene as a solvent 65 

shows that Ph• is not present in the reaction mixture. 
Consequently, [PhMgBr]• +, with no fragmentation to Ph• and 
[MgBr]+, reacts with PhMgBr to give Ph–Ph via [Ph–Ph]• –. It is 
most likely that Ph–Ph is produced in the same manner also in 
our cross-coupling and thus SET from aryl Grignard reagents to 70 

aryl halides is operative. 

 
All these results are compiled into a mechanism shown in 

Scheme 5, exemplified by the reaction of PhMgBr (1a) with 2-
iodonaphthalene (Np–I: 2m). The whole scheme consists of three 75 

SETs toward Np–I giving [Np–I]• – and two C–C bond forming 
reactions (BFR) of PhMgBr with an ion radical. Two single 
electrons generated at the expense of two PhMgBr in the 

PhCl+PhMgBr
30 °C, 3 h

PhPh
Ph

Ph

Ph
Ph

+ Ph–Ph

0.112 mmol 0.044 mmol (64:36) 0.048 mmol
in toluene
with THF (6 equiv)

1a
(0.60 mmol)

7
(0.20 mmol)

8 9 + 9' 10

0.078 mmol 0.052 mmol (29:71) 0.076 mmol

in THF

++

 
Scheme 4 

+
MgBr

+
MgBr

X

1c
(1 equiv)

1d
(1 equiv)

2
(1 equiv)

THF (6 equiv)
toluene, 110 °C

+

3cm 3dm

I (2m)
Cl (2'm)

23%
12%

time conv. of 2 yield of 3 3cm:3dm

  0.5 h
24 h

22%
  7%

62:38
74:26

X in 2

 
Scheme 2 

PhMgBr +
Br THF (6 equiv)

toluene
80 °C, 12 h

Ph

1a
(2 equiv)

2"m 3am

additive
(amount)

none LDBB
(0.2 equiv)

conv. of 2"m 2% 98%
1% 80%yield of 3am

PAT
(0.2 equiv)

2%
<1%

t-But-Bu

Li+
• –

Ph
N

N Ph

PhPh

 
Scheme 3 

Page 12 of 13ChemComm

C
h

em
ic

al
 C

o
m

m
u

n
ic

at
io

n
s 

A
cc

ep
te

d
 M

an
u

sc
ri

p
t

D
ow

nl
oa

de
d 

by
 G

eo
rg

et
ow

n 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

17
 N

ov
em

be
r 

20
12

Pu
bl

is
he

d 
on

 1
5 

N
ov

em
be

r 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2C

C
37

64
3A

View Online

http://dx.doi.org/10.1039/c2cc37643a


 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  3 

initiation step are handed over to Np–I to give [Np–I]• –, and then 
promote the propagation cycle. 

 
In conclusion, we have revealed that the transition metal-free 

coupling of Ar1–MgBr with Ar2–X is initiated by SET from  5 

Ar1–MgBr to Ar2–X and propagated by a scheme consisting of 
the reaction of the resulting [Ar2–X]• – with Ar1–MgBr and SET 
from [Ar1–Ar2]• – to Ar2–X. No involvement of Ar2 •, which would 
induce side reactions such as hydrogen abstraction from solvents 
and addition to benzene rings, is likely to contribute to high 10 

selectivity and thus high yields of the cross-coupling. 
 This work has been supported financially in part by Grant-in-
Aids for Scientific Research on Innovative Areas “Molecular 
Activation Directed toward Straightforward Synthesis” 
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[Ph–Np] • –
PhMgBr [PhMgBr] • +

SET

Initiation

Propagation
[Ph–Ph] • –2 [MgBr] +

Ph–Ph

PhMgBr
PhMgBr MgBrI

Ph–Np Np–I

SET

BFRBFR

Np–I [Np–I] • –

Np–I

SET

Np = 2-naphthyl  
Scheme 5 
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