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ABSTRACT

The synthesis of 1,4-diamines containing the (2)-1,4-diaminobut-2-ene subunit via a temporary phosphorus tether/RCM strategy is described.
We have developed a new method utilizing phosphorus nuclei as suitable temporary tethers for the coupling of nonracemic allylic amines.
This approach allows for the generation of C,-symmetric and unsymmetric 1,4-diamines 1-3, which may have considerable synthetic and
biological utility. This represents the first synthetic pathway for the expedient coupling of two amines via a temporary tether approach.

Recently, nonracemic 1,4-diamines have served as keytoward an efficient route to their synthesis. Previous methods
synthetic intermediates in the development of potent cyclic reported for the generation of nonracemic 1,4-diamines
HIV protease inhibitord. In addition, the potential of include intermolecular pinacol coupling of-amino alde-
nonracemic 1,4-diamines to serve as biologically active hyde$ and several chiral pool syntheses starting from
agentd and asymmetric ligandsvarrants continued efforts  tartraté® or mannitol* Our interest in the ring-closing
metathesis (RCM) reaction on phosphorus templ&téss

(1) (8) Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, /€d uS to investigate a temporary phosphorus tethéether)/

Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y.N.;  RCM strategy to the synthesis of 1,4-diamines.
Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson- . "
Vittanen, S.:Sciencel994 263 380-384. (b) Patel, M.; Kaltenbach, R. Although temporary tethetbave been extensively utilized

F., llIl; Nugiel, D. A.; McHugh, R. J., Jr; Jadhav, P. K.; Bacheler, L. T.; in organic synthesi%? examples ofP-tethers have been
Cordova, B. C.; Klabe, R. M.; Erickson-Viitanen, S.; Garber, S.; Reid, C;
Seitz, S. PBioorg. Med. Chem. Letfl998 8, 1077-1082. (c) De Lucca,

G. V J. Org. Chem1998 63, 4755-4766. (d) Hulte, J.; Bonham, N. M.; (4) Konradi, A. W.; Pedersen, S. B. Org. Chem1992 57, 28—32.
Nillroth, U.; Hansson, T.; Zuccarello, G.; Bouzide, A.; Agvist, J.; Classon, (5) For recent reviews, see: (a) Trnka, T. M.; Grubbs, RAEt. Chem.
B.; Danielson, U. H.; Kafle, A.; Kvarnstran, |.; Samuelsson, B.; Hallberg, Res.2001, 34, 18-29. (b) Fustner, A.Angew. Chem., Int. EQ00Q 39,

A. J. Med. Chem1997, 40, 885-897. 3013-3043. (c) Wright, D. L.Curr. Org. Chem.1999 3, 211—-240. (d)
(2) For examples of biologically active 1,4-diamines, see: (a) Rische, Grubbs, R. H.; Chang, Setrahedron998 54, 4413-4450. (e) Armstrong,

T.; Eilbracht, P.Tetrahedron1999 55, 39173922 and refs 44 cited S. K. J. Chem. Soc., Perkin Trans.1D98 371—388.

therein. (b) He, Z.; Nadkarni, D. V.; Sayre, L. M.; Greenaway, Bibchim. (6) (a) Stoianova, D. S.; Hanson, P. @rg. Lett.200Q 2, 1769-1772.

Biophys. Actal995 1253 117-127. For the use of 1,4-diamines as (b) Sprott, K. T.; McReynolds, M. D.; Hanson, P. 8ynthesi®001, 612—

dipeptide isosteres, see: (c) Baker, W. R.; Condon, Sl.10rg. Chem. 620 and references therein. (c) Stoianova, D. S.; Hanson, ©rd@ Lett.

1993 58, 3277-3284. 2001, 3, 3285-3288.

(3) For examples of 1,4-diamines and their derivatives serving as ligands  (7) For a comprehensive review on disposable tethers, see: Gauthier,
for metals, see: (a) Nivorozhkin, A. L.; Toftlund, H.; Jgergensen, P. L.; D. R., Jr.; Zandi, K. S.; Shea, K. Jetrahedron1998 54, 2289-2338.

Nivorozhkin, L. E.J. Chem. Soc., Dalton Tran4996 1215-1221. (b) (8) For a review on temporary silicon-tetheresi-{ethered) reactions,
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chuk, V. A,; Glowiak, T.J. Chem. Soc., Dalton Tran$998 1535-1536. 813-854. For additional references dbitethered reactions, see: (b)
(c) Codina, G.; Caubet, A.; Lopez, C.; Moreno, V.; Molins Hely. Chim. Ishikawa, T.; Kudo, T.; Shigemori, K.; Saito, $. Am. Chem. So200Q
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limited.1° We now report a new strategy that allows for the
rapid coupling of nonracemic allylic amines vigPatether/

RCM sequencé'?to deriveZ-olefinic, C-symmetric 1,4- o)
L - . : g2 - s
(jliﬂir;?nsilnirg% ;\::elrj:esylr;ametnc, differentially substituted : O\\P/F{ J\ ] O\\P/R ) AN N Ar
3 . R1/\N/ \N R] \N/ \N/ Ph /,,//Ph
Sch 1 — — HO OH
cheme A B DMP-323 (Ar = p-OH-CgHy)
B2 HZ 82 O H R2
: X R A i
RZSNH HNT SRT RN TSN R cl Figure 1.
o) = 5 ( = gt
— cl cl
1 7\ 4 Pl Tether" diazaphosphepine 2-oxides suchfaandB (Figure 1)%0:12¢
These compounds and analogues thereof are similar in
A ,R3 structure to DMP-323 and other potent HIV-1 protease
HoN  NHy NELANV inhibitors developed at DuPont Merck Laboratorigs.We
Rgm\wﬂg = g g2 determined that in order to gen_ergte phosphpnamides such
— VAR as A (R® = alkyl, aryl), containing exocyclico-amino
2 5 o R substitution, it is necessary to overcome steric congestion
, . — /\‘p’\ impqs_ed by aru-br_anc_hed secon_dar)_/ amine by first syn-
R B o R c- a thesizing the 1,4-diaming,** coupling it with RPCh, and
1SNH O NH, RSN P NH "P(V)-Tether" oxidizing at phosphorus® _
Our initial strategy for the synthesis &fwas to couple 2
R = R? . . :
— equiv of ana-branched secondary allylic amine, suchras
3 7\ 6 with either a P(V)- or P(lll)-dichloride, followed by RCM

(Scheme 2). However, we found that, due to steric congestion

Our new method employs both intermediate phosphorous_

acid diamide4 and phosphonamide speckand6 contain-

. . . Scheme 2

ing P(II)- and P(V)-nuclei, respectively, as the central lynch-

pins for subsequent RCM (Scheme 1). The temporary cyclic B2 B o H R Ar-N _N-Ar

P-tethers can be quantitatively hydrolyzed under mild acidic : RPN T\oc' 9

L. . . . . .. 1 S 1 AP 1 Ru=—\

conditions to derive the title 1,4-diaminds-3 containing RIOL™ "NH g ROL NTNT CORT e oy

the @)-1,4-diaminobut-2-ene subunit. — PCys
Our primary interest ifC,-symmetric 1,4-diamine$ was 7a-d ] /" \ sad b

rooted in our efforts to synthesize amino acid-derived 1,3,2-

Org. Chem.200Q 65, 5547-5557. (d) Miyata, O.; Nishiguchi, A.;

Ninomiya, |.; Aoe, K.; Okamura, K.; Naito, TJ. Org. Chem200Q 65, 2 oH R R? R?

6922-6931. (€) Rubinstenn, G.; Mallet J.-M.; Sinay, Fetrahedron Lett. W : J\

1998 39, 3697-3700. R'0,C7 N7 N7 CoR' B R0, ONH HNT CCOR!
(9) For examples of metal-derived temporary tethers, see the following. -

Mg and Al tethers: (a) Stork, G.; Chan, T. ¥. Am. Chem. Sod.995

117, 6595-6596. Boron tethers: (b) Batey, R. A.; Thadani, A. N.; Lough,

nnxm

A. J.J. Am. Chem. Socl999 121, 450-451. Al and Zn tethers: (c) 10a-d 1_ 2 _

Bertozzi, F.; Olsson, R.; Frejd, Drg. Lett.200Q 2, 1283-1286. 1a, R1 = Me, Rz‘ CHoCH(CHa)2
(10) For an example of a phosphoramidic P(V) temporary tether, see: 1b, R =Me, R®=Bn

Rubinstenn, G.; Esnault, J.; Mallet, J.-M.; SinayTBtrahedron: Asymmetry 1¢, R' = Bn, R? = CH,CH(CHg)»

1997, 8, 1327-1336. To the best of our knowledge, there are no examples 1d,R'=Bn, R2=Bn

in the literature of utilizing P(lll) as a temporary tether.

(11) For examples of silicon tethers utilized in the RCM reaction, see: a . . ;
(a) Evans, P. A.; Murthy, V. SJ. Org. Chem1998 63, 6768-6769. (b) Reagents and conditions: (a) I. BOEGN, DMAP, CHC,,
Hoye, T. R.; Promo, M. ATetrahedron Lett1999 40, 1429-1432. (c) reflux, ii. HO, 80-90%; (b) i. 9, benzene, reflux>95%, ii.
Gierasch, T. M.; Chytil, M.; Didiuk, M. T.; Park, J. Y.; Urban, J. J.; Nolan, ~methanolic HCI, rt,>95%.

S. P.; Verdine, G. LOrg. Lett.200Q 2, 3999-4002. (d) Lobbel, M.; Koll,
P. Tetrahedron: Asymmetr200Q 11, 393-396.

(12) For other tethers utilized in the RCM reaction, see the following. . .

Catechol tethers: (a) O'Leary, D. J.; Miller, S. J.; Grubbs, RTétrahedron imposed by7, the only phosphorus reagent which allowed

Lett. 1998 39, 1689-1690. Ketone tethers: (b) Rodriguez, J. R.; Castedo, the bis-coupling event to occur was phosphorus trichldtide.
L.; Mascarenas, J. lOrg. Lett.200Q 2, 3209-3212. Phthalamide tethers:

(©) Sprott, K. T.; Hanson, P. RL. Org. Chem200Q 65, 7913-7918. Hydrolysis to8, followed by RCM with the first generation
(13) For other methods of producing simple, unsaturated 1,4-diamines, Grubbs catalystt®Pafforded 1,3,2-diazaphosphepine 2-oxide
see: (a) Radhakrishnan, U.; Al-Masum, M.; Yamamoto,T€étrahedron 10.

Lett. 1998 39, 1037-1040. (b) Courtois, G.; Desre, V.; Miginiac, L.
Organomet. Cherml999 580, 178-187. For a recent method of producing
saturated 1,4-diamines, see ref 2a. (c) To the best of our knowledge, no (14) We have reported the synthesis of 1,4-dianfia§Scheme 2) via
general method exists for the preparation of nonracemic, differentially a phthalamide tether/RCM/hydrolysis sequence. RCM yielded predominantly
substituted 1,4-diamines. the Z-isomer (10:1Z:E), see ref 12c.

3940 Org. Lett., Vol. 3, No. 24, 2001



Due to the lability of thd®—N bond to hydrolysis in cyclic

species 10,'® we reasoned that we could employ the Scheme 3
phosphorous acid diamide moiety as a P(lll)-temporary tether o R

in a one-pot RCM/hydrolysis procedure (Scheme 2). Opti- W/
mization of the previously reported conditiShgrovides \/(/

~P<
_ a HN™' O NH b HeN  NHp
acyclic RCM precursor8 in 80—90% vyield. Subsequent ~ HCIHN - > —’>\:)\(
RCM utilizing the second generation Grubbs cataB}8t'’ n 7N\ )

in refluxing benzene, followed by facile cleavagef the

P-tether with methanolic HCI, results in quantitative yields 13a, R = OPh

of C,-symmetric 1,4-diaminé& with complete stereochemical 13b, R =Ph

and geometrical integrity. Furthermore, the RCM reaction  2Reagents and conditions: (a) RP(Q)C12aR = OPh; 12b,

is complete within several minutes, reaction scale is a R= Ph), EtN, DMAP, CH,Cl,, reflux, R= OPh,>95%, R= Ph,

nonissue, and the RCM/hydrolysis sequence is a single-pot84%; (b) .9, benzene, reflux, ii. HC/ED/THF, 50°C, R= OPh,
91%, R= Ph, 70%.

event.

A number of other temporary tethers were also investi-
gated!® including various metaf&¢ (Cu, Fe, Mn, Mg, and
Ni), as well as carbon (CO) and bof8r{BPh). Thus far,
none have allowed this facile “di-amine” binding/metathesis
sequence to occur. Our group previously reported an RCM
strategy to generate cyclic sulfamides analogoud @g°
however, the inability to effectively cleave the sulfamide
linkage (RNSO:NR;) under mild conditions limits their
utility in the production of 1,4-diamines such &as 3.

Moreover, while temporary silicon tethétshave been
employed in the RCM reaction to access 1,4-diols, all of
our attempts to preparg from 7 utilizing silicon tethers

(SiPh, SiMe,, and SiC}) have been unsuccessful. We have _

was crucial in the synthesis of diamieto use RP(O)GI
(R = ClI), where R serves as an ancillary blocking group to
prevent the formation of the triply coupled product. Subse-
guent RCM using cataly$, followed by in situ hydrolysis
of the P(V)-tether under slightly more forcing conditions (50
°C), generates 1,4-diamirg

To extend the scope of utilizing temporapytethers, we
directed our efforts toward the synthesis of unsymmetric,
differentially substituted 1,4-diamines such3&cheme 4).

found that not only does phosphorus appear to be the sole Scheme 4
nucleus in which this 1,4-diamine chemistry is successful
but the efficiency and ease of the sequence is extraordinary. )\ o Me
With this temporary bridging strategy in hand, we turned O Me i W
our attention to the synthesis Gb-symmetric 1,4-diamine S A MeO,c” N7 Cl b
2, containing branching at the allylic positions (Scheme 3). cr e — -
Previously, we found that less sterically encumbering 14 | 15
a-branched primary amines, suchiasaline-derivedl11, CxeP
readily couple twice with P(V)-dichloridé2ato give 13a )\ & 47 )\
in high yield®® In addition, we and othetshave shown that = QM N N :
the reaction between phosphorus oxychloride (Rp&nd MeOZC/\N/P\NH PCys MeOZC/-\NH NH,
3 equiv of ano-branched primary amine, such Bk is facile c
to afford the corresponding phosphoramiéi&@herefore, it 16 > <\( 3 —

(15) For the first generation Grubbs catalyst, see: (a) Schwab, P.; Grubbs, .
R. H.; Ziller, J. W.J. Am. Chem. S0d.996 118 100-110. (b) Schwab, aReagents and conditions: (&9, EL,N, DMAP, CHCly, reflux,
P.; France, M. B.; Ziller, J. W.; Grubbs, R. Angew. Chem., Int. Ed. Engl. >95%, ds= 1.1:1.024 (b) 11, EzN, DMAP, CH,Cl,, 0 °C, 88%,
1995 34, 2039-2041. For the second generation Grubbs catalyst, see: (C) ds = 6.6—13.2:1.0; (c) i.17, CH,Cl,, reflux, ii. methanolic HCI,
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. [@rg. Lett.1999 1, 953— 50°C. 97%
956. ’ ’

(16) 1,3,2-Diazaphosphepine 2-oxid® hydrolyzed after prolonged
storage at OC (2—3 weeks).

(17) RCM with the traditional Grubbs benzylidene cataf§fst occurs . . .
in excellent yields with most substrates if the reaction was performed on Prior work in our laboratory revealed that only 1 equiv of

small scale €500 mg). Reaction times varied from 1 to 24 h. anN-allylated,a-branched amino ester, suchs couples

pro(ggc)h’;:g xﬁgﬁetf;ﬁrz'glcgg?é‘rswﬁgre"gﬁ%‘l’gfec?“;g%r}gi dt_ether cleavage \yith P(V)-dichlorides, such as methylphosphonic dichloride

(19) Details of the unsuccessful attempts with other tethers are provided (14), to give an~1.1:1.0 diastereomeric mixture of phos-

in the Supporting Information. _ phonamidic monochloridate$5.>* We reasoned that this
(20) Dougherty, J. M.; Probst, D. A.; Robinson, R. E.; Moore, J. D.; hlorid 5 Id ideal i di .

Klein, T. A.; Snelgrove, K. A.; Hanson, P. Retrahedror2000 56, 9781 monochloridatel5, would serve as an ideal intermediate in

9790 and references therein. the production of the differentially substituted 1,4-diamine

(21) (a) Fehrentz, J.-A.; Castro, Bynthesid983 676-678. (b) Saari,
W. S.; Fisher, T. ESynthesisl99Q 453-454.

(22) (a) Unpublished results from our laboratory. Our findings are in
agreement with Wills and co-workers who have reported that 3 equiv of (23) This is in sharp contrast with our report that the addition of

3. Therefore, addition of primary amirtel to the diastere-

(R)-a-methyl benzylamine couple readily with PQCio provide the a-branched secondary amines sucly &as POC} occurs only once to give
corresponding phosphoramide, see: (b) Burns, B.; Studley, J. R.; Wills, the phosphonamidic dichloridate, see ref 6b.
M. Tetrahedron Lett1993 34, 7105-7106. (24) Sprott, K. T.; Hanson, P. R. Org. Chem200Q 65, 4721-4728.

Org. Lett.,, Vol. 3, No. 24, 2001 3941



omeric mixture ofl5 produces the unsymmetric metathesis diaminesl1—3 via a P-tethered RCM/hydrolysis sequence,
precursorl6 in high yield and with good to high diastereo- of which the P(lll)-tether represents the first of its kitfd.
selectivity (ds 6.6-13.2:1.0%2° Metathesis utilizing the first ~ To our knowledge, this approach represents the first synthetic

generation Grubbs catalyst°17, followed by in situ acid-  pathway that allows for the expedient coupling of two amines
mediated methanolic cleavage of the P(V)-tether, affords via a facile temporary tether approach. Furthermore, we have
unsymmetric 1,4-diamin8 in near quantitative yield. demonstrated the-tether strategy to be an effective route

~ The strengths of this neW-tether strategy are reflected (o the synthesis of unsymmetric, differentially substituted
in the ease in which the chiral, nonracemic 1,4-diamines can1 4-diamines. The synthetic and biological potential of the
be synthesized. Not only is the RCM/hydrolysis sequence a1 4-diamines and analogues thereof is currently being

single-pot event but chromatography is required only after investigated and will be reported in due course.
the initial phosphorus/amine coupling. Moreover, the 1,4-

diaminesl—3 can be obtained in high purity by simple acid/
base extraction following the cleavage of the temporary
P-tether &99% purity as determined by GC arr95%
purity as determined byH, °C, and®'P NMR analysis).
We have demonstrated the efficacy of this sequence by
generating as much as 10 g of 1,4-diamidésin a single
afternoon starting fronN-allylated amino estergb.

In summary, we have developed an efficient method to

synthesizeC,-symmetric and unsymmetric, nonracemic 1,4-  SUPporting Information Available: Experimental pro-
cedures. This material is available free of charge via the

(25) The unambiguous assignment of the major diastereomer, as well asinternet at http://pubs.acs.org.
mechanistic rationale for the observed selectivity, is currently being
investigated. OL016828N
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