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Under the high-speed vibration milling conditions, the solvent and catalyst-free azo-Michael addition of chalcone derivatives 
and amines was found to proceed efficiently in excellent yields at ambient temperature in short reaction time. In most cases, 
conventional side reactions were avoided and thus quantitative yields were achieved. The influences of the vibration frequency 
and reaction time on the azo-Michael addition were investigated.  
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1  Introduction 

Environmental concerns about the solvent-based chemistry 
have stimulated renewed interest in the study of chemical 
reactions under solvent-free conditions [1–5]. Mechano-
chemistry is seldom attempted in organic synthesis. Even if 
attempted, mechanical processing of organic reactants is 
sometimes followed by additional treatment (usually heat-
ing) [6, 7], or occasionally it is carried out in the presence of 
a solvent [8]. During the past two decades, solvent-free or-
ganic synthesis has received considerable attention owing to 
growing worldwide concerns over chemical wastes and fu-
ture resources. Recently the technique of ‘high-speed vibra-
tion milling’ (abbreviated as HSVM) has been successfully 
utilized in organic reactions [9–11]. Beginning with re-
search largely from Wang’s group in China, there have been 
many reports on fullerene and non-fullerene mechano-
chemical reactions under HSVM conditions [12–16]. In the 
course of their study on mechanical organic synthesis，they 

were inspired to perform Michael reaction [17, 18]. Michael 
reaction is one of the most efficient methods for car-
bon-carbon bond formation and has wide synthetic applica-
tions [19–22]. Generally, Michael additions are conducted 
in a suitable solvent in the presence of a strong base, such as 
NaOH, KOH, Ba(OH)2, and NaOEt [23–25]. However, 
these drastic conditions often cause side reactions, such as 
bis-addition, auto-condensation, rearrangement and retro 
Michael additions, leading to low yields and difficulty in 
purification of the target product, and thus making it un-
suitable for the synthesis of desired compounds [26, 27].   

To avoid the aforementioned problems, solvent-free con-
ditions are undoubtedly an important method to be consid-
ered [28]. From these points of view, our group has applied 
the HSVM technique to synthesize β-enamino ketones (es-
ters) [29]. Herein, we report our study on the azo-Michael 
addition of chalcones with aliphatic amine or aromatic 
amines in the absence of a catalyst. In our present protocol, 
the azo-Michael addition reactions were found to proceed 
efficiently under solvent and catalyst-free conditions in 
very short reaction time under the HSVM conditions 
(Scheme 1).  
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2  Experimental 

The reagents were obtained from commercial sources. The 
1H NMR spectra were recorded at 500 MHz in CDCl3 with 
a Bruker AM 500 spectrometer. The HSVM was achieved 
with Retsch MM301 (Retsch GmbH, Haan, Germany). 

General procedure for the synthesis of compound 3 

A mixture of compound 1 (1 mmol) and amine 2 (1 mmol) 
was vigorously shaken by HSVM for a designated time. The 
obtained product 3 was purified by column chromatography 
on silica gel with petroleum ether–EtOAc (3:1) as an eluent.  

3-(Benzylamino)-1,3-diphenylpropan-1-one (3a) 
1H NMR (500 MHz, CDCl3)  7.90 (d, J = 7.0 Hz, 2H), 
7.54 (t, J = 7.5 Hz, 1H), 7.53–7.20 (m, 12H, ArH), 4.34 (dd, 
J = 9.0, 4.5 Hz, 1H), 3.65 (d, J =13.0 Hz, 1H), 3.58 (d, J = 
13.0 Hz, 1H), 3.40–3.28 (m, 2H), 1.77 (bs, NH). 

3-(Benzylamino)-3-(3-bromophenyl)-1-phenylpropan-1-one 
(3b) 
1H NMR (500 MHz, CDCl3)  8.01–7.18 (m, 14H, ArH), 
4.31 (dd, J = 8.5, 4.5 Hz, 1H), 3.66–3.57 (m, 2H), 3.36–3.25 
(m, 2H), 1.91(bs, NH). 

3-(Benzylamino)-3(3-nitrophenyl)-1-phenylpropan-1-one 
(3c) 
1H NMR (500 MHz, CDCl3)  8.36–7.20 (m, 14H, ArH), 
4.47 (dd, J = 8.5, 4.0 Hz, 1H), 3.67–3.58 (m, 2H), 3.39–3.31 
(m, 2H), 1.77(bs, NH). 

3-(Benzylamino)-1-phenyl-3-(4-(trifluoromethyl)-phenyl)- 
propan-1-one (3d) 
1H NMR (500 MHz, CDCl3)  7.97–7.21 (m, 14H, ArH), 
4.42 (dd, J = 8.5, 4.0 Hz, 1H), 3.67–3.58 (m, 2H), 3.42–3.30 
(m, 2H). 

3-(Benzylamino)-3-(4-bromophenyl)-1-(4-methoxyphenyl)- 
propan-1-one (3e) 
1H NMR (500 MHz, CDCl3)  7.91–7.23 (m, 13H, ArH), 
4.40 (dd, J = 8.5, 4.0 Hz, 1H), 3.85 (s, 3H), 3.64–3.57 (m, 
2H), 3.30–3.24 (m, 2H).  

3-(Benzylamino)-1-(4-methoxyphenyl)-3-(4-(trifluoromethyl)- 
phenyl)propan-1-one (3f) 
1H NMR (500 MHz, CDCl3)  7.90–6.87 (m, 13H, ArH), 
4.29 (dd, J = 8.7, 4.1 Hz, 1H), 3.86 (s, 3H), 3.66–3.57 (m, 
2H), 3.31–3.19(m, 2H). 

3-(Benzylamino)-1,3-bis(4-methoxyphenyl)propan-1-one 
(3g) 
1H NMR (500 MHz, CDCl3)  7.90–6.87 (m, 13H, ArH), 
4.27 (dd, J = 8.6, 4.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.60 
(m, 2H), 3.28 (d, J = 8.6 Hz, 1H), 3.24 (d, J = 4.2 Hz, 1H). 

3-(Benzylamino)-1-(4-methoxyphenyl)-3-(4-nitrophenyl) 
propan-1-one (3h) 
1H NMR (500 MHz, CDCl3)  8.36–6.88 (m, 13H, ArH), 
4.45 (dd, J = 8.5, 4.4 Hz, 1H), 3.86 (s, 3H), 3.62 (d, J = 1.5 
Hz, 2H), 3.32 (d, J = 8.4 Hz, 1H), 3.27 (d, J = 4.5 Hz, 1H). 

3-(Benzylamino)-1-(4-methoxyphenyl)-3-phenylpropan-1- 
one (3i) 
1H NMR (500 MHz, CDCl3)  7.92–6.86 (m, 14H, ArH), 
4.33 (dd, J = 8.8, 4.1 Hz, 1H), 3.85 (s, 3H), 3.61 (m, 2H), 
3.30 (d, J = 8.8 Hz, 1H), 3.26 (d, J = 4.1 Hz, 1H). 

3-(p-Toluidino)-1,3-diphenylpropan-1-one (3j) 
1H NMR (500 MHz, CDCl3)  7.92–6.45 (m, 14H, ArH), 
4.97 (dd, J = 7.6, 5.3 Hz, 1H), 4.43(s, 1H), 3.45 (dd, J = 
28.2, 6.5 Hz, 2H), 2.17 (s, 3H). 

3-(p-Toluidino)-3-(3-nitrophenyl)-1-ph5enylpropan-1-one 
(3k) 
1H NMR (500 MHz, CDCl3)  8.32–6.46 (m, 13H, ArH), 
5.08 (t, J = 6.2 Hz, 1H), 4.54(s, 1H), 3.51 (d, J = 6.3 Hz, 
2H), 2.18 (s, 3H). 

3-(4-Methoxyphenylamino)-1,3-diphenylpropan-1-one (3l) 
1H NMR (500 MHz, CDCl3)  7.91–6.53 (m, 14H, ArH), 
4.92 (dd, J = 7.7, 5.1 Hz, 1H), 4.29 (s, 1H), 3.68 (s, 3H), 
3.46 (d, J = 5.1 Hz, 1H), 3.42 (d, J = 7.8 Hz, 1H). 

3-(3-Chlorophenylamino)-1,3-diphenylpropan-1-one (3m) 
1H NMR (500 MHz, CDCl3)  8.30–6.41 (m, 14H, ArH), 
5.08 (t, J = 6.0 Hz, 1H), 4.81 (s, 1H), 3.52 (d, J = 6.2 Hz, 
2H). 

1-Phenyl-3-(piperidin-1-yl)-3-(4-(trifluoromethyl)-phenyl)- 
propan-1-one (3n) 
1H NMR (500 MHz, CDCl3)  7.91–7.39 (m, 9H, ArH), 
4.29 (dd, J = 7.7, 5.8 Hz, 1H), 3.61 (dd, J = 16.7, 5.7 Hz, 
1H), 3.41 (dd, J = 16.7, 7.9 Hz, 1H), 2.84–2.27 (m, 4H), 
1.52 (m, 4H), 1.36 (dd, J = 11.5, 5.7 Hz, 2H). 

3-(3-Bromophenyl)-1-phenyl-3-(piperidin-1-yl)propan-1- 
one (3o) 
1H NMR (500 MHz, CDCl3)  7.95–7.13 (m, 9H, ArH), 
4.30–4.05 (m, 1H), 3.58 (dd, J = 16.6, 6.1 Hz, 1H), 3.35 (dd, 
J = 16.5, 7.5 Hz, 1H), 2.36 (m, 4H), 1.57–1.46 (m, 4H), 
1.40–1.28 (m, 2H).  

1-(4-Methoxyphenyl)-3-phenyl-3-(piperidin-1-yl)propan-1- 
one (3p) 
1H NMR (500 MHz, CDCl3)  7.92–6.90 (m, 9H, ArH), 
4.20 (dd, J = 7.5, 6.1 Hz, 1H), 3.87 (s, 3H), 3.53 (dd, J = 
16.1, 6.0 Hz, 1H), 3.35 (dd, J = 16.2, 7.5 Hz, 1H), 2.48– 
2.28 (m, 4H), 1.51 (m, 4H), 1.40–1.26 (m, 2H). 
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3-(3-Nitrophenyl)-1-phenyl-3-(piperidin-1-yl)propan-1-one 
(3q) 
1H NMR (500 MHz, CDCl3)  8.18–7.42 (m, 9H, ArH), 
4.36 (dd, J = 8.1, 5.5 Hz, 1H), 3.64 (dd, J = 16.8, 5.5 Hz, 
1H), 3.44 (dd, J = 16.8, 8.1 Hz, 1H), 2.39 (m, 4H), 
1.58–1.47 (m, 4H), 1.37 (dd, J = 11.5, 5.8 Hz, 2H). 

1-(4-Methoxyphenyl)-3-(piperidin-1-yl)-3-(4-(trifluoromethyl)- 
phenyl)propan-1-one (3r) 
1H NMR (500 MHz, CDCl3)  7.92–6.89 (m, 8H, ArH), 
4.18 (dd, J = 7.3, 6.1 Hz, 1H), 3.87 (s, 3H), 3.51 (dd, J = 
16.4, 5.9 Hz, 1H), 3.29 (dd, J = 16.4, 7.5 Hz, 1H), 2.40 (d,   
J = 5.1 Hz, 2H), 2.33 (d, J = 4.9 Hz, 2H), 1.58–1.46 (m, 4H), 
1.40–1.29 (m, 2H). 

3  Results and discussion 

The azo-Michael reaction of chalcone and benzylamine was 
first examined and found to proceed efficiently in excellent 
yield under HSVM under solvent and catalyst-free condi-
tions. All solvent-free reactions were performed using a 
high-speed vibration mill consisting of a capsule and a 
milling ball made of stainless steel [30]. The capsule con-
taining the milling ball was fixed on a vibration arm of a 
homebuilt mill, and was vibrated vigorously at a maximum 
rate of 1800 rpm. The solvent-free mechanochemical reac-
tion of chalcone 1 with benzylamine 2 under the HSVM 
conditions afforded essentially pure product 3 after washing 
the reaction mixture with water in most cases. 

To explore this reaction system, we have carried out this 
azo-Michael reaction at different vibration frequency and 
reaction time. It was found that the vibration frequency of 
the applied vibration mill had a significant effect on this 
reaction (Table 1). 

 

 
Scheme 1 

Table 1  Michael addition of benzylamine to chalcone 1 at different vi-
bration frequency and reaction time under HSVM conditions 

Entry Vibration frequency (Hz) Time (min) Yield (%)a) 

1 10 25 66 

2 20 25 90 

3 30 25 99 

4 30 10 78 

5 30 15 82 

6 30 20 96 

7 30 25 99 

a) The yield of 1H NMR. 

As shown in Table 1, higher vibration frequency of the 
vibration mill accelerated the reaction process significantly. 
It is easy to understand that the faster milling vibration 
gives the higher energy, and therefore the local pressure is 
applied to the reaction system. Furthermore, it was found 
that the decrease of the reaction time resulted in lower 
yields. The result indicated that the azo-Michael addition 
was obtained in good yield in the absence of any catalyst 
under HSVM conditions. 

From the above results, the reaction conditions of the vi-
bration frequency (30 Hz), reaction time (25 min) and raw 
material mole ratio (1:1) were selected for investigating the 
addition reaction of different amines 2 and chalcone or sub-
stitutional chalcone 1 (Scheme 2). 

 

 
Scheme 2 

This protocol does not require use of any base as cata-
lysts and any organic solvent during the reaction process 
and HSVM alone is enough to promote the reaction effi-
ciently. The yield of the azo-Michael addition is summa-
rized in Table 2. 

As shown in Table 2, the azo-Michael addition reactions 
generally gave products 3 in remarkably high yields. The 
electron-withdrawing and electron-donating of chalcone 1 
could participate in the reaction of benzyl amine and chal-
cone. This protocol can be extended to the azo-Michael ad-
dition of other amines such as secondary amine piperidine 
to chalcones with good yield in almost all cases. It is easy to 
understand that the lower reactivity of phenylamine gave 
the lower yield of this azo-Michael addition (entry 11, 12, 
13). Compared with existing methods, the main advantages 
of the present procedure are milder conditions, higher yield, 
shorter reaction time and occurrence of no side reactions. 
For example, compound 3a was previously prepared in 64% 
yield which was catalyzed by natural phosphate in MeOH at 
room temperature for 24 h [31], whereas under our solvent-        
free HSVM conditions, it was obtained in 98.1% yield at 
room temperature for 25 min. The reasons for the efficiency 
of the current solvent-free procedure may be an enhanced 
second-order reaction rate resulting from ultimately high 
concentrations of reactants with no use of a solvent. Fur-
thermore, in the HSVM technique, the high mechanical en-
ergy caused by local high pressure, friction, shear strain, etc. 
can significantly reinforce the reaction [13]. 

4  Conclusion 

In summary, a powerful method was described for azo-     
Michael addition of chalcones with amines in quantitative  
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Table 2  azo-Michael addition of different amines to chalcone under HSVM conditions 

Entry R1 R2 2 Product 3 Yield (%)a) 

1 H H benzyl amine 3a [31] 98 

2 m-Br H benzyl amine 3b 99 

3 m-NO2 H benzyl amine 3c 98 

4 p-CF3 H benzyl amine 3d 99 

5 p-Br –OCH3 benzyl amine 3e 90 

6 p-CF3 –OCH3 benzyl amine 3f 82 

7 p-OCH3 –OCH3 benzyl amine 3g 88 

8 p-NO2 –OCH3 benzyl amine 3h 90 

9 H –OCH3 benzyl amine 3i 94 

10 H –H p-Me-aniline 3j [32] 83 

11 m-NO2 –H p-Me-aniline 3k 59 

12 H –H p-MeO-aniline 3l [32] 52 

13 H –H m-Cl-aniline 3m [33] 47 

14 p-CF3 –H piperidine 3n 91 

15 m-Br –H piperidine 3o 91 

16 H –OCH3 piperidine 3p 89 

17 m-NO2 –H piperidine 3q 90 

18 p-CF3 –OCH3 piperidine 3r 90 

a) Isolated yield based on chalcone 1. 

 
 

yields in most cases. All these mechanochemical reactions 
were conducted under the catalyst-free and the HSVM con-
ditions. The advantages of a mild condition, high yield, and 
short reaction time together with a straightforward and easy 
work-up procedure make the present method convenient, 
effective and environmentally friendly, which could be a 
very efficient alternative to the classic methodology. 
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