Date: 25-07-12 15:49:13

Pages: 7

DOI: 10.1002/ejoc.201200457

CHBr₃/TiCl₄/Mg as an Unusual Nucleophilic CBr₂ Carbenoid: Effective and Chemoselective Dibromomethylenation of Aldehydes and Ketones

Yeshwant Ramchandra Bhorge,^[a] Cheng-Ta Chang,^[a] Su-Haur Chang,^[a] and Tu-Hsin Yan^{*[a]}

Keywords: Alkenes / Bromine / Chemoselectivity / Titanium / Magnesium / Synthetic methods

We report that instead of using CBr_4 , $CHBr_3$ can serve as a highly nucleophilic dibromomethylene carbenoid in chemoselective carbonyl dibromomethylenation. Successful application of the dibromomethylenation to various carbonyl com-

Introduction

1,1-Dibromoalkenes can not only serve as important precursors in the preparation of alkynes^[1] but are also valuable building blocks in molecular transformations such as (i) the construction of 1,3-diynes^[2a] through the palladium-promoted direct coupling of 1,1-dibromoalkenes, (ii) the synthesis of conjugated 1,3-envnes and 1,3-dienes through the Pd-catalyzed cross-coupling of 1-bromoalkenes with alkenyl- or alkynylmetals,[2b-2d] and (iii) the preparation of (E)-^[3a-3c] and (Z)-vinyl bromides.^[2c,3d] The vast importance of dibromoalkenes in synthesis has stimulated much interest in the development of new, efficient methodologies for their construction. Whereas the CBr₂ transfer reaction of CBr₄ promoted by phosphorus reagents such as PPh₃,^[4a-4c] P(OiPr)3,^[4d] or (OEt)2P(=O)CHClLi^[4e] involved direct dibromomethylenation of ketones and aldehydes, the basic character and the low nucleophilic nature of these phosphorus-derived dibromomethylene complexes^[4] limit the general and practical utility of the Wittig method. On the other hand, the generation of these dibromomethane complexes suffers from one or more experimental drawbacks, such as the requirement for high reaction temperature conditions (\geq 80 °C) and the use of a large excess of PPh₃ and expensive CBr₄. The direct coupling of hydrazones derived from simple saturated aldehydes and ketones with CBr₄ promoted by CuCl constitutes an alternative two-stage dibromomethylenation process.^[5] However, sterically more hindered ketones such as diisopropyl ketone and tert-butyl methyl ketone cannot be converted into the corresponding 1,1-dibromoalkenes.^[5] To develop a new entry to these compounds using (1,1-dibromomethylene)metal complexes that

E-mail: thyan@mail.nchu.edu.tw

pounds such as enolizable and sterically hindered ketones by using the $\rm CHBr_3/Mg/TiCl_4$ system highlights the weakly basic nature, extraordinary reactivity, and synthetic versatility of the approach.

are nucleophilic and available in bulk at a low price, we were attracted to the development of a TiCl₄/Mg-mediated carbonyl dibromomethylenation process. To the best of our knowledge, no metal-induced dibromomethylenation procedure, wherein CHBr₃ serves as a CBr₂ partner, has been recorded. Earlier work in our laboratories established that the TiCl₄/Mg-promoted CH₂ transfer reaction of CH₂Cl₂ represents an efficient carbonyl methylenation.^[6a–6e] On the other hand, the TiCl4/Mg-promoted direct coupling of CHCl₃ with ketones and aldehydes has so far been limited to CHCl transfer reactions.^[6f] In this paper, we wish to report that, in contrast to cleavage of two C-Cl bonds in CH₂Cl₂ and CHCl₃, CHBr₃ can be directed to serve as in a CBr₂ transfer reaction by using TiCl₄/Mg-promoted cleavage of C-H and C-Br bonds. This CHBr₃/TiCl₄/Mg system can serve as a highly nucleophilic and selective dibromomethylene complex in the dibromomethylenation of a variety of aldehydes and ketones, especially in enolizable or sterically hindered ketones.

Results and Discussion

The dibromomethylenation of 2-methylcyclohexanone (1a) with CHBr₃ was chosen to test the feasibility of the process (Table 1). Addition of a 1,2-dimethoxyethane (DME) (1.0 mL)/dichloromethane (CH₂Cl₂) solution of 1a (1 mmol) to a mixture of TiCl₄ (1 equiv.), CHBr₃ (0.3 mL), and magnesium powder (5 mmol) in CH₂Cl₂ at 0 °C gave a 40% yield of the desired vinyl dibromide 2a, with starting material remaining (Table 1, Entry 1). Increasing the amount of Mg and TiCl₄ led to an increase in the yield of CHBr₃ or titanium chloride relative to Mg led to not only incomplete dibromomethylenation but also to reductive cleavage of vinyl dibromides. DME appeared to be a good choice as an electron-pair-donor (EPD) additive to effect

[[]a] Department of Chemistry, National Chung-Hsing University, Taichung 400, Taiwan, Republic of China

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200457.

FULL PAPER

CBr₂ transfer reaction of CHBr₃ to the carbonyl group of **1a**. Other EPD additives including tetrahydrofuran (THF) and diethyl ether gave unsatisfactory results (Table 1, Entries 7 and 8). Notably, the reaction could be directly scaled up; thus, 1,1-dibromoalkene **2a** (Table 1, Entry 9) was obtained in 74% yield on a 10 mmol scale using TiCl₄ (8 mmol) and Mg (70 mmol).

Table 1. Reaction conditions for dibromomethylenation of ketone 1a.

(CHBr ₃ /	<>>−C	Br ₂	
~		PD additive	\leq	
	1a		2a	
Entry	EPD additive	TiCl ₄ /Mg ^[a]	Yield [%] ^[b]	
	(mL)	[mmol]	1 a	2a
1	DME (1.0)	1:5	ca. 55	40
2	DME (1.0)	1:8	ca. 30	60
3	DME (1.0)	2:8	ca. 20	65
4	DME (1.0)	3:8	ca. 15	72
5	DME (1.2)	3:8	0	80
6	DME (1.5)	3:8	0	75
7	THF (1.0–1.2)	3:8	0	ca. 60
8	Et ₂ O (1.0–1.2)	3:8	60	ca. 25
9	DME (8.0)	8:70	0	74 ^[c]

[a] Reaction conditions (1 mmol scale): CH_2Cl_2/EPD additive/ CHBr₃ (0.3 mL), 0 °C to r.t. [b] Isolated yield. [c] Reaction conditions (10 mmol scale): CH_2Cl_2 (30 mL), 0 °C to r.t.

The reaction is best envisioned as involving interception of a presumed EPD–TiCl₄ complex by magnesium powder to give an active dimetallic [Ti-MgCl₂-(EPD)_n]^[7] complex, followed by dibromomethylene coordinated to both the titanium and magnesium to generate the presumed [Ti-CBr₂-MgCl₂-(EPD)_n] complex (Scheme 1).^[8a]

Scheme 1. Mg-Ti dimetallic complex promoted CBr₂ transfer reaction of CHBr₃.

Having established the feasibility of the dibromomethylenation, we studied its generality with respect to the structure of the ketones. 2,6-Dimethylcyclohexanone (**1b**) also gave satisfactory results (85%) with the CHBr₃/Mg/TiCl₄ complex (Table 2, Entry 1). Variation of ring size was briefly explored. Dibromomethylenation onto cyclopentanone (**1c**) and cycloheptanone (**1d**) was equally effective (Table 2, Entries 2 and 3). Disopropyl ketone (**1e**) also reacted with CHBr₃-derived dibromomethylenation reagent to give the desired dibromide product **2e** (80%) (Table 2, Entry 4). Due to the weakly basic nature of the CHBr₃/ TiCl₄/Mg system, enolizable ketones also proved to be satisfactory substrates. Thus, both 2-indanone (1f) and β -tetralone (1g) reacted with the CHBr₃-derived bromomethylenation reagent to give the desired dibromoalkene products 2f (73%) and 2g (68%), respectively (Table 2, Entries 5 and 6).^[9] To further demonstrate the scope of this dibromomethylene-forming methodology, the utility of this protocol was examined in the dibromomethylenation of sterically demanding ketones. In contrast to CBr₄-derived phosphorus reagents^[4] and Tebbe-Grubbs reagents,^[8] the CHBr₃/Mg/ TiCl₄ complex reacted with the 2,2-dimethylcyclohexanone (1h). Thus, using a 3:8 TiCl₄/Mg ratio, a 72% yield of 2h was obtained (Table 2, Entry 7). This TiCl₄/Mg-mediated CBr₂ transfer reaction of CHBr₃ was also found to be suitable for the dibromomethylenation of unsaturated cyclohexenone 1i and hindered unsaturated cyclohexenone 1j (Table 2, Entries 8 and 9).

Table 2. $CHBr_3/Mg/TiCl_4\mbox{-}promoted\ dibromomethylenation\ of\ ketones.^{[a]}$

Entry	Substrate	TiCl ₄ /Mg [mmol]	DME [mL]	Product	Yield [%] ^[b]
1	(∑=0 1b	3:8	1.2	CBr ₂ 2b	85
2	C)=0 1c	3:8	1.2	CBr ₂ 2c	71
3	() <u>−</u> 0 1d	3:8	1.2	$\bigcirc \underline{=}_{\mathbf{2d}}^{CBr_2}$	77
4		3:8	1.2		77
5		3:8	1.2	CD=CBr ₂	73
6	CC 1g	3:8	1.2	$\text{CD}_{2g}^{\text{CBr}_2}$	68
7	Q=0 1h	3:8	1.2	CBr ₂ 2h	72
8	(_=0 1i	3:8	1.2	CBr ₂	78
9	Ò_=o ₁j	3:8	1.2		66 ^[c]
10		3:8	1.2	CBr ₂	87
11		3:8	1.2	CBr ₂ CH ₃	82
12		3:8	1.2	CBr ₂ 2m	84
13	Ar 1nAr Ar = P-MeO-Ph	3:8	1.2	Ar 2n Ar	90
14	Ph Ph 10	3:8	1.2	Ph_CBr ₂ Ph 20	85

[a] Reaction conditions (1 mmol scale): $CH_2Cl_2/DME/CHBr_3$ (0.3 mL) at 0 °C to r.t. [b] Isolated yield. [c] The reaction was performed in ClCH₂CH₂Cl at 0 °C to r.t.

With an eye to extending the procedure to other less reactive carbonyl compounds, we explored the TiCl₄/Mg-promoted CBr₂ transfer to aromatic ketones. Fortunately, exposing α -tetralone (1k), acetophenone (1l), dimethylacetophenone (1m), and 4,4'-dimethoxychalcone (1n) to the

Pages: 7

Dibromomethylenation of Aldehydes and Ketones

CHBr₃/Mg/TiCl₄/DME system led to dibromomethylenation to give the desired vinyl dibromides **2k** (87%), **2l** (82%), **2m** (84%), and **2n** (90%), respectively (Table 2, Entries 10–13). A dramatic illustration of the nucleophilic nature of the [Ti-CBr₂-Mg-Clx-(EPD)_n] complex was the dibromomethylenation of benzophenone (**1o**) (Table 2, Entry 14), which, by virtue of the low reactivity of the carbonyl group, demands very vigorous conditions. Performing the TiCl₄/Mg-promoted direct coupling of CHBr₃ with benzophenone at 0 °C to room temperature led to complete consumption of starting material within 3 h and formation of the desired vinyl dibromide **2o** in 85% yield.^[10] The ability to effect such a dibromomethylenation at low temperatures highlights the reactivity of this new (dibromomethylene)titanium complex.

On the other hand, dibromomethylenation of p-tolualdehyde (1p) was equally effective (Table 3, Entry 1); in this case the olefination product 2p was obtained in 80% yield. Changing the aromatic aldehyde to p-(dimethylamino)benzaldehyde (1q), piperonal (1r), and 2-furaldehyde (1s) provided equally satisfactory results with formation of 1,1-dibromoalkenes 2q, 2r, and 2s, respectively (Table 3, Entries 2–4). Changing the aromatic aldehydes to aliphatic aldehydes 1t, 1u, 1v, and 1w also gave the expected dibromides in good yields (Table 3, Entries 5–8).

Table 3. CHBr₃/Mg/TiCl₄-promoted dibromomethylenation of aldehydes.^[a]

Entry	Substrate	TiCl ₄ /Mg [equiv.]	DME [mL]	Product	Yield [%] ^[b]
1	D ↓ H 1p	3:8	1.2	CBr ₂	80
2	N 1q	3:8	1.2	N 2q	87
3	<0€ Ir	3:8	1.2		82
4	Ср–сно 1s	3:8	1.2	CBr ₂ 2s	78
5		3:8	1.2	CBr ₂ 2t	75
6	O ↓ ↓ ↓ ↓ ↓ ↓	3:8	1.2		87
7		3:8	1.2	CBr ₂ CI	70
8	H-J ^O U 1w	3:8	1.2	CBr ₂	85

[a] Reaction conditions (1 mmol scale): bromoform (0.3 mL), 0 $^{\circ}$ C to r.t. [b] Isolated yield.

The chemoselectivity was briefly explored with a series of carbonyl compounds, as summarized in Table 4. As expected, exposure of a mixture of aldehyde (1 mmol) and ketone (1 mmol) to CHBr₃ (1–1.7 mmol) at -10 to -5 °C for ca. 0.5 h produced exclusively the aldehyde-derived vinyl dibromide (Table 4, Entries 1–3). A particularly interesting

example illustrating the chemoselectivity of this process is the dibromomethylenation of a mixture of aliphatic and aromatic aldehydes (Table 4, Entry 4). The preference for methylenation of an aliphatic aldehyde highlights the chemoselectivity of the process.

Table 4. Selectivity in the dibromomethylenation of ketones and aldehydes mediated by the CHBr_3/Mg/TiCl_4/DME system.

[a] Isolated yield. [b] Reaction conditions: bromoform (1.7 mmol), -5 °C, 25 min. [c] Reaction conditions: bromoform (1.0 mmol), -10 °C, 45 min. [d] Reaction conditions: bromoform (1.0 mmol), -5 °C, 25 min. Piperonyl alcohol (10%) was produced as byproduct.

Conclusions

This method constitutes the first report on the use of $CHBr_3$ as an effective dibromomethylene equivalent in chemoselective carbonyl dibromomethylenation. The nucleophilicity involved suggested several intriguing applications that are currently under active investigation.

Experimental Section

General: Dichloromethane was distilled from P_2O_5 prior to use. Commercially available ketones and aldehydes were used as received. Bromoform, titanium tetrachloride, and magnesium powder (ca. 50 mesh) were used as received. Flash chromatography was performed on silica gel 60 (230–400 mesh). All reactions were carried out under N₂. ¹H and ¹³C NMR spectra were recorded with a Varian VXR 400 MHz spectrometer at ambient temperature. High-resolution mass spectra were determined with a Jeol JMS-HX 110 spectrometer.

Typical Procedure for the Dibromomethylenation of Carbonyl Compounds. 1-(Dibromomethylene)-2-methylcyclohexane (2a): To a suspension of Mg (194 mg, 8 mmol) and TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 3 mL) at 0 °C was added over a 2.0 min period a solution

Pages: 7

FULL PAPER

of 2-methylcyclohexanone (**1a**; 112 mg, 1 mmol) in CH₂Cl₂ (1 mL), CHBr₃ (0.3 mL), and DME (1.2 mL). The black slurry was stirred at 0–25 °C for 3 h, then recooled to 0 °C and carefully poured into ice-cold saturated potassium carbonate solution (10 mL). The resulting mixture was stirred with CH₂Cl₂ (20 mL), and the phases were separated. The procedure was repeated twice, and the combined extracts were dried, concentrated, and purified by chromatography on silica gel (elution with hexane) to give **2a** (213 mg, 80%) as a colorless oil. $R_f = 0.89$ (*n*-hexane). ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.04$ (d, J = 7.2 Hz, 3 H), 1.21–1.25 (m, 1 H), 1.46–1.54 (m, 4 H), 1.74 (d, J = 8.0 Hz, 1 H), 1.91–1.98 (m, 1 H), 2.78 (d, J = 14.4 Hz, 1 H), 3.20 (m, 1 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 17.0$, 19.8, 26.4, 30.1, 32.1, 36.3, 82.0, 147.9 ppm. HRMS: calcd. for C₈H₁₂Br₂ 265.9306; found 265.9315.

2-(Dibromomethylene)-1,3-dimethylcyclohexane (2b): Prepared as described above with **1b** (126 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2b** (239 mg, 85%) as a colorless oil. R_f = 0.90 (*n*-hexane). IR (neat): \tilde{v} = 2963, 2930, 2867, 1608, 1578, 1459, 1376, 1240, 1146, 1112, 1049, 985, 898, 878, 835, 767, 675 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 1.12 (d, J = 7.6 Hz, 6 H), 1.52–1.63 (m, 6 H), 3.09 (t, J = 6.8 Hz, 2 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 15.0, 19.6, 31.6, 35.3, 85.5, 150.4 ppm. HRMS: calcd. for C₉H₁₄Br₂ 279.9462; found 279.9471.

(**Dibromomethylene**)cyclopentane (2c):^[5] Prepared as described above with 1c (84 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/ DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 2c (169 mg, 71%) as a colorless oil. $R_f = 0.96$ (*n*hexane). ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.78$ –1.82 (m, 4 H), 2.30–2.33 (m, 4 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 27.19$, 36.6, 78.2, 151.0 ppm. HRMS: calcd. for C₆H₈Br₂ 237.8993; found 237.8997.

(Dibromomethylene)cycloheptane (2d):^[5] Prepared as described above with 1d (112 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 2d (205 mg, 77%) as a colorless oil. $R_f = 0.88$ (*n*hexane). ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.50-1.64$ (m, 8 H), 2.44 (t, J = 6.4 Hz, 4 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 26.4$, 28.8, 36.0, 84.8, 146.8 ppm. HRMS: calcd. for C₈H₁₂Br₂ 265.9306; found 265.9309.

3-(Dibromomethylene)-2,4-dimethylpentane (2e): Prepared as described above with **1e** (114 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2e** (197 mg, 73%) as a colorless oil. $R_f = 0.97$ (*n*-hexane). ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.13$ (d, J = 6.8 Hz, 12 H), 2.94 (m, 2 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 19.4$, 22.5, 82.9, 153.4 ppm. HRMS: calcd. for C₈H₁₄Br₂ 267.9462; found 267.9461.

2-(Dibromomethylene)-2,3-dihydro-1*H***-indene (2f):** Prepared as described above with **1f** (132 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2f** (209 mg, 73%) as a colorless oil. $R_f = 0.70$ (*n*-

hexane). ¹H NMR (CDCl₃, 400 MHz): δ = 3.68 (s, 4 H), 7.20 (m, 4 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 42.2, 81.9, 124.6, 126.9, 140.4, 146.5 ppm. HRMS: calcd. for C₁₀H₈Br₂ 285.8993; found 285.9002.

2-(Dibromomethylene)-1,2,3,4-tetrahydronaphthalene (2g): Prepared as described above with **1g** (146 mg, 1 mmol) and Mg (8 mmol)/ TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2g** (205 mg, 68%) as a colorless oil. R_f = 0.62 (*n*-hexane). IR (neat): \tilde{v} = 3064, 3021, 2931, 2844, 1678, 1626, 1572, 1492, 1453, 1423, 1283, 1220, 1105, 947, 866, 793, 745 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 2.59 (t, *J* = 6.8 Hz, 2 H), 2.80 (t, *J* = 6.0 Hz, 2 H), 3.60 (s, 2 H), 7.14 (m, 4 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 29.1, 32.7, 37.6, 83.9, 126.3, 126.5, 127.6, 127.9, 134.6, 137.5, 141.5 ppm. HRMS: calcd. for C₁₁H₁₀Br₂ 299.9149; found 299.9145.

2-(Dibromomethylene)-1,1-dimethylcyclohexane (2h): Prepared as described above with **1h** (126 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2h** (203 mg, 72%) as a colorless oil. $R_f = 0.84$ (*n*-hexane). ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.33$ (s, 6 H), 1.46 (d, J = 4.8 Hz, 2 H), 1.56 (d, J = 13.2 Hz, 4 H), 2.46 (t, J = 5.2 Hz, 2 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 18.7$, 21.8, 26.8, 33.4, 39.2, 40.5, 80.9, 149.9 ppm. HRMS: calcd. for C₉H₁₄Br₂ 279.9462; found 294.9455.

3-(Dibromomethylene)cyclohex-1-ene (2i):^[11a] Prepared as described above, **1i** (96 mg, 1 mmol) and Mg (194 mg, 8 mmol)/TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2i** (194 mg, 78%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 1.71 (m, 2 H), 2.10–2.05 (m, 2 H), 2.47 (t, J = 6.4 Hz, 2 H), 6.06–6.02 (tt, J = 10.0, 4.0 Hz, 1 H), 6.47–6.43 (tt, J = 10.0, 6.0 Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.9, 25.3, 31.2, 87.5, 126.2, 133.9, 138.6 ppm. HRMS: calcd. for C₇H₈Br₂ 249.8993; found 249.8986.

2-(Dibromomethylene)-4-methyl-1-(propan-2-ylidene)cyclohexane (2j): Prepared as described above with 1j (152 mg, 1 mmol) and Mg (194 mg, 8 mmol)/TiCl₄ (1 m in ClCH₂CH₂Cl, 3 mmol, 4 mL)/ CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 2j (203 mg, 66%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (d, J = 11.6 Hz, 3 H), 1.52–1.76 (m, 11 H), 2.62–2.67 (m, 1 H), 2.89–2.93 (m, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.3$, 21.9, 22.0, 30.5, 34.7, 36.2, 44.9, 82.5, 125.9, 132.9, 147.1 ppm. HRMS: calcd. for C₁₁H₁₆Br₂ 305.9618; found 305.9622.

1-(Dibromomethylene)-1,2,3,4-tetrahydronaphthalene (2k): Prepared as described above with **1k** (146 mg, 1 mmol) and Mg (8 mmol)/ TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 2 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2k** (262 mg, 87%) as a colorless oil. R_f = 0.79 (*n*-hexane). IR (neat): \tilde{v} = 3064, 3032, 2939, 2864, 2843, 1479, 1452, 1074, 1016, 917, 794, 747, 636, 503 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 1.81–1.85 (m, 2 H), 2.65–2.71 (m, 4 H), 7.16–7.29 (m, 3 H), 7.90 (d, J = 7.2 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 22.8, 30.0, 34.1, 86.5, 125.1, 127.5, 128.2,

Pages: 7

Dibromomethylenation of Aldehydes and Ketones

128.9, 134.4, 140.3, 140.6 ppm. HRMS: calcd. for $C_{11}H_{10}Br_2$ T 299.9149; found 299.9147.

(2,2-Dibromo-1-methylvinyl)benzene (21):^[11b] Prepared as described above with 11 (120 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 2 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 2l (225 mg, 82%) as a colorless oil. $R_f = 0.62$ (*n*-hexane). IR (neat): $\tilde{v} = 3056$, 3025, 29.16, 2848, 1600, 1489, 1441, 1371, 1074, 1028, 912, 750, 697, 582, 529 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.23$ (s, 3 H), 7.21–7.36 (m, 5 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 26.1$, 87.5, 127.3, 127.6, 128.3, 141.9, 143.0 ppm. HRMS: calcd. for C₉H₈Br₂ 273.8993; found 273.8992.

1-(1,1-Dibromo-3-methylbut-1-en-2-yl)benzene (2m):^[11c] Prepared as described above with **1m** (148 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 2 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2m** (255 mg, 84%) as a colorless solid. $R_f = 0.80$ (*n*-hexane). ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.96$ (d, J = 6.8 Hz, 6 H), 3.32 (sept, J = 6.8 Hz, 1 H), 7.02–7.05 (m, 2 H), 7.34–7.40 (m, 3 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 26.3$, 35.6, 88.2, 127.5, 128.1, 128.4, 138.7, 152.2 ppm. HRMS: calcd. for C₁₁H₁₂Br₂ 301.9306; found 301.9310.

(*E*)-1,1-Dibromo-2,4-bis(4-methoxyphenyl)buta-1,3-diene (2n): Prepared as described above with 1n (268 mg, 1 mmol) and Mg (194 mg, 8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C → r.t. for 3 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 10a (382 mg, 90%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 3.80 (s, 3 H), 3.86 (s, 3 H), 6.11 (d, *J* = 15.6 Hz, 1 H), 6.84 (d, *J* = 8.8 Hz, 2 H), 6.97 (d, *J* = 8.4 Hz, 2 H), 7.12 (d, *J* = 8.4 Hz, 2 H), 7.29 (s, 1 H), 7.32 (d, *J* = 8.8, Hz, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.23, 55.29, 91.9, 113.9, 114.1, 126.4, 128.2, 129.4, 130.5, 131.1, 136.0, 145.1, 159.2, 159.9 ppm. HRMS: calcd. for C₁₈H₁₆Br₂O₂ 421.9517; found 421.9513.

(2,2-Dibromoethene-1,1-diyl)dibenzene (20):^[11b] Prepared as described above with 10 (182 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 2 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 20 (287 mg, 85%) as a colorless oil. R_f = 0.62 (*n*-hexane). ¹H NMR (CDCl₃, 400 MHz): δ = 7.24–7.32 (m, 10 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 90.2, 127.9, 128.3, 128.6, 141.3, 147.8 ppm. HRMS: calcd. for C₁₄H₁₀Br₂ 335.9149; found 335.9157.

1-(2,2-Dibromovinyl)-4-methylbenzene (2**p**):^[12a] Prepared as described above with **1p** (120 mg, 1 mmol) and Mg (6 mmol)/TiCl₄ (1 m in CH₂Cl₂, 2 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.0 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 2.5 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2p** (220 mg, 80%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ = 2.36 (s, 3 H), 7.14 (d, *J* = 8.0 Hz, 1 H), 7.24 (d, *J* = 15 Hz, 1 H), 7.31 (t, *J* = 7.3, 10.4 Hz, 2 H), 7.45 (s, 1 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 21.3, 89.2, 125.4, 128.2, 129.0, 129.3, 135.2, 137.0, 138.0 ppm. HRMS: calcd. for C₉H₈Br₂ 273.8993; found 273.8988.

4-(2,2-Dibromovinyl)-*N*,*N*-dimethylaniline (2q):^[12b] Prepared as described above with 1q (149 mg, 1 mmol) and Mg (6 mmol)/TiCl₄ (1 m in CH₂Cl₂, 2 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.0 mL).

The black slurry was stirred at 0 °C \rightarrow r.t. for 1.5 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2q** (265 mg, 87%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ = 2.97 (s, 6 H), 6.64 (d, *J* = 8.8 Hz, 2 H), 7.33 (s, 1 H), 7.47 (d, *J* = 8.8 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 40.1, 84.1, 111.5, 122.9, 129.6, 136.6, 150.2 ppm. HRMS: calcd. for C₁₀H₁₁NBr₂ 302.9258; found 302.9256.

5-(2,2-Dibromovinyl)benzo[*d*][1,3]dioxole (2r):^[12c] Prepared as described above with 1r (150 mg, 1 mmol) and Mg (6 mmol)/TiCl₄ (1 M in CH₂Cl₂, 2 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.0 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3.0 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 2r (207 mg, 68%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ = 5.98 (s, 2 H), 6.78 (d, *J* = 8.0 Hz, 1 H), 6.93 (d, *J* = 6.4 Hz, 1 H), 7.18 (s, 1 H), 7.36 (s, 1 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 87.8, 101.3, 108.0, 108.2, 123.3, 129.1, 136.2, 147.5, 147.7 ppm. HRMS: calcd. for C₉H₆Br₂O₂ 303.8735; found 303.8737.

2-(2,2-Dibromovinyl)furan (2s):^[12b] Prepared as described above with **1s** (96 mg, 1 mmol) and Mg (6 mmol)/TiCl₄ (1 M in CH₂Cl₂, 2 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.0 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3.0 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2s** (195 mg, 78%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz): $\delta = 6.46$ (dd, J = 1.6 Hz,1 H), 6.95 (dd, J = 0.4, 3.2 Hz, 1 H), 7.40 (s, 1 H), 7.44 (t, J = 1.2 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 87.1$, 111.4, 111.5, 126.4, 142.5, 150.0 ppm. HRMS: calcd. for C₆H₄Br₂O 249.8629; found 249.8631.

(2,2-Dibromovinyl)cyclohexane (2t):^[11b] Prepared as described above with 1t (112 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 M in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 3.0 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded 2t (199 mg, 75%) as a colorless oil. $R_f = 0.87$ (*n*hexane). IR (neat): $\tilde{v} = 2926$, 2851, 1610, 1448, 1349, 1311, 1273, 1257, 1217, 1139, 956, 893, 832, 814, 765 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.06$ –1.34 (m, 5 H), 1.61–1.73 (m, 5 H), 2.25 (m, 1 H), 6.21 (d, J = 9.2 Hz 1 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 25.4$, 25.7, 31.2, 42.4, 86.9, 143.7 ppm. HRMS: calcd. for C₈H₁₂Br₂ 265.9306; found 265.9301.

1,1-Dibromo-4-methylpenta-1,3-diene (2u):^[12b] Prepared as described above with **1u** (84 mg, 1 mmol) and Mg (194 mg, 8 mmol)/ TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C \rightarrow r.t. for 2.0 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2u** (207 mg, 87%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.73$ (s, 3 H), 1.78 (s, 3 H), 5.84 (m, 1 H), 7.06 (d, J = 10.8 Hz, 1 H) ppm. ¹³C NMR (100 MHz, C₆D₆): $\delta = 18.8$, 25.9, 89.18, 122.6, 133.9, 140.6 ppm. HRMS: calcd. for C₆H₈Br₂ 237.8993; found 237.8998.

1-(2,2-Dibromovinyl)-2-chlorocyclohex-1-ene (2v): Prepared as described above with **1v** (144 mg, 1 mmol) and Mg (194 mg, 8 mmol)/ TiCl₄ (1 м in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.0 mL). The black slurry was stirred at 0 °C → r.t. for 2.0 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2v** (210 mg, 70%) as a colorless oil. IR (neat): $\tilde{v} = 2937$, 2881, 2860, 2837, 1655, 1570, 1447, 1434, 1336, 1261, 1097, 995, 905, 877, 850, 822, 809, 669, 601, 539 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.69$ –1.55 (m, 4 H), 2.31 (d, *J* = 6.0 Hz, 4 H), 7.17 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.9$, 23.3, 28.7, 34.0, 90.0, 129.8, 132.7, 136.3 ppm. HRMS: calcd. for C₈H₉ClBr₂ 297.8759; found 297.8757.

FULL PAPER

1-(4,4-Dibromobut-3-en-2-yl)benzene (2w):^[12d] Prepared as described above with **1w** (134 mg, 1 mmol) and Mg (8 mmol)/TiCl₄ (1 m in CH₂Cl₂, 3 mmol, 4 mL)/CHBr₃ (0.3 mL)/DME (1.2 mL). The black slurry was stirred at 0 °C → r.t. for 3.0 h to give a crude reaction mixture. Purification by flash chromatography (silica gel, hexane) afforded **2w** (245 mg, 85%) as a colorless oil. $R_f = 0.80$ (*n*-hexane). ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.38$ (d, J = 7.2 Hz, 3 H), 3.72–3.80 (m, 1 H), 6.49 (d, J = 9.6 Hz, 6 H), 7.23–7.32 (m, 5 H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 20.0$, 43.3, 88.4, 126.7, 126.8, 128.6, 142.7, 142.9 ppm. HRMS: calcd. for C₁₀H₁₀Br₂ 287.9150; found 287.9157.

Supporting Information (see footnote on the first page of this article): Copies of NMR spectra.

Acknowledgments

We thank the National Science Council of the Republic of China for generous support.

- a) A. Arefolov, J. S. Panek, J. Am. Chem. Soc. 2005, 127, 5596;
 b) L. V. Hijfte, M. Kolb, P. Witz, Tetrahedron Lett. 1989, 30, 3655;
 c) E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769.
- [2] a) W. Shen, S. A. Thomas, Org. Lett. 2000, 2, 2857; b) A. Hayford, J. Kaloko Jr., S. EI-Kazaz, G. Bass, C. Harrison, T. Corprew, Org. Lett. 2005, 7, 2671; c) J. Uenishi, R. Kawahama, O. Yonemitsu, J. Tsuji, J. Org. Chem. 1998, 63, 8965; d) Y.-Q. Fang, M. Lautens, Org. Lett. 2005, 7, 3549.
- [3] a) B. C. Ranu, S. Samanta, S. K. Guchhait, J. Org. Chem. 2001, 66, 4102; b) K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408; c) S. Abbas, C. J. Hayes, S. Worden, Tetrahedron Lett. 2000, 41, 3215; d) J. Uenishi, R. Kawahama, Y. Shiga, O. Yonemitsu, J. Tsuji, Tetrahedron Lett. 1996, 37, 6759.
- [4] a) J.-C. Poupon, A. A. Boezio, A. B. Charette, Angew. Chem.
 2006, 118, 1443; Angew. Chem. Int. Ed. 2006, 45, 1415; b) E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769; c) G. H. Posner, G. Loomis, H. S. Sawaya, Tetrahedron Lett. 1975, 16, 3769; d) Y.-Q. Fang, O. Lifchits, M. Lautens, Synlett 2008, 413; e) P. Savignac, P. Coutrot, Synthesis 1976, 197; f) for the syn-

thesis of 1,1-dibromoalkenes from 1,1-dimetallic species, see: M. J. Dabdoub, V. B. Dabdoub, A. C. M. Baroni, *J. Am. Chem. Soc.* **2001**, *123*, 9694.

- [5] V. N. Korotchenko, A. V. Shastin, V. G. Nenajdenko, E. S. Balenkova, Org. Biomol. Chem. 2003, 1, 1906.
- [6] a) T.-H. Yan, C.-C. Tsai, C.-T. Chien, C.-C. Cho, P.-C. Huang, Org. Lett. 2004, 6, 4961; b) T.-H. Yan, C.-T. Chien, C.-C. Tsai, K.-W. Lin, Y.-H. Wu, Org. Lett. 2004, 6, 4965; c) K.-W. Lin, S. Yan, I.-L. Hsieh, T.-H. Yan, Org. Lett. 2006, 8, 2265; d) C.-C. Tsai, I.-L. Hsieh, T.-T. Cheng, P.-K. Tsai, K.-W. Lin, T.-H. Yan, Org. Lett. 2006, 8, 2261; e) K.-W. Lin, C.-H. Tsai, I.-L. Hsieh, T.-H. Yan, Org. Lett. 2008, 10, 1927–1930; f) for the TiCl₄/Mg-promoted chloromethylenation of CHCl₃ with ketones and aldehydes, see: C.-C. Tsai, C.-T. Chien, Y.-C. Chang, H.-C. Lin, T.-H. Yan, J. Org. Chem. 2005, 70, 5745– 5747; g) for CCl₂ transfer reaction of CCl₄ mediated by TiCl₄/ Mg, see: T.-T. Cheng, C.-C. Tsai, C.-H. Tsai, T.-Y. Chang, P.-K. Tsai, Y.-C. Wang, T.-H. Yan, J. Org. Chem. 2006, 71, 4324– 4327.
- [7] L. E. Aleandri, B. Bogdanovic, A. Gaidies, D. J. Jones, S. Liao, A. Michalowicz, J. Roziere, A. Schott, J. Organomet. Chem. 1993, 459, 87.
- [8] a) N. A. Petasis, E. I. Bzowej, J. Am. Chem. Soc. 1990, 112, 6392; b) L. Clawson, S. L. Buchwald, R. H. Grubbs, Tetrahedron Lett. 1984, 25, 5733.
- [9] For the methylenation of enolizable ketones, see: C. R. Johnson, B. D. Tait, J. Org. Chem. 1987, 52, 281.
- [10] The phosphane/CBr₄-mediated benzophenone olefination required heating at 145 °C for 64 h and the use of a large excess of PPh₃ (4 equiv.), see: P. M. Donovan, L. T. Scott, J. Am. Chem. Soc. 2004, 126, 3108.
- [11] a) M. S. Baird, P. D. Slowey, *Tetrahedron Lett.* **1982**, *23*, 3795–3796; b) P. Charreau, M. Julia, J.-N. Verpeaux, J. Organomet. Chem. **1989**, *379*, 201–210; c) T. Harada, T. Katsuhira, K. Hattori, A. Oku, *Tetrahedron* **1994**, *50*, 7987.
- [12] a) D. H. Huh, J. S. Jeong, H. B. Lee, H. Ryu, Y. G. Kim, *Tetrahedron* 2002, 58, 9925–9932; b) M. L. N. Rao, D. N. Jadhav, P. Dasgupta, Org. Lett. 2010, 12, 2048–2051; c) L. Chen, H.-H. Xu, B. L. Yin, C. Xiao, T.-S. Hu, Y. L. Wu, J. Agric. Food Chem. 2004, 52, 6719–6723; d) B. M. Trost, A. Breder, Org. Lett. 2011, 13, 398–401.

Received: April 11, 2012 Published Online: ■

6

Date: 25-07-12 15:49:13

Pages: 7

Dibromomethylenation of Aldehydes and Ketones

Dibromomethylenation

ᆗ

Bromoform can serve as a highly nucleophilic dibromomethylene carbenoid in chemoselective carbonyl dibromomethylenation reactions with various carbonyl compounds such as enolizable and sterically hindered ketones by using the CHBr₃/Mg/ TiCl₄ system.

Y. R. Bhorge, C.-T. Chang, S.-H. Chang, T.-H. Yan* 1–7

 $CHBr_3/TiCl_4/Mg \ as \ an \ Unusual \ Nucleo-philic \ CBr_2 \ Carbenoid: \ Effective \ and \ Chemoselective \ Dibromomethylenation \ of \ Aldehydes \ and \ Ketones$

Keywords: Alkenes / Bromine / Chemoselectivity / Titanium / Magnesium / Synthetic methods