A Base-Promoted Tandem Cycloaddition/Air Oxidation Reaction of **Electron-Deficient Conjugated Enynes and Hydrazines: Synthesis of Highly Substituted Pyrazoles**

Xiuzhao Yu^[a] and Junliang Zhang^{*[a, b]}

Pyrazoles are important motifs in bioactive molecules used in the pharmaceutical and agrochemical industries.^[1] Moreover, pyrazoles are used in supramolecular and polymer chemistry, in the food industry, and as cosmetic colorings and UV stabilizers.^[2] Substituted pyrazoles have also been used as ligands for transition metal catalyzed reactions.^[3] Typical methods for the synthesis of pyrazoles include approaches based either on the condensation of hydrazines with 1,3-dicarbonyl compounds^[4] and α,β -unsaturated aldehydes and ketones^[5] (Scheme 1 a and b) or on the intermolecular 1,3-dipolar cycloaddition of diazoalkanes and nitrile imines with alkenes and alkynes (Scheme 1 c)^[6] The drawbacks of these protocols, such as poor reactivity and regioselectivity, and the potential hazards associated with detonation of the substrates, limit their practical application to some extent. Although over the years, diverse methodologies have been developed,^[7,8] access to a regioselective and broadly applicable method for the synthesis of pyrazoles remains challenging. In 2010, Glorius and co-workers^[8a] reported a novel method for the preparation of highly substituted pyrazoles; the method involved oxidative C-C/N-N bond formation using amines, ketones, and nitriles as substrates, although a high reaction temperature and an excess oxidant (Cu(OAc)₂, 3.0 equiv) were required of (Scheme 1 d). Patil and Singh^[8b] developed a novel Lewisacid-mediated microwave-based hydroamination reaction of terminal envnes and aryl hydrazines that gives, for example, 3-methyl-4,5-dihydro-pyrazole, which upon Pd/C-catalyzed dehydrogenative aromatization gives 3-methyl-pyrazole (Scheme 1e). However, the need for a high reaction temperature and an excess of Lewis acid (3.0 equiv), as well as the

[a]	Dr. X. Yu, Prof. Dr. J. Zhang			
	Shanghai Key Laboratory of Green Chemistry and			
	Chemical Processes, Department of Chemistry			
	East China Normal University			
	3663 N. Zhongshan Road, Shanghai 200062 (P.R. China)			
	Fax: (+86)21-6223-5039			
	E-mail: jlzhang@chem.ecnu.edu.cn			
[b]	Prof. Dr. J. Zhang			

- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, (P.R. China)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201202583.

Previous work

Scheme 1. Previous work and this work for the synthesis of highly substituted pyrazoles. DMA = N, N-dimethylacetamide.

poor functional-group compatibility may limit the use of this reaction in organic synthesis. Consequently, the development of novel, generally applicable, and very efficient methods for the synthesis of highly substituted pyrazoles under mild reaction conditions is still highly desirable. Herein, we report a facile route to highly substituted functionalized pyr-

Chem. Eur. J. 2012, 00, 0-0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

🕅 WILEY 师

These are not the final page numbers!

azoles through an unprecedented cycloaddition/oxidation reaction of hydrazines and electron-deficient 1,3-conjugated enynes (Scheme 1 f).

A EUROPEAN JOURNAL

Recent studies from our research group and that of Hu have shown that electron-deficient 1,3-conjugated envnes are good Michael acceptors and can undergo tandem addition reactions with nucleophiles, thus leading to various acyclic and cyclic compounds.^[9] However, previous studies have shown that the carbonyl group of α,β -unsaturated aldehydes and ketones will react with hydrazines through condensation followed by cyclization to afford pyrazoles (Scheme 1b). However, as expected, we found that highly substituted pyrazoles that bear functional groups could be efficiently prepared from the corresponding electron-deficient 1,3-envnes and hydrazines by tandem inter- and intramolecular nucleophilic addition and air oxidation. It is notable that ketone and aldehyde carbonyl groups in the substrate do not undergo a condensation reaction with hydrazines under the reaction conditions (Scheme 1 f).

To test the feasibility of our proposed tandem reaction, we conducted a reaction using easily accessible 1,3-envne $1a^{[9,10]}$ as a substrate, together with *tert*-butylhydrazine hydrochloride (2a) and Et₃N (1.7 equiv) in DMF at room temperature under air atmosphere. To our delight, following a reaction time of 7 hours, the desired 1-(5-benzyl-1-tert-butyl-3-phenyl-1*H*-pyrazol-4-yl)ethanone (3aa) was isolated in 90% yield as a single isomer (entry 1, Table 1). This result shows that the ketone moiety remains intact following transformation of the substrate, a result that is different from that of previous work (the hydrazine first reacts with the ketone moiety), and that air is sufficient to oxidize the intermediate. These results encouraged us to optimize the other reaction parameters. Various solvents such as THF, DCE, CH2Cl2, DMSO, and CH3CN were tested; the results showed that the use of polar solvents benefits the reaction and when the reaction was conducted in DMA, the product could be isolated in up to 96% yield (Table 1, entries 2-10). Notably, with shorter reaction times, allene product 3aa' was obtained when using some less polar solvents. Subsequently, a series of organic and inorganic bases such as TMEDA, DABCO, DBU, DMAP, NaOH, NaOAc, and K_2CO_3 were tested for reactions conducted in DMA. The results show that in many cases, the use of these bases lead to high yields of product, except the use of NaOH and DMAP (Table 1, entries 11-16); the use of K_2CO_3 gave the best results (Table 1, entry 17). Finally, we found that decreasing the amount of the hydrazine and base to 1.2 and 1.4 equivalents, respectively, does not adversely affect the reaction outcome (Table 1, entry 18). The structure of the product was confirmed by X-ray crystallographic analysis of **3aa** (Figure 1, top).^[11]

The scope of this reaction was examined by variation of the hydrazine component (**2b–e**; Table 2). Gratifyingly, hydrazine hydrate (**2b**) is a good substrate, the product, pyrazole **3ab**, being isolated in 61% yield (Table 2, entry 1); this product should be amenable to further functionalization through reaction at the NH group. We were surprised that Table 1. Screening of reaction conditions for the reaction of enyne 1a with hydrazine $2a.^{[a]}$

Me Ph 1a	Ph $\frac{tBu' 2a}{base}$ solvent, RT	•HCI Me	Ph Me N + Ph Bu 3aa	Ph H N tBu H
Entry	Base	Solvent	Time [h]	Yield [%] ^[b] 3aa 3aa'
1	Et ₃ N	DMF	7	90 -
2	Et ₃ N	THF	20	74 15
3	Et ₃ N	DCE	20	65 26
4	Et ₃ N	CH_2Cl_2	20	81 15
5	Et ₃ N	CHCl ₃	20	68 31
6	Et ₃ N	toluene	20	23 54
7	Et ₃ N	1,4-dioxane	20	50 25
8	Et ₃ N	DMSO	9	71 –
9	Et ₃ N	CH ₃ CN	9	95 –
10	Et ₃ N	DMA	1.5	96 –
11	TMEDA	DMA	3.5	95 –
12	DABCO	DMA	3.3	96 –
13	DBU	DMA	3.3	87 –
14	DMAP	DMA	24	65 11
15	NaOH	DMA	24	22 39
16	NaOAc	DMA	3.3	93 –
17	K_2CO_3	DMA	1.2	97 –
18 ^[c]	K_2CO_3	DMA	1.5	97 –

[a] All reactions were carried out using **1a** (0.2 mmol) and **2a** (0.3 mmol) in the presence of base (1.7 equiv) in solvent (2.5 mL), unless otherwise specified. [b] Yield of isolated product. [c] 1.2 equiv hydrazine and 1.4 equiv base were used. DABCO=1,4-diazabicyclo[2.2.2]octane, DBU=1,8-diazabicyclo[5.4.0]undecen-7-ene, DCE=dichloroethane, DMAP=4-dimethyl-aminopyridine, DMF=N,N-dimethylformamide, TMEDA = N,N,N,N-tetramethyleth-ane-1,2-diamine.

Table 2. Base-promoted tandem reactions of enyne ${\bf 1a}$ with various hydrazines ${\bf 2}^{[a]}$

Me Ph 1a	Ph $\frac{\underset{\text{HN-NH}_2}{\text{R}} 2}{\underset{\text{DMA, air, RT}}{\text{R}}}$	Me Ph Ph N R 3	He Ph + Ph N-R
Entry	Hydrazine 2	Time [h]	Yield [%] ^[b] 3/4
1 ^[c]	$H_2NNH_2 \cdot H_2O \ 2b$	13	61 3 ab
2 ^[d]	$TsNHNH_2 2c$	30	72 3 ab
3	$PhNHNH_2 2d$	9	90 (3 ad/4 ad 10:1)
4 ^[e]	$MeNHNH_2 \cdot H_2O \ \mathbf{2e}$	3.5	86 (3ae/4ae 4.9:1)

[a] The reaction was carried out using **1a** (0.2 mmol) and hydrazine **2** (0.24 mmol) in the presence of K_2CO_3 (20 mol%) in DMA (2 mL) unless otherwise specified. [b] Yield of isolated product. [c] 85 wt.% of NH₂NH₂·H₂O was used. [d] The product is the same as that obtained from the reaction of **1a** and **2b**. [e] 40 wt.% of MeNHNH₂·H₂O was used. Ts = p-toluenesulfonyl.

the reaction of tosylhydrazine (2c) with 1a afforded pyrazole 3ab in 72% yield rather than the expected 1-Ts pyrazole 3ac (Table 2, entry 2). Phenylhydrazine and methylhydrazine reacted efficiently with 1a to give the corresponding pyrazoles in 90% and 86% yields with levels of regioselectivity of 10:1 and 4.9:1, respectively (Table 2, entries 3 and 4).

Figure 1. X-ray crystal structures of 3aa (top) and 3jb (bottom).

The scope of the reaction was then explored using various 2-(1-alkynyl)-2-alkene-1-ones **1b-h** in combination with *tert*butylhydrazine hydrochloride (**2a**) (Table 3). To our delight, the use of every tested substrate gave good to excellent yields of the desired products, although substrates containing either electron-donating \mathbb{R}^1 or electron-donating \mathbb{R}^2 groups required a longer reaction time (Table 3, entries 1 and 4). The reaction of phenyl ketone **1h** gave the desired product **3ha** in 93% yield as a single isomer under the same

Table 3. Reaction of various enynes 1 with hydrazine 2a.^[a]

R ³ -	R ¹ + NH ^{-tBu} R ¹ + NH ₂ ·HCl	K₂CO₃ (1.4 equiv) ► DMA, air, RT	R ³ R ¹ R ² N ['] <i>t</i> Bu 3
Entry	$R^{3}/R^{1}/R^{2}$ 1	Time [h]	Yield [%] ^[b] 3
1	Me/PMP/Ph 1b	4	85 3ba
2	Me/4-NCC ₆ H ₄ /Ph 1c	1	90 3 ca
3	Me/Ph/1-naphthyl 1d	1.8	97 3 da
4	Me/Ph/PMP 1e	4	88 3 ea
5	$Me/Ph/4-NO_2C_6H_4$ 1 f	1.2	84 3 fa
6	$Me/Ph/4-FC_6H_4$ 1g	1.5	91 3ga
7	Ph/Ph/Ph 1h	1.5	93 3ha

[a] The reaction was carried out using **1** (0.2 mmol) and hydrazine **2a** (0.24 mmol) in the presence of K_2CO_3 (1.4 equiv) in DMA (2 mL) unless otherwise specified. [b] Yield of isolated product. PMP=*para*-methoxy-phenyl.

reaction conditions (Table 3, entry 7). Notably, cyclic enynyl ketone **1i** gave the corresponding bicyclic pyrazole **3ia** in 75% yield as a single isomer [Eq. (1)].

Considering that 1-nonsubstituted pyrazoles are highly important intermediates in synthesis, we carried out further screening of reaction conditions. Ultimately, we found that product **3ab** could be isolated as a single isomer in an improved 80% yield when the reaction is conducted in CH₃CN at 40°C (Table 4, entry 1). Encouraged by this

Table 4. Reaction of various enynes 1 with hydrazine hydrate 2b.^[a]

GWE		K ₂ CO ₃ (20 mol%)	GWE	R ¹
// ₽²	R' + H ₂ NNH•H ₂ O -	► DMA, air, 40 °C	R ² // H	Ň
IX.	1 2b		3	
Entry	$EWG/R^1/R^2$ 1	Time [h]	Yield of 3 [%] ^[b,c]	
1	COMe/Ph/Ph 1a	4 (5.5)	65 (80)	3 ab
2	COMe/4-NCC ₆ H ₄ /Ph 1c	1.8 (4)	61 (78)	3bb
3	COMe/styryl/Ph 1j	3.5 (6)	49 (53)	3cb
4	COMe/Ph/4-NO ₂ C ₆ H ₄ 1 f	1.5 (4)	54 (73)	3 db
5	COMe/Ph/1-cyclohexenyl	1k 3	76	3eb
6	COPh/Ph/Ph 1h	4	78	3 fb
7	4-ClC ₆ H ₄ CO/Ph/Ph 11	3.5 (6)	72 (84)	3 gb
8	$CO_2Me/Ph/Ph 1m$	22	95	3hb
9	CO ₂ Me/Ph/PMP 1n	10	75	3 ib
10	CO ₂ Me/Ph/1-naphthyl 10	10	94	3 jb
11	$CO_2Me/Ph/n-C_4H_9$ 1p	11.5	55	3 kb
12	CO ₂ Me/Ph/cyclopropyl 1	q 11	78	3lb
13	CO ₂ Me/PMP/Ph 1r	10.5	95	3 mt
14	CO ₂ Me/4-FC ₆ H ₄ /Ph 1s	10	93	3 nb
15 ^[d]	CO ₂ Me/PMP/PMP 1t	10	58	3 ob
16 ^[e]	CO ₂ Me/PMP/1-naphthyl 1	Lu 8	97	3pb
17	CN/Ph/Ph 1v	3.5	97	3 qb
18	COCO ₂ Me/Ph/Ph 1w	3.5 (4)	47 (61)	3rb
19	COCO2Me/Ph/4-MeC6H4	1x 2 (4)	75 (45)	3 sb
20	CHO/Ph/Ph 1y	3.5	58	3tb
F 1 701		1 (0.0 I)	1. 0. 0. 0. 1	1) .

[a] The reaction was carried out using 1 (0.2 mmol) and 2 (0.24 mmol) in the presence of K₂CO₃ (20 mol%) in DMA (2 mL) unless otherwise specified. [b] Yield of isolated product; [c] Yields in brackets refer to reactions conducted in CH₃CN as the solvent. [d] Ratio of isomers: **3ob**/**4ob**=1.7:1. [e] Ratio of isomers: **3pb/4pb**=3:1.

promising result, the scope of this reaction was explored further using various electron-deficient enynes. The following points are noteworthy:

- Either DMA or CH₃CN can be used as a solvent for the reactions of 2-(1-alkynyl)-2-alkene-1-ones (Table 4, entries 1–4, 7, 18, and 19).
- (2) The presence of various electron-withdrawing groups such as ketones, esters, cyano, ketoesters, and aldehydes are well tolerated. We were surprised that the ketone,

Chem. Eur. J. **2012**, 00, 0–0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org

These are not the final page numbers! **77**

aldehyde, and ketoester groups did not participate in further condensation reactions; these pyrazoles, which contain reactive ketone, aldehyde, and ketoester groups are difficult to prepared using previously established methods.

- (3) Compound 1j, which contains a styryl group (R¹), afforded the desired pyrazole 3cb in moderate yield; the reaction was regioselective in that no 1,6-addition product was observed (Table 4, entry 3).
- (4) In most cases, the reactions give the products as single isomers, with the exception of **3ob** and **3pb**, the reactions of which had poor regioselectivity (Table 4, entries 15 and 16).
- (5) The structure of the *N*-nonsubstituted pyrazoles was confirmed by X-ray crystallographic analysis of **3jb** (Figure 1).^[11]

Notably, when the reaction is scaled-up (12.2 mmol), the substrates can be used in less excessive amounts without any reduction in yield [Eq. (2)]. For example, the reaction of *tert*-butylhydrazine hydrochloride (**2a**, 15 mmol) with 2-(1-alkynyl)-2-alkene-1-one (**1a**, 12.2 mmol) exposed to air in DMA was complete within 3.5 hours, thus giving 3.44 grams of **3ba** (85% yield upon isolation). Notably, the bubbling-in of air is not necessary for the reaction done on a smaller scale or on a gram scale.

One plausible mechanism that accounts for this base-promoted cycloaddition/oxidation reaction is proposed (Scheme 2). Regioselective nucleophilic conjugate addition

Scheme 2. A plausible mechanism for the tandem cycloaddition/oxidation reaction.

of RNHNH₂ to the electron-deficient 1,3-conjugated enyne **1**, through attack by the terminal NH₂ group, which is the less sterically hindered nitrogen atom, would generate the 1,2-allene intermediate **A**. Subsequent intramolecular nucle-ophilic addition would give 2,3-dihydro-1*H*-pyrazole **B**,^[12] which can then undergo rapid dehydrogenative aromatization under air to generate the final products **3**.

In summary, we have developed a simple and efficient synthetic strategy for preparing pyrazoles based on an unprecedented tandem cyclization/air oxidation of hydrazines and electron-deficient 1,3-conjugated enynes under mild reaction conditions. The presence of a variety of functional groups, such as ketones, aldehydes, and ketoesters, are tolerated in this transformation; these functional groups often undergo side reactions in many known processes. The reaction is efficient and 'green'. We anticipate that this methodology will find many applications in the fields of synthetic organic chemistry and pharmaceutical science. The generation of libraries of pyrazoles and their biological evaluation is currently being investigated.

Experimental Section

Typical procedure for the synthesis of pyrazole 3aa (Table 1, entry 18): K₂CO₃ (0.28 mmol, 38.6 mg) was added in one portion to a solution of 3benzylidene-5-phenylpent-4-yn-2-one (1a; 0.2 mmol, 49.2 mg) and tertbutylhydrazine hydrochloride (2a; 0.24 mmol, 29.8 mg) in 2.5 mL of DMA under air at room temperature. After 1.5 h, the enyne 1a was consumed, as determined by TLC analysis. 3 mL of H₂O was added to quench the reaction and the mixture was extracted with diethyl ether. The combined organic layers were washed with saturated NaCl solution and dried over MgSO4. After filtration and concentration, the residue was purified by column chromatography on silica gel (hexane/ethyl acetate 10:1) to give 3aa (64.4 mg, 97% yield) as a white solid. m.p.: 127-128°C. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS): $\delta = 7.55$ (d, J = 7.2 Hz, 2H), 7.45–7.37 (m, 3H), 7.26 (t, J=7.2 Hz, 2H), 7.17 (t, J=7.2 Hz, 1H), 7.04 (d, J = 7.2 Hz, 2 H), 4.59 (s, 2 H), 2.01 (s, 3 H), 1.59 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): $\delta = 196.54$, 149.96, 143.07, 138.34, 134.29, 129.28, 128.38, 128.32, 128.23, 127.59, 126.08, 121.83, 61.62, 31.84, 30.96, 30.52 ppm; MS (70 eV): m/z (%): 332 (M+, 94.70), 261 (100). HRMS calcd for C₂₂H₂₄NO₃: 332.1889, found: 332.1890.

Acknowledgements

We are grateful to National Natural Science Foundation of China (20972054), Ministry of Education of China, 973 program (2011CB808600) for financial support. This research is also supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Keywords: cycloaddition • enynes • hydrazines • oxidation • pyrazoles

[2] a) K. Dedelan, J. Shi, N. Shepherd, E. Forsythe, D. C. Morton, *Inorg. Chem.* 2005, 44, 4445; b) S.-Y. Chang, J.-L. Chen, Y. Chi, *Inorg. Chem.* 2007, 46, 11202; c) E. Cavero, S. Uriel, P. Romero, J. L. Serrano, R. Giménez, *J. Am. Chem. Soc.* 2007, 129, 11608; d) C. Ye, G. L. Gard, R. W. Winter, R. G. Syvret, B. Twamley, J. M. Shreeve, *Org. Lett.* 2007, 9, 3841; e) L. Yang, F. Okuda, K. Kobayashi, K. Nozaki, Y. Tanabe, Y. Ishii, M. Haga, *Inorg. Chem.* 2008, 47, 7154; f) E.-M. Chang, C.-T. Lee, C.-Y. Chen, F.-F. Wong, M.-Y. Yeh, *Aust. J. Chem.* 2008, 61, 342.

J. Elguero, P. Goya, N. Jagerovic, A. M. S. Silva in *Targets in Hetero-cyclic Systems* (Eds.: O. A. Attanasi, D. Spinelli), Italian Society of Chemistry: Roma, **2002**, Vol. 6, pp52–98.

www.chemeurj.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 0000, 00, 0–0

COMMUNICATION

- [3] a) R. A. Singer, S. Caron, R. E. McDermott, P. Arpin, N. M. Do, Synthesis 2003, 1727; b) R. Kowalczyk, J. Skarzewski, Tetrahedron 2005, 61, 623; c) R. A. Singer, M. Dore, J. E. Sieser, M. A. Berliner, Tetrahedron Lett. 2006, 47, 3727; d) S. O. Ojwach, J. Darkwa, Inorg. Chim. Acta 2010, 363, 1947.
- [4] a) L. Yet in Comprehensive Heterocyclic Chemistry III, Vol. 4 (Eds.: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor), Elsevier, Oxford, 2008, p. 1; b) B. S. Gerstenberger, M. R. Rauckhorst, J. T. Starr, Org. Lett. 2009, 11, 2097; c) L. Meng, B. A. Lorsbach, T. C. Sparks, J. C. Fettinger, M. J. Kurth, J. Comb. Chem. 2010, 12, 129; d) M. Zora, A. Kivrak, J. Org. Chem. 2011, 76, 9379.
- [5] a) H. García, S. Iborra, M. A. Miranda, I. M. Morera, J. Primo, Heterocycles 1991, 32, 1745; b) J. E. Baldwin, G. J. Pritchard, R. E. Rathmell, J. Chem. Soc. Perkin Trans. 1 2001, 2906; c) K. T. Chang, Y. H. Choi, S. H. Kim, Y. J. Yoon, W. S. Lee, J. Chem. Soc. Perkin Trans. 1 2002, 207; d) B. Stanovnik, J. Svete, Science of Synthesis Houben-Weyl Methods of Molecular Transformations, Vol. 12, Thieme, Stuttgart, 2002, Category 2, chap. 12.1, p. 15; e) B. Stanovnik, J. Svete, Chem. Rev. 2004, 104, 2433; f) C. D. Smith, K. Tchabanenko, R. M. Adlington, J. E. Baldwin, Tetrahedron Lett. 2006, 47, 3209; g) H. L. Liu, H. F. Jiang, M. Zhang, W. J. Yao, Q. H. Zhu, Z. Tang, Tetrahedron Lett. 2008, 49, 3805.
- [6] a) A. Padwa, 1,3-Dipolar Cycloaddition Chemistry; John Wiley & Sons: New York, 1984; Vol. I; b) A. Padwa, W. H. Pearson, Eds., Synthetic Applications of 1, 3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; John Wiley & Sons: New York, 2002; c) G. Maas in Synthetic Applications of 1, 3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products (Eds.: A. Padwa, W. H. Pearson), Wiley, Hoboken, 2003, pp. 623-680; d) V. K. Aggarwal, J. de Vicente, R. V. Bonnert, J. Org. Chem. 2003, 68, 5381; e) N. Jiang, C.-J. Li, Chem. Commun. 2004, 394; f) X. Deng, N. S. Mani, Org. Lett. 2006, 8, 3505; g) G. Molteni, ARKIVOC (Gainesville, FL, U.S.) 2007, 2, 224; h) Y. Hari, S. Tsuchida, R. Sone, T. Aoyama, Synthesis 2007, 3371; i) X. Qi, J. M. Ready, Angew. Chem. 2007, 119, 3306; Angew. Chem. Int. Ed. 2007, 46, 3242; j) X. Deng, N. S. Mani, J. Org. Chem. 2008, 73, 2412; k) S. Dadibovena, E. J. Valente, A. T. Hamme II. Tetrahedron Lett. 2010. 51, 1341; l) K. Mohanan, A. R. Martin, L. Toupet, M. Smietana, J.-J.

Vasseur, Angew. Chem. 2010, 122, 3264; Angew. Chem. Int. Ed. 2010. 49. 3196.

- [7] An excellent recent review: a) S. Fustero, M. Sánchez-Roselló, P. Barrio, A. Simón-Fuentes, Chem. Rev. 2011, 111, 6984-7034; selected recent examples: b) G. Shan, P. Liu, Y. Rao, Org. Lett. 2011, 13, 1746; c) B. Willy, T. J. J. Müller, Org. Lett. 2011, 13, 2082; d) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem. 2011, 123, 5674; Angew. Chem. Int. Ed. 2011, 50, 5560; e) D. Verma, S. Mobin, I. N. N. Namboothiri, J. Org. Chem. 2011, 76, 4764; f) O. Obermayer, T. N. Glasnov, C. O. Kappe, J. Org. Chem. 2011, 76, 6657.
- [8] a) J. J. Neumann, M. Suri, F. Glorius, Angew. Chem. 2010, 122, 7957; Angew. Chem. Int. Ed. 2010, 49, 7790; b) N. T. Patil, V. Singh, Chem. Commun. 2011, 47, 11116; c) M. G. Voskanyan, G. G. Khudoyan, S. V. Badanyan, Armyanskii Khimicheskii Zhurnal 1975, 28, 802; d) A. P. Khrimyan, A. V. Karapetyan, Sh. O. Badanyan, Chemistry Heterocyclic. Compounds 1984, 20, 189; e) S. Banerjee, E. Barnea, A. L. Odom, Organometallics 2008, 27, 1005.
- [9] a) X. Yu, H. Ren, Y. Xiao, J. Zhang, Chem. Eur. J. 2008, 14, 8481; b) Y. Xiao, J. Zhang, Chem. Commun. 2009, 3594; c) L. Zhao, F. Xie, G. Cheng, Y. Hu, Angew. Chem. 2009, 121, 6642; Angew. Chem. Int. Ed. 2009, 48, 6520; d) W. Li, Y. Xiao, J. Zhang, Adv. Synth. Catal. 2009, 351, 3083; e) Z. Chen, J. Zhang, Chem. Asian J. 2009, 4, 1527; f) Z. Chen, J. Zhang, Chem. Asian J. 2010, 5, 1542; g) Y. Liu, L. Huang, F. Xie, Y. Hu, J. Org. Chem. 2010, 75, 6304; h) X. Yu, B. Du, K. Wang, J. Zhang, Org. Lett. 2010, 12, 1876; i) X. Yu, J. Zhang, Adv. Synth. Catal. 2011, 353, 1265; j) X. Yu, G. Zhou, J. Zhang, Chem. Commun. 2012, 48, 4002.
- [10] T. Yao, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 11164.
- [11] CCDC 886253(3aa) and 886254(3jb) contain the supplementary crystallographic date for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Date Centre via www.ccdc.cam.ac.uk/date request/cif.
- [12] This intermediate B appears as a new spot on the TLC plate if the reaction is run under an atmosphere of N2, B rapidly undergo dehydrogenative aromatization during the work-up and the attempts to isolate this compound failed.

Received: July 23, 2012 Published online:

CHEMISTRY

A EUROPEAN JOURNAL

Tandem Reactions –

X. Yu, *J. Zhang**..... **IIII**-**IIII**

A Base-Promoted Tandem Cycloaddition/Air Oxidation Reaction of Electron-Deficient Conjugated Enynes and Hydrazines: Synthesis of Highly Substituted Pyrazoles

Rapid access: A base-mediated cycloaddition/oxidation reaction of hydrazines and electron-deficient 1,3-conjugated enynes gives pyrazole derivatives, some of which are not easily

accessible by other methods (see scheme). The reaction conditions are mild, thus enabling a variety of functional groups to be tolerated.