A New Procedure for the Preparation of β -Chloro- α,β -unsaturated Ketones

Robin D. CLARK and Clayton H. HEATHCOCK*

Department of Chemistry, University of California, Berkeley, California 94720, U.S.A.

 β -Diketones have been converted into β -chloro- α , β -unsaturated ketones by treatment with phosphorus trichloride^{1,2,3}, phosgene⁴, acetyl chloride⁵, thionyl chloride², and phosphorus oxychloride^{1,6}. Reported yields for the conver-

48 Communications SYNTHESIS

sion using these reagents are in the range 50-70%. We have examined several of the procedures and have found that the yields are often lower, particularly when the β -diketone also contains an acid-sensitive functional group. For example, the diketone 1 reacts with phosphorus trichloride in chloroform to give the chloroenone 2 and the bicyclic lactam 3 in approximately equal amounts.

We have found that oxalyl chloride in benzene or chloroform effectively circumvents this difficulty, affording chloroenone 2 in a distilled yield of 73%; none of the lactam 3 was detected in the reaction product.

In addition, this reagent accomplishes the conversion of several other cyclic β -diketones to the corresponding β -chloro- α , β -unsaturated ketones in much higher yields than are realizable by the literature procedures. For example, 2-methyl-1,3-cyclohexanedione (4) reacts with oxalyl chloride in chloroform to give chloroenone 5 in 87% yield. The only by-product is the dichlorodiene 6, which is produced in 3% yield.

The procedure is simple, as illustrated by the conversion of diketone 4 into chloroenone 5 described below.

Preparation of 5 from 2-Methyl-1,3-cyclohexanedione:

A suspension of diketone (4, 10 g) in chloroform (25 ml) is treated with oxalyl chloride (25.2 g). The slurry is heated under reflux for 1 hr, during which time the mixture becomes homogeneous and there is a copious evolution of gas. The solvent is removed at reduced pressure and the crude product distilled to give a slightly colored liquid; yield: 10.20 g. This was shown by ¹H-N.M.R. to consist of 97% chloroconone 5 and 3% chlorodiene 6. In other runs with other diketones, it was found that the reaction time may be shortened to 15 mir.

The results which have been obtained with a number of β -diketones are summarized in the Table. 2,5,5-Trimethyl-1,3-cyclohexanedione (11) reacts anomalously, giving chloroenone 12 in only 50% yield, accompanied by the oxalate ester 13. When the reaction is carried out at higher dilution and with a higher concentration of oxalyl chloride to diketone 11, a mixture of chloroenone 12 and the chlorooxalate ester 14 is formed.

Table. Reaction of Cyclic β -Diketones with Oxalyl Chloride

β -Diketone	Yield Chloro- enone	(%) of: Dichloro- diene	B.p.
O CN	73	0	125°/0.4 torr
0 4	87	3	62°/2 torr (lit. 7 84°/7 torr)
° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92	< 1	55°/2 torr
8	91	2	72°/5 torr (lit. ^{1,2} 110°/14 torr, 105°/20 torr, resp.)
9	78	<:1	63°/4 torr (lit. ^{8,9} 78°/14 torr 104°/24 torr, resp.)
10	73	2.5	42°/1 torr

This work was supported by a grant from the National Science Foundation, GP 31321 X.

Received: August 15, 1973

¹ A. Crossley, H. LeSeur, J. Chem. Soc. 83, 110 (1903).

² R. L. Frank, H. K. Hall, Jr., J. Amer. Chem. Soc. 72, 1645 (1950).

³ T. G. Halsall, D. B. Thomas, J. Chem. Soc. 1956, 2431.

⁴ M. Shemyakin, et al., Zh. Obshch. Khim. 30, 542 (1960).

⁵ W. Hückel, K. Thiele, Chem. Ber. 94, 96 (1961).

⁶ W. Pfleiderer, K. Schundehütte, *Liebigs Ann. Chem.* **612**, 158 (1958).

⁷ S. I. Zav'yalov, G. V. Kondrat'eva, Zhur. Obshch. Khim. 39, 3975 (1961).

⁸ L. Bateman, F. W. Shipley, J. Chem. Soc. **1955**, 1996.

⁹ A. Crossley, P. Haas, J. Chem. Soc. 83, 494 (1903).