HYDRAZINO ACIDS AND PEPTIDES. A NEW GENERAL SYNTHESIS OF L- α -HYDRAZINO ACIDS FROM L- α -AMINO ACIDS

Kazuo Achiwa and Shun-ichi Yamada Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan

(Received in Japan 30 May 1975; received in UK for publication 16 June 1975)

 α -Hydrazino acids (I) have aroused interest widly in recent years mainly because of their biological activity ¹⁻³, their close structural relationship to the naturally occurring α -amino acids and also their isolation from nature⁴. In spite of a variety of their synthetic studies over the past several decades⁵, surprisingly no method for the direct conversion of L- α amino acids (L-II) to L- α -hydrazino acids (L-I) has been reported presumably due to the high chemical reactivity of their N-N bonding on hydrogenolysis.

We want to describe here a new general procedure for this direct conversion via the hydrogenolysis of the protecting N^{α} -benzyl group of V whose N-N bonding, as expected, become stable enough for the fission by N^{β} -acylation as shown below.

2701

A synthesis of L- α -hydrazino- β -phenylpropionic acid (L-I: R=PhCH₂-) from L-phenylalanine (L-II: R=PhCH2-) was shown as a typical example. The N-benzyl-L-phenylalanine ethyl ester ⁶) [L-III: R=PhCH₂-, R'=CH₃CH₂-, b.p. 172-175° (4 mmHg), $[\alpha]_D^{20}$ -7.0° (c=2.2, EtOH)] easily obtainable from L-phenylalanine was treated with 1.2 equivalent of NaNO₂ in 1N-HCl (2 eq.) at 80°c for 30 min. to give the N-nitroso derivative^{5b)} (L-IV: R=PhCH₂-, R'=CH₃CH₂-) in a quantitative yield. Successive reduction of IV with Zn-dust in AcOH-Ac2O (3:1) afforded the N^{β}-acetyl-L- α -hydrazino acid ester⁶) [L-V; R=PhCH₂-, R'=CH₃CH₂-, oil; $[\alpha]_D^{20}$ +21.3° (c=1.2, EtOH)] in 80% yield. Hydrogenation of V in the presence of p-toluenesulfonic acid (1 eq.) over 5% Pd-C catalyst in ethanol yielded the debenzylated compound⁶) [L-VI: R=PhCH₂-, R'=CH₃CH₂-, oil; $[\alpha]_n^{20}$ -2.5° (c=1.2, EtOH)] in 85% yield. On the other hand, in the absence of the acid (hydrochloric acid or p-toluensulfonic acid), the debenzylation under the same conditions did not proceed. Subsequent hydrolysis of VI in 6N-HCl at 110° for 30 min. under a nitrogen atomosphere followed by isolation using Amberlite IR-120 gave the L- α -hydrazino acid⁶ [L-I; R = PhCH₂-, m.p.; 193-196°, $[\alpha]_D^{20}$ -16.0° (c=0.7, 6N-HC1)] in 87% yield. Both specific rotations and melting points of L-I and the N^{β} -t-butoxycarbonyl derivative⁶) [L-VII: R=PhCH₂, m.p.; 188-189°, [a]²⁰_D+26.0° (c=0.36, DMF)] are in good agreement with those of the reported^{7,8)}. This reaction sequence clearly represents a useful method to prepare optically active α -hydrazino acids without racemization.

Our method was therefor applied to various types of α -amino acids including α -alkyl- α -amino acid and the resulted data are listed in Table I and II.

Table I		R" R-C-COOCH 2CH NCH 2Ph NHCOCH 3	3 5% Pd-C/H ₂ (V) TsOH (l eq.)		R" R-C-COOCH 2CH 3 NH NH NHCOCH 3 (VI)	
····			V		VI	
	R	R"	mp(°c)	[a] _D (EtOH)	yield(%)	[a] _D (EtOH)
(L)	СН2-	H	oil	+21°	85	-2.5°
(L)	CH 3 CH-	н	75-76	-2.1°	65	-5.1°
ርር)	CH ₃ -	н	oil	+34°	50	-28°
(L)	PhCONH- (CH2)4 – H	oil	+4.5°	61	-3.9°
(D) ^{a)}	CH 3 O CH CH 3 O CH	2 - CH3 -	100-101	-42°	71	-21°
Ta	ble II	R" R-C-COOCH 2 CH I NH I NHCOCH 3	з (VI)	C1, 110°c	R" R-C-СООН і NH-NH₂ (Т)	
				I		
	R	R"	yiel	d (%) mp (deco	omp)(°c) [α] _D
ርር.)	CH2-	н	87	193-1	96 -16	° (6N-HCl)
(L)	CH 3 CH-	н	83	223-2	25 -11	° (6N-HCl)
(正)	CH 3 -	н	80	198-2	03 -40	° (6N-HCl)
(L)	PhCONH- (CH2)4- H	90	186-1	88 -5°	(6N-HCl)
(D) ^{a)}	СН 30 СН СН СН 30	2 - CH 3 -	80	185-1	87 ^{b)} +10	°(H₂O)
a) R-	-configuratio	n. b) monoh	ydrate.			

We have also examined the reduction of the N^{β} -nitroso derivative (VIII) with Zn-dust in AcOH or over Pd-C/H₂ and found the N-acetyl derivative (X) as a sole product, probably due to the high stability of the N-anion in X.

 $L-\alpha$ -Hydrazino acids (I) thus obtained seem to be useful for the asymmetric synthesis of peptides⁹) and also for the synthesis of modified peptides¹⁰.

Further works on this line are active investigation.

REFERENCES

1) As potential antimetablites.

a) A. Carmi, G. Pollak and H. Yellin; J. Org. Chem., <u>25</u>, 44 (1960); b) G. Pollak, H. Yellin and A. Carmi; J. Med. Chem.,<u>7</u>,220 (1964).

2) As inhibitors of amino acid decarboxylase.

a) S. Udenfriend, R. Connamacher and S. M. Hess; Biochem. Pharmacol., _,
419 (1961); b) S. Udenfriend and P. Zaltzman-Nirenberg; J. Pharmacol. Exptl.
Therap., <u>138</u>, 194 (1962); c) E. Hansson and W. G. Clark; Proc. Soc. Exptl.
Biol. Med., <u>111</u>, 793 (1962); d) C. C. Porter, L. S. Watson, D. C. Titus,
J. A. Tataro and S. S. Byer; Biochem. Pharmacol., <u>11</u>, 1067 (1962). e) C.
R. Creveling, J. W. Daly and B. Witkop; J. Med. Chem., <u>9</u>, 284 (1966); f)
E. J. Glamkowski, G. Gal, M. Sletzinger, C. C. Porter and L. S. Watson;
J. Med. Chem., <u>10</u>, 852 (1967);g) M. Sletzinger, R. A. Fireston, D. F.
Reinhold, C. S. Rooney and W. H. Nicholson; J. Med. Chem., <u>11</u>, 261 (1968);
h) K. Kobashi, N. Harada, H. Sassa and J. Hase; Yakugaku Zasshi, <u>91</u>, 1127 (1971).

- As inhibitors of the growth of cell and the transport activity.
 Y. Anraku, T. Naraki and S. Kanzaki; J. Biochem., <u>73</u>, 1149(1973).
- 4) H.J. Klosterman, G.L. Lamoureux and J.L. Parson; Biochemistry, <u>6</u>, 170(1967).
- 5) S. Karady, M.G. Ly, S.H. Pines and M. Sletzinger; J. Org. Chem., <u>36</u>, 1946, 1949 (1971) and references cited therein.
- Satisfactory a) analytical and b) spectroscopic data were obtained for this substance.
- 7) H. Niedrich and R. Grupe; J. Prakt. Chem., [4], 27, 108 (1965).
- 8) R. Grupe and H. Niedrich; Chem. Ber., 100, 3283 (1967).
- 9) K. Achiwa and S. Yamada; Tetrahedron Letters, 1974, 1799.
- 10) R. Grupe, B. Baeck and H. Niedrich; J. Prakt. Chem., <u>314</u>, 751 (1972) and references cited therein.