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Abstract—The C2-symmetrical bis-�-amino alcohols 1–6 were prepared and especially attention is focused on bridges, which link
the two �-amino alcohol units. These ligands have been applied as chiral catalysts in the asymmetric addition of diethylzinc to
aldehydes. sec-Alcohols have been obtained in good yields with up to 95.4% enantiomeric excess. © 2001 Elsevier Science Ltd.
All rights reserved.

Enantioselective addition of organometallic reagents to
carbonyl compounds is one of the most efficient meth-
ods for generating optically active secondary alcohols.1

Among the possible reactions, catalytic enantioselective
addition of dialkylzinc to aldehydes has attracted much
attention.2 A wide variety of chiral catalysts, i.e. amino
alcohols,3 diamines,4 disulfonamides,5 and diols6 have
been used successfully to promote the enantioselective
alkylation. Among them, �-amino alcohols are the most
often used chiral auxiliaries. Since it was reported that
the presence of C2 axis within a chiral auxiliary can
serve the very important function of dramatically
reducing the number of possible competing

diastereomeric transition states,7 many C2-symmetrical
auxiliaries have been synthesized and applied in the
catalytic enantioselective reaction.4–6 However, to our
knowledge, there are few C2-symmetrical bis-�-amino
alcohols being studied so far.8 Here, we report easily
available and efficient C2-symmetrical bis-�-amino alco-
hols for the asymmetric addition of diethylzinc to
aldehydes.

C2-Symmetrical bis-�-amino alcohol 19 was obtained by
dimerization of L-prolinol10 via 1,2-dibromoethane/
potassium carbonate in dry acetonitrile8a (Scheme 1)
and C2-symmetrical bis-�-amino alcohols 2–611 were

Scheme 1. Synthesis of chiral ligands 1–8.
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prepared from chloride of dibasic acids in benzene to
give diamides followed by reduction with LiAlH4 in
THF. In order to compare the effect of asymmetric
induction, ‘monomeric’ �-amino alcohol analogous 711

and 810 were synthesized in a manner similar to that
for the synthesis of ligands 2–6. The catalytic asym-
metric addition of diethylzinc to the model substrate
benzaldehyde was first investigated in toluene at 0°C
and the results are summarized in Table 1.

As can be seen from the results, (S)-1-phenylpropanol
is preferentially obtained with catalysts 1–8 in 87–95%
yields and the enantiomeric excesses vary from 2.9 to
95.4%. Interestingly, for corresponding alkylene-
bridged C2-symmetrical bis-�-amino alcohols 1–3, the
enantioselectivities decrease when compared with their
‘monomeric’ �-amino alcohol analogous 7 (entries 1–5
via 11). On the other hand, for xylylene-bridged C2-
symmetrical bis-�-amino alcohols, enantioselectivities
increase for ligand 6 and decrease for ligands 4 and 5
when compared with their ‘monomeric’ �-amino alco-
hol analogous 8 (entries 6–10 via 12). It was expected
that chiral ligands 3 and 4, which have longer
bridges, give high enantioselectivities, because the two
�-amino alcohol groups have less interaction and act
as two ‘monomeric’ �-amino alcohol independently.
However, it is chiral ligand 6, which has a much
crowd structure, to give better enantioselectivity.
Thus, a sterically more demanding structure in C2-

symmetrical bis-�-amino alcohol seems to be crucial
for enhancing the enantioselectivity of catalytic asym-
metric addition of diethylzinc to aldehydes. Anymore,
by varying the catalysts’ loading of 1 and 6, there is
no effect both on the yields and enantioselectivities in
the studying range (entries 1–3 and 8–10).

With chiral ligand 6 being the best catalyst, a few
other representative aldehydes have also been investi-
gated in the enantioselective addition reaction by
using 2.5% mol of the ligand 6 and the results are
summarized in Table 2. Chemical yields of the sec-
alcohols were good and enantioselectivities were all
lower than benzaldehyde with (S)-configuration prod-
ucts (entries 1–8). In the case of trans-cinnamalde-
hyde and aliphatic aldehydes, although the yields
were still high, selectivities were moderate (entries 9–
11).

In conclusion, we have successfully synthesized six
C2-symmetric bis-�-amino alcohols and the more
crowd chiral ligand 6 is the most efficient catalyst in
these series when they were applied in the enantiose-
lective addition of diethylzinc to aldehydes. Enan-
tiomeric excess of up to 95.4% was observed with
good yield. Elucidation of the mechanism and further
application of these ligands in other catalytic asym-
metric reactions are in progress.

Table 2. The enantioselective addition of diethylzinc to
aldehydes catalyzed by 6a

SubstrateEntry Yield (%)b E.e. (%)
(config.)c

92Benzaldehyde1 94.7 (S)
o-Anisaldehyde2 89 89.7 (S)

3 p-Anisaldehyde 79 84.3 (S)
85.0 (S)4 o-Chlorobenzaldehyde 90

5 82.3 (S)p-Chlorobenzaldehyde 81
3,4-Dimethoxybenzaldehyde6 78 83.3 (S)d

811-Naphthaldehyde7 85.0 (S)d

2-Naphthaldehyde8 83 86.7 (S)d

79trans-Cinnamaldehyde9 63.3 (S)d

10 Dodecylaldehyde 83 59.8 (S)e

Cyclohexanecarboxaldehyde 86 65.0 (S)e11

a The reaction were carried out in toluene at 0°C with
6:aldehyde:diethylzinc=0.125:5.0:10.0 (mmol).

b Based on isolated yield.
c Except as note, the e.e. values were determined by GC with

Chrompack CP-Chirasil-DEX CB capillary column and the configu-
rations were determined by comparison of the sign of the specific
rotation with the known compounds.

d Determined by HPLC with a Chiralcel-OD column from Daicel
with hexane/2-propanol as eluent.

e Determined by GC with Chrompack CP-Chirasil-DEX CB capillary
column after acetylation.

Table 1. Enantioselective addition of diethylzinc to benz-
aldehyde promoted by chiral ligands 1–8a

Entry E.e. (%) (config.)cLigand (mol%) Yield (%)b

64.9 (S)1 (2.5) 871
86 57.3 (S)1 (5.0)2

1 (10.0)3 89 60.0 (S)
2 (2.5)4 92 57.8 (S)
3 (2.5)5 89 60.1 (S)

28.6 (S)876 4 (2.5)
5 (2.5)7 88 2.9 (S)
6 (2.5)8 92 94.7 (S)
6 (5.0)9 95 95.2 (S)

10 6 (10.0) 93 95.4 (S)
7 (5.0)11 88 87.0 (S)

39.9 (S)12 898 (5.0)

a The reactions were carried out in toluene at 0°C. Benzaldehyde/
ZnEt2=5.0/10.0 (mmol).

b Based on isolated product.
c The e.e. values were determined by GC with Chrompack CP-Chi-

rasil-DEX CB capillary column and the configuration was deter-
mined by comparison of the sign of the specific rotation with the
known compound.
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