Δ⁴-1,4,2λ⁵-Diazaphospholine

Klaus BURGER*, Stefan PENNINGER

Institut für Organische Chemie der Technischen Universität München, Lichtenberg-Straße 4, D-8046 Garching

Innerhalb der modernen Stereochemie wird den pentakoordinierten Phosphor-Verbindungen^{1,2} besonders großes Interesse entgegengebracht, weil sie unter Erhaltung der kovalenten Bindungsbeziehungen durch Valenzwinkel-Deformation isomerisieren können^{2–5}, d. h. sogenannte reguläre⁵ Permutationsisomerisierungen eingehen können. In Fortführung unserer Untersuchungen zur Synthese und dynamischen Stereochemie von Phosphoran-Derivaten mit Vierund Fünfringen^{6, 7} berichten wir nun über einen einfachen Zugang zu Δ^4 -1,4,2 λ^5 -Diazaphospholinen (3; 2,3-Dihydro- $P^{\rm V}$ -1,4,2-diazaphospholen).

N-(Hexafluoro-2-propyliden)-N'-arylbenzamidine (1, 4,4-Bis[trifluoromethyl]-1,3-diaza-1,3-butadiene)⁸ reagieren mit P(III)-Verbindungen (2) bei – 20° in wasserfreiem Hexan glatt nach dem Schema der [4+1]-Cycloaddition⁹. Die auf diesem Weg synthetisierten Addukte der Struktur 3 stellen farblose kristalline Festsubstanzen dar, die sich im Schmelzpunktsbereich unter Gelbfärbung zersetzen. Die Verbindungen 3a-d lösen sich bei Raumtemperatur in Chloroform farblos. Bereits nach wenigen Minuten tritt eine leichte Gelbfärbung auf, die sich langsam vertieft; jedoch kann weder ¹H- noch ¹⁹F-N.M.R.-spektroskopisch nach mehreren Stunden eine nennenswerte Zersetzung nachgewiesen werden.

0039-7881/78/0732-0526 \$ 03.00

© 1978 Georg Thieme Publishers

July 1978 Communications 527

Tabelle 1. Hergestellte 2,3-Dihydro-PV-1,4,2-diazaphosphole (3)

3	R ²	R ³	R ⁴	R ⁵	Ausb. [%]	F	Summenformel ^a	I.R. $(KBr)^b$ v_{max} [cm ⁻¹]
a	OCH ₃	OCH ₃	OCH ₃	Н	90	112° (Zers.)	C ₂₁ H ₂₃ F ₆ N ₂ O ₃ P (496.4)	1613
b	OCH_3	OCH ₃	OCH_3	CH_3	87	112113° (Zers.)	$C_{22}H_{25}F_6N_2O_3P$ (510.4)	1612
c	OC_2H_5	OC_2H_5	OC_2H_5	Н	83	88° (Zers.)	$C_{24}H_{29}F_6N_2O_3P$ (538.5)	1620
d	OC_2H_5	OC_2H_5	OC_2H_5	CH_3	85	96° (Zers.)	$C_{25}H_{31}F_6N_2O_3P$ (552.5)	16301580
e	OCH_3	OCH_3	C_6H_5	Н	83	83° (Zers.)	$C_{26}H_{25}F_6N_2O_2P$ (542.5)	1610-1580: 1565-1540
f	OCH_3	OCH_3	C_6H_5	CH_3	88	80° (Zers.)	$C_{27}H_{27}F_6N_2O_2P$ (556.5)	1610-1580; 1560-1530

^a Die Mikroanalysen zeigten die folgenden maximalen Fehler: C, ±0.40: H, ±0.14; N, ±0.18. M[‡] der Massenspektren (Gerät MS 9 von AEI, 70 eV) stimmte mit den berechneten Mol-Massen (ganzzahlig) überein.

Tabelle 2. N.M.R.-Daten der 2,3-Dihydro-PV-1,4,2-diazaphosphole (3)

3	¹H-N.M.R. (CDCl ₃)ª δ [ppm]	¹⁹ F-N.M.R. (CDCl ₃) ^b δ [ppm]	31 P-N.M.R. (Benzol- d_6) ^c δ [ppm]				
a	2.20 (s, 6 H): 3.46 (d, 9 H, $J = 13.7$ Hz); 6.97 (s, 3 H);						
	7.15 (s, 5H)	-12.1 (d, 6 F, $J = 3.4$ Hz)	+ 36.9				
b	2.15 (s, breit, 9H); 3.46 (d, 9H, J=13.5 Hz); 6.73						
	(s, breit, 2H); 7.13 (s, 5H)	-12.1 (d, 6 F, $J = 3.5$ Hz)	+ 36.9				
c	1.08 (dt, 9H, $J = 1.7$, 7.0 Hz); 2.20 (s. 6H); 3.75	,,,,	, 2 3				
	(dq, 6H, J = 7.0, 7.0 Hz); 6.93 (s, 3H); 7.12 (s, 5H)	-12.8 (d. 6 F. $J = 3.6$ Hz)	+ 39.2				
d	1.10 (dt, 9H, $J = 1.7$, 7.0 Hz); 2.16 (s, breit, 9H);	1516 (5, 61, 6 516112)	1 27.2				
	3.74 (dq. 6H, $J = 7.0$, 7.0 Hz); 6.71 (s, 2H); 7.13						
	(s. 5H)	-13.0 (d. 6 F. $J = 3.4$ Hz)	+ 39.1				
e	(bei -10° :) 1.68 (s, 6H); 3.31 (d, 6H, $J = 13.1$ Hz);	13.0 (3, 01, 0 = 3.111.)	1 37.1				
	6.50-7.40 (m. 13 H)	(bei -20° :) -14.3 (d. 6F, $J = 2.9$ Hz)	(bei $+7^{\circ}$:) $+11.1^{12}$				
f	(bei -35° :) 1.60 (s, breit, 6H); 2.12 (s, 3H); 3.33						
	(d, 6H, $J = 13.0$ Hz); 6.53 (s, 2H); 6.80–7.50 (m.						
	10H)	(bei -20° :) -14.3 (d. 6F, $J = 2.9$ Hz)	(bei $+7^\circ$:) $+11.6^{12}$				

^a Aufgenommen mit einem Gerät Varian A 60; TMS als innerer Standard.

Dagegen unterliegen die 2,2-Dimethoxy-2-phenyl-Derivate **3e, f** beim Lösen in Chloroform bei Raumtemperatur sofort in beträchtlichem Maße der Retro-Reaktion. Die I.R.-Spektren der Verbindungen **3** zeigen die für eine cyclische Amidin-Struktur erwartete Absorption¹⁰ im Bereich von 1620–1580 cm⁻¹.

Die $^1\text{H-}$ und $^{19}\text{F-N.M.R.-Daten}$ (Tabelle 2) zeigen große Ähnlichkeit mit denen der von uns früher beschriebenen Δ^4 -1,4,2 λ^5 -Oxazaphospholine und Δ^4 -1,4,2 λ^5 -Thiazaphospholine und bestätigen die vorgeschlagene Fünfring-Struktur. Für die $^3J_{\text{PCCF}}$ -Kopplungskonstante wurden Werte von 2.9 3.6 Hz gemessen. Die Ergebnisse der $^3\text{I-P-Resonanz}$ belegen das Vorhandensein eines pentakoordinierten Phosphors im System $^{1.11}$.

3,3-Bis[trifluoromethyl]- Δ^4 -1,4,2 λ^5 -Diazaphospholine (3); allgemeine Herstellungsvorschrift:

Zu der Lösung eines N-(Hexafluoro-2-propyliden)-N'-arylbenzamidins⁸(1;10mmol)in wasserfreiem Hexan läßt man unter Rühren bei -20° das Trialkyl-phosphit **2** (10 mmol) bzw. das Phenylphosphonigsäuredimethylester (**2**, R⁴ = C₆H₅) tropfen. Die Kristallisation der Cycloadditionsprodukte **3** setzt innerhalb weniger Minuten ein. Nach 24 h bei -20° wird das Produkt abfiltriert und aus Chloroform/Hexan umkristallisiert.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen. Herrn K. Aicher sind wir für die Aufnahme der ³¹P-N.M.R.-Spektren zu Dank verpflichtet.

Eingang: 28. Oktober 1977

^b Aufgenommen mit einem Perkin-Elmer-Gerät Infracord.

^b Aufgenommen mit einem Gerät Jeol C 60 HL; Trifluoroessigsäure als äußerer Standard.

c Aufgenommen mit einem Gerät Bruker HX 90; 85 %ige Phosphorsäure als äußerer Standard.

^{*} Korrespondenz bitte an diesen Autor richten.

D. Hellwinkel, in: G. M. Kosolapoff, L. Maier, Organic Phosphorus Compounds, Vol. 3, Interscience Publishers, New York, 1972, S. 185, und dort zitierte Literatur.

² R. Luckenbach, Dynamic Stereochemistry of Pentacoordinated Phosphorus and Related Elements, Georg Thieme Verlag, Stuttgart, 1973, sowie dort zitierte Literatur.

³ R. S. Berry, J. Chem. Phys. 32, 933 (1960).

E. L. Muetterties, R. A. Schunn, Quart. Rev. 20, 245 (1966).
 P. Gillespie et al., Angew. Chem. 83, 691 (1971); Angew. Chem. Int. Ed. Engl. 10, 687 (1971).

- K. Burger, J. Fehn, E. Moll, Chem. Ber. 104, 1826 (1971).
 J. Albanbauer, K. Burger, E. Burgis, D. Marquarding, L. Schabl, I. Ugi, Justus Liebigs Ann. Chem. 1976, 36.
- ⁷ K. Burger, R. Ottlinger, Synthesis 1978, 44.
- ⁸ K. Burger, S. Penninger, Synthesis 1978, 526.
- ⁹ Klassifikation nach R. Huisgen: Angew. Chem. 80, 329 (1968); Angew. Chem. Int. Ed. Engl. 7, 321 (1968).
- K. Burger, K. Einhellig, Chem. Ber. 106, 3421 (1973).
 K. Burger, K. Einhellig, W. D. Roth, E. Daltrozzo, Chem. Ber. 110, 605 (1977).
- E. Fluck, Die Kernmagnetische Resonanz und ihre Anwendung in der anorganischen Chemie, Springer-Verlag, Berlin, 1963, S. 197
- Die niedrigen δ-Werte für die Verbindungen 3e und 3f erklären wir mit dem Vorliegen eines Gleichgewichts mit einer offenkettigen polaren Form in Chloroform bei der Aufnahmetemperatur (+7°); vgl. dazu Lit. und dort zitierte Literatur.

0039-7881/78/0732-0528 \$ 03.00

© 1978 Georg Thieme Publishers