

Synthetic Methods

Enantioselective Transformation of Allyl Carbonates into Branched Allyl Carbamates by Using Amines and Recycling CO₂ under Iridium Catalysis

Sheng-Cai Zheng, Min Zhang, and Xiao-Ming Zhao*^[a]

Abstract: Enantioselective transformation of allyl carbonates into branched allyl carbamates by using amines and recycling CO_2 in the presence of an Ir complex and K_3PO_4 was accomplished. This provided branched allyl carbamates in fair to excellent yields with up to 98:2 regioselectivity and 93% *ee*. The role of CO_2 in this transformation is discussed as well.

Transition-metal-mediated allylation has emerged as a powerful method for the regio-, diastereo-, and enantioselective formation of carbon–carbon^[1] or carbon–heteroatom^[2] bonds. However, the selectivities depends on various factors such as the nature of the metal complex, the substitution pattern of the substrate, the nucleophile, the leaving group, the solvent, and the temperature.^[3] When allylic carbonates are employed as substrates, linear products are preferentially obtained with Pd catalysts^[4] (Scheme 1, reaction 1); however, branched products

R¹ = aliphatic; R = aromatic, aliphatic

Scheme 1. Transition-metal-catalyzed allylation of allyl carbonates with amines.

are favored in the presence of other transition metals, such as iridium^[5] and ruthenium.^[6] Detailed mechanistic studies on the Ir-catalyzed allylic substitution have been carried out by several research groups.^[7] The essential step is the formation of a π -allyl–iridium complex through decarboxylation, an intermediate that then undergoes various transformations. In these reactions, CO₂ is produced as a co-product in the decarboxylation step (Scheme 1, reaction 2).^[7a] The conversion of CO₂ into useful chemicals has gained great attention from the view-point of carbon resources and environmental issues.^[8] We speculated that CO₂ may be recycled by an attack of a nucleophile, such as an amine, that is, an amidation reaction, followed by an Ir-catalyzed allylation reaction to give a branched allylic carbamate (Scheme 1, reaction 3). To the best of our

[a]	SC. Zheng, M. Zhang, Prof. Dr. XM. Zhao
	Department of Chemistry
	State Key Laboratory of Pollution Control and Resource Reuse
	Tongji University
	1239 Siping Road, Shanghai 200092 (P. R. China)
	Fax: (+ 86) 21-65981376
	E-mail: xmzhao08@mail.tongji.edu.cn
	Supporting information for this article is available on the WWW under
	http://dx.doi.org/10.1002/chem.201402388.

Chem. Eur. J. 2014, 20, 1 – 7 www.chemeurj.org

knowledge, such a reaction has not been explored despite its potential in both atom-economic synthesis and our mechanistic understanding of π -allyl-metal chemistry. Allyl carbamates are an important class of compounds; there is a broad interest in them with regards to both synthetic intermediates^[9] and biologically active molecules.^[10] Allyl carbamates are generally synthesized from the reaction of allyl alcohols with isocyanates.^[11] Therefore, a new synthetic method for the preparation of chiral allyl carbamates is highly desirable. Furthermore, we are confronted with an additional issue; the branched allyl carbamate is a good substrate for Ir-catalyzed allylic aminations as well.^[12] Herein, we report the first enantioselective transformation of allyl carbamates into branched allyl carbamates in the presence of amines.

In an initial test of our hypothesis, we explored a model reaction of (E)-cinnamyl methyl carbonate 2a with n-propylamine in the presence of different types of bases and a wellknown iridacycle,^[5b] which is generated from 2 mol% of [{Ir- $(cod)Cl\}_2]$ and 4 mol % of ligand ${\bf 1\,a},^{[13-14]}$ under various reaction conditions. We found that employing propyl amine 3a in this reaction in N,N-dimethylformamide (DMF)^[15] at 35 °C led to 6a as the sole amination product in 32% yield (Table 1, entry 1). Surprisingly, in the presence of CsF, a trace amount of the branched carbamate 4a^[16] was obtained (Table 1, entry 2). Significant improvement in efficiency, regioselectivity, and enantioselectivity (55% yield, 4a/5a 81:19, 88% ee) was achieved when Cs₂CO₃ was employed; 15% of **6a** and a minor allylic alcohol were obtained as well (Table 1, entry 3). These results strongly suggest that the domino reaction occurred as speculated and that the nature of the base exerts a significant effect on this reaction. As a result, a range of bases were investigated. Among these bases, K_3PO_4 gave 4a in fair yield with 4a/5a90:10 and 85% ee (Table 1, entry 5), whereas the remaining bases gave rise to poor results (Table 1, entries 4, 6-8). Examination of a range of solvents revealed that DMSO is the optimum solvent (Table 1, entries 5, 9–11).

In terms of transition-metal-catalyzed allylic substitution, elevated reaction temperatures promotes the reductive elimination process.^[17] Indeed, a change of the reaction temperature has a dramatic influence on efficiency and enantioselectivity (Table 1, entries 11–13). The reaction at room temperature^[18] gave **4a** in 43% yield with **4a/5a** 94:6 with 93% ee; 13% of amination product **6a** was obtained as well (Table 1, entry 12). Upon raising the temperature to 35 °C, the yield of **4a** was improved to 80%; however, the *ee* value of **4a** was reduced to 86% while the regioselectivity was maintained at 94:6 (Table 1, entry 11). Upon further elevating the reaction temperature to 50 °C, both regio- and enantioselectivity were reduced; 5% of amination product **6a** was obtained (Table 1, entry 13).

A set of chiral ligands, including Feringa's ligand, **1a**, **1b**,^[14] **1c**,^[13] **1d**,^[14] **1e**,^[19] and PHOX ligand **1 f**^[20] (Figure 1), was evaluated. The reaction with **1a** at 25 °C gave superior results; 7% yield of **6a** was obtained as well (Table 1, entry 11). Ligand **1d**, which bears a simple biphenyl backbone, afforded the product in good yield (69%) and regioselectivity (86:14), albeit with slightly lower enantioselectivity (80% *ee*, Table 1, entry 16). The use of ligands **1b** and **1c**, which have bulky groups on the

2

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

N These are not the final page numbers!

Table 1.	Table 1. Optimization of the reaction conditions. ^[a]								
	Ph	℃OCO ₂ Me 2a	[{Ir(cod)Cl} ₂] (2 mol %) L* (4 mol %) nPrNH ₂ 3a Base, Solvent 35 °C	O NHnPr Ph * + 4a	Ph 5a	IPr ⁺ Ph 6a			
Entry	L*	Base	Solvent	4 a/5 a ^[c]	Yield 6a [%] ^[c]	Yield 4 [%] ^[b]	ee ^[d]		
1	1 a	-	DMF		32	_[e]	_		
2	1 a	CsF	DMF	n.d. ^[f]	-	Trace	n.d.		
3	1 a	Cs ₂ CO ₃	DMF	85:15	15	55	88		
4	1 a	K ₂ CO ₃	DMF	n.d.	n.d.	25	n.d.		
5	1 a	K_3PO_4	DMF	90:10	12	46	85		
6	1 a	KOAc	DMF	90:10	trace	28	n.d.		
7	1 a	DABCO	DMF	83:17	trace	39	28		
8	1 a	DBU	DMF	55:45	25	29	78		
9	1 a	K_3PO_4	THF		38	-	-		
10	1 a	K_3PO_4	CH_2CI_2		21	-	-		
11	1 a	K₃PO₄	DMSO	94:6	7	80	86		
12 ^[g]	1 a	K_3PO_4	DMSO	94:6	13	43	93		
13 ^[h]	1 a	K_3PO_4	DMSO	89:11	5	73	80		
14	1 b	K_3PO_4	DMSO	85:15	11	23	90		
15	1 c	K_3PO_4	DMSO	57:43	15	18	79		
16	1 d	K ₃ PO ₄	DMSO	86:14	11	69	80		
17	1 e	K_3PO_4	DMSO	n.d.	-	Trace	n.d.		
18	1 f	K ₃ PO ₄	DMSO	n.d.	-	Trace	n.d.		
[a] All the	[1] All the reactions were carried out on a 0.2 mmol reaction scale by using 2 mol% of [[Ir(cod)Cl]] 4 mol% of								

ot |{|r(c $0a(1)_{1}$ 1a-f, 120 mol% of base, 120 mol% of 2a, and 100 mol% of 3a (0.1 M). [b] Yields of isolated product. [c] Determined by ¹H NMR analysis of the crude reaction mixture. [d] Determined by HPLC analysis by using a chiral column (Chiralcel OD-H column). [e] Not detected. [f] n.d. = not determined. [g] At room temperature. [h] At 50°C.

nation products 6a-e were obtained in 8-15% yields (Table 2, entries 1-5). Lower reaction temperatures led to improved levels of enantioselectivity (Table 2, entry 1 and entry 4, 93% and 90% ee, respectively, at 25°C). A range of amines, including n-butylamine, isopropylamine, and allylamine, were explored by using (E)-methyl 5-phenylpent-2-enyl carbonate (2 f) as the substrate and the corresponding products, 4 f^[21] and 4g-i, were obtained in good to excellent yields (70-94%) with excellent levels of regioselectivity (95:5-98:2) and 76-80% ee; a trace amount of 6 f-i, respectively, was found in these cases (Table 2, entries 6-9). Alkyl-substituted allylic carbonates, such as 2g and 2h, were well tolerated, providing the branched carbamates 4j and 4k in 88 and 78% yield, with the same excellent regioselectivity (96:4) and 88 and 78% ee, respectively (Table 2, entries 10 and 11).

Figure 1. Chiral ligands 1 a-f.

Chem. Eur. J. 2014, 20, 1-7

phenyl ring of the amine moiety, resulted in poor yields (18-23%, Table 1, entries 14 and 15). Notably, the reaction completely failed when both 1e and 1f were employed (Table 1, entries 17 and 18).

We further examined the scope and generality of this reaction. Aryl-substituted substrates, such as (E)-cinnamyl methyl carbonate 2a and allylic carbonates (2b-e), with either electron-withdrawing groups (4-Cl and 4-Br) or electron-donating groups (3-OCH₃ and 4-CH₃) gave the respective products in moderate to high yields (52-80%) with high levels of regioselectivity (89:11-96:4) and enantioselectivity (88-93% ee); ami-

Table 2. Scope of allyl carbonates 2 and amines 3. ^[a] $R \xrightarrow{OCO_2Me} \frac{1a (4 \mod \%)}{NH_2R^1 (3), K_3PO_4} \xrightarrow{R \xrightarrow{O}} HR^1 \xrightarrow{O} NHR^1$ $R \xrightarrow{OCO_2Me} \frac{1a (4 \mod \%)}{NH_2R^1 (3), K_3PO_4} \xrightarrow{A \xrightarrow{A}} \xrightarrow{A} A$							
Entry	2	R	R ¹	4/5 ^[c]	Yield 6 [%] ^[c]	Yield 4 [%] ^[b]	<i>ee</i> [%] ^[d]
1 ^[e]	2 a	Ph	<i>n</i> Pr	94:6	6a , 13	4 a , 43	93
2	2 b	$4-CIC_6H_4$	<i>n</i> Pr	94:6	6 b , 9	4b , 77	90
3	2 c	$4-BrC_6H_4$	<i>n</i> Pr	96:4	6 c , 8	4 c , 80	87
4 ^[e]	2 d	$3-MeOC_6H_4$	<i>n</i> Pr	93:7	6 d , 15	4 d , 54	90
5	2 e	$4-MeC_6H_4$	<i>n</i> Pr	89:11	6e , 11	4e , 52	88
6	2 f	PhCH₂CH₂	<i>n</i> Pr	95:5	6 f , trace	4 f , 94	77
7	2 f	PhCH₂CH₂	<i>i</i> Pr	98:2	6 g , trace	4 g , 80	76
8	2 f	$PhCH_2CH_2$	<i>n</i> Bu	97:3	6 h , trace	4 h , 70	76
9	2 f	$PhCH_2CH_2$	allyl	97:3	6i, trace	4i , 75	80
10	2 g	<i>n</i> Pr	<i>n</i> Pr	96:4	6j , trace	4 j , 88	88
11	2 h	Et	<i>n</i> Pr	96:4	6 k , trace	4 k , 78	78
12	2 c	$4-BrC_6H_4$	<i>i</i> Pr	85:15	6 I , 7	4 I , 58	94
[a] Reaction conditions as in Table 1, entry 12 at either $25 ^{\circ}$ C or $35 ^{\circ}$ C. [b] Yield of isolated products. [c] Determined by ¹ H NMR analysis of the crude reaction mixture. [d] Determined by HPLC analysis by using a chiral							

column or GC. [e] The reaction was performed at room temperature. 3 www.chemeurj.org

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! **77**

Figure 2. X-ray structure of (S)-41.

X-ray analysis of $4l^{[22]}$ revealed that its absolute configuration is S (Figure 2).

This methodology was extended to bis(allylcarbonates) and the synthesis of (3R,7R)-nona-1,8-diene-3,7-diyl bis(propylcarbamate) (**4m**) was demonstrated (Scheme 2). The domino reaction of the bis(allylcarbonate) **2j** under the optimal reaction conditions occurred twice to give the corresponding product **4m** in 80% yield with 99% *ee* and 1:3.7 d.r.

Scheme 2. Domino amidation—allylation reaction of 2j.

For the mechanism, we propose that it begins by insertion of iridium into the allyl–oxygen bond to liberate an ionized π allyl–Ir complex (**Int A**), methoxide, and CO₂. Subsequently, an amidation reaction between CO₂ and an amine occurs to form a carbamate ion^[23] ($^{-}$ OCONHR), which in turn attacks **Int A** to yield an allyl carbamate **4** and regenerating the catalyst. In the presence of K₃PO₄, **Int A** is directly attacked by the amine to give an extrusion product, allylamine **6** (Scheme 3).

Scheme 3. Proposed mechanism.

Chem. Eur. J. 2014, 20, 1 – 7 www.chemeurj.org

We present three piece of experimental evidence for the above mechanistic hypothesis: 1) a domino reaction of (*E*)-(3-chloroprop-1-enyl)benzene,^[24]

CO₂, and *n*PrNH₂ occurred in the presence of π -allyl–Ir complex (**1aa**, 0.20 mol%, prepared according to Helmchen's method)^[7d] and K₃PO₄ in DMSO at 25 °C, providing the same S product **4a** (Scheme 4) as that for entry 1 of Table 2; 2) under the optimized conditions, using **4a/2a** (1:2) as the reactants, isomerization of **4a** into thermodynamically stable **5a** (**4a/5a** 94:6)

Scheme 4. Domino reaction of (*E*)-(3-chloroprop-1-enyl)benzene, propylamine, and CO₂.

was confirmed through ¹H NMR analysis of the crude products; the branched allylic alcohol,^[25] but not amine **6a**, was observed as well; 3) using **5a** as the reactant, no reaction occurred (see the Supporting Information).

In summary, we have developed a domino reaction of allyl carbonate, amine, and recycling CO_2 , a reaction that occurs in the presence of K_3PO_4 and DMSO with the assistance of an iridium complex and provides the branched allyl carbamates **4** in good yields with excellent levels of regioselectivity and good to excellent levels of enantioselectivity. Essential for the success of the reaction was the role of CO_2 , which is generated in the course of this reaction and then recycled.

Experimental Section

General procedure

The yellow iridacycle^[5b] made from [{Ir(cod)Cl}₂] (0.004 mmol, 2 mol%) and phosphoramidite ligand **1a** (0.008 mmol, 4 mol%) was placed in a dry Schlenk tube filled with argon. Then, allylic carbonate **2** (0.24 mmol, 120 mol%), K₃PO₄ (0.24 mmol, 120 mol%), amine **3** (0.20 mmol, 100 mol%), and DMSO (2.0 mL) were added. The reaction mixture was stirring at 35°C. After the completion of the reaction, the crude reaction mixture was diluted with water and extracted with ethyl acetate. The crude residue was purified

4

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

N These are not the final page numbers!

by flash column chromatography (petroleum ether/ethyl acetate) to give the desired products **4**.

Acknowledgements

We thank the NSFC (No. 21272175) for generous financial support.

Keywords: allylcarbamates · carbon dioxide · domino reactions · enantioselectivity · iridium

- Recent representative reviews: for Pd, see: a) Z. Lu, S. Ma, Angew. Chem. 2008, 120, 264; Angew. Chem. Int. Ed. 2008, 47, 258; b) B. M. Trost, Org. Process Res. Dev. 2012, 16, 185; c) B. Sundararaju, M. Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41, 4467; d) G. Poli, G. Prestat, F. Liron, C. Kammerer-Pentier, Top. Organomet. Chem. 2012, 38, 1; for Ir, see: e) R. Takeuchi, S. Kezuka, Synthesis 2006, 3349; f) G. Helmchen, A. Dahnz, P. Duebon, M. Schelwies, R. Weihofen, Chem. Commun. 2007, 675; g) J. F. Hartwig, L. M. Stanley, Acc. Chem. Res. 2010, 43, 1461; h) W.-B. Liu, J.-B. Xia, S.-L. You, Top. Organomet. Chem. 2012, 38, 155; j) J. F. Hartwig, M.J. Pouy, Top. Organomet. Chem. 2011, 34, 169; j) H. He, K. Y. Ye, Q. F. Wu, L. X. Dai, S. L. You, Adv. Synth. Catal. 2012, 354, 1084; k) P. Tosatti, A. Nelson, S. P. Marsden, Org. Biomol. Chem. 2012, 10, 3147.
- [2] Leading references: for Pd, see: a) I. D. G. Watson, A. K. Yudin, J. Am. Chem. Soc. 2005, 127, 17516; b) A. M. Johns, Z. Liu, J. F. Hartwig, Angew. Chem. 2007, 119, 7397; Angew. Chem. Int. Ed. 2007, 46, 7259; c) B. J. Lüssem, H.-J. Gais, J. Am. Chem. Soc. 2003, 125, 6066; d) J. S. Cannon, S. F. Kirsch, L. E. Overman, J. Am. Chem. Soc. 2010, 132, 15185; e) D. J. Covell, M. C. White, Angew. Chem. 2008, 120, 6548; Angew. Chem. Int. Ed. 2008, 47, 6448; for Ir, see: f) S. Spiess, C. Welter, G. Franck, J. P. Taquet, G. Helmchen, Angew. Chem. 2008, 120, 7764; Angew. Chem. Int. Ed. 2008, 47, 7652; g) T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 15164; h) C. T. Shu, J. F. Hartwig, Angew. Chem. 2004, 116, 4898; Angew. Chem. Int. Ed. 2004, 43, 4794; i) I. Lyothier, C. Defieber, E. M. Carreira, Angew. Chem. 2006, 118, 6350; Angew. Chem. Int. Ed. 2006, 45, 6204; j) R. Takeuchi, N. Ue, K. Tanabe, K. Yamashita, N. Shiga, J. Am. Chem. Soc. 2001, 123, 9525; k) S. Ueno, J. F. Hartwig, Angew. Chem. 2008, 120, 1954; Angew. Chem. Int. Ed. 2008, 47, 1928; I) C. Gnamm, G. Franck, N. Miller, T. Stork, K. Brödner, G. Helmchen, Synthesis 2008, 3331; m) F. López, T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 3426; n) L. M. Stanley, C. Bai, M. Ueda, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 8918; o) M. Gärtner, S. Mader, K. Seehafer, G. Helmchen, J. Am. Chem. Soc. 2011, 133, 2072; for Rh, see: p) N. Kanbayashi, K. Onitsuka, J. Am. Chem. Soc. 2010, 132, 1206.
- [3] a) F. R. Busch, G. A. Berchtold, J. Am. Chem. Soc. 1983, 105, 3346;
 b) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395; c) B. M. Trost,
 M. L. Crawley, Chem. Rev. 2003, 103, 2921; d) S. Förster, G. Helmchen, U.
 Kazmaier, in Catalytic Asymmetric Synthesis, 3rd ed.(Ed.: I. Ojima), Wiley,
 New Jersey, 2010, p. 497.
- [4] a) B. M. Trost, E. Keinan, J. Am. Chem. Soc. 1978, 100, 7779; b) B. M.
 Trost, E. Keinan, J. Org. Chem. 1979, 44, 3451; c) P. G. Andersson, J. E.
 Bäckvall, J. Org. Chem. 1991, 56, 5349; d) Y. I. M. Nilsson, P. G. Andersson,
 J. E. Bäckvall, J. Am. Chem. Soc. 1993, 115, 6609.
- [5] a) R. Takeuchi, K. Tanabe, Angew. Chem. 2000, 112, 2051; Angew. Chem. Int. Ed. 2000, 39, 1975; b) C. A. Kiener, C. Shu, C. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 14272; c) G. Lipowsky, N. Miller, G. Helmchen, Angew. Chem. 2004, 116, 4695; Angew. Chem. Int. Ed. 2004, 43, 4595; d) G. Lipowsky, G. Helmchen, Chem. Commun. 2004, 116; e) C. Shu, A. Leitner, J. F. Hartwig, Angew. Chem. 2004, 116, 4901; Angew. Chem. Int. Ed. 2004, 43, 4797; f) A. Leitner, C. Shu, J. F. Hartwig, Org. Lett. 2005, 7, 1093; g) S. Shekhar, B. Trantow, A. Leitner, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 11770; h) K. Tissot-Croset, D. Polet, A. Alexakis, Angew. Chem. 2004, 116, 2480; Angew. Chem. Int. Ed. 2004, 43, 2426; i) A. Alexakis, D. Polet, Org. Lett. 2004, 6, 3529; j) T. Graening, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7720; l) R. Takeuchi, M. Kashio, Angew. Chem. 1997, 109, 268; Angew. Chem. Int. Ed. Engl. 1997, 36, 263; m) J. Qu, L.

Roßberg, G. Helmchen, *J. Am. Chem. Soc.* **2014**, *136*, 1272; for a review, see: n) H. Miyabe, Y. Takemoto, *Synlett* **2005**, 1641.

- [6] M. Kawatsura, K. Uchida, S. Terasaki, H. Tsuji, M. Minakawa, T. Itoh, Org. Lett. 2014, 16, 1470.
- [7] a) D. Marković, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 11680; b) S. T. Madrahimov, D. Markovic, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 7228; c) S. T. Madrahimov, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 8136; d) S. Spiess, J. A. Raskatov, C. Gnamm, K. Brner, G. Helmchen, Chem. Eur. J. 2009, 15, 11087; e) W. Liu, C. Zheng, C. Zhuo, L. Dai, S. You, J. Am. Chem. Soc. 2012, 134, 4812.
- [8] a) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365; b) M.
 North, P. Villuendas, C. Young, Chem. Eur. J. 2009, 15, 11454.
- [9] For reviews, see: a) Y. Tamaru, M. Kimura, Synlett 1997, 749; b) R. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111, 2981; c) T. J. Donohoe, P. D. Johnson, M. Helliwell, M. Keenan, Chem. Commun. 2001, 2078; d) T. J. Donohoe, P. D. Johnson, A. Cowley, M. Keenan, J. Am. Chem. Soc. 2002, 124, 12934; e) A.-L. Lei, X. Y. Lu, G. S. Liu, Tetrahedron Lett. 2004, 45, 1785; f) E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc. 2005, 127, 7690; g) T. J. Donohoe, C. J. R. Bataille, W. Gattrell, J. Kloesges, E. Rossignol, Org. Lett. 2007, 9, 1725; h) S. D. R. Christie, A. D. Warrington, C. J. Lummiss, Synthesis 2009, 148.
- [10] a) D. Franco, E. Duñach, *Tetrahedron Lett.* 2000, *41*, 7333; b) T. J. Donohoe, P. D. Johnson, M. Helliwell, M. Keenan, *Chem. Commun.* 2001, 2078; c) O. N. Faza, C. S. López, R. Álvarez, A. R. de Lera, *Chem. Commun.* 2005, 4285; d) N. T. Patil, Z. Huo, Y. Yamamoto, *J. Org. Chem.* 2016, *71*, 6991; e) H. Yoon, J. Kim, E. J. Kang, H. Jan, *Eur. J. Org. Chem.* 2012, 1901; f) O. K. Karjalainen, M. Nieger, A. M. P. Koskinen, *Angew. Chem.* 2013, *125*, 2611; *Angew. Chem. Int. Ed.* 2013, *52*, 2551; g) H. Greisiger, M. Entenmann, T. Schauer, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 2011, WO 2011067183; h) D. B. Pourreau, P. J. Whitman, S. L. Goldstein, S. H. Harris, Arco Chemical Technology, L.P., 2003, US 6555596.
- [11] a) M. Kimura, S. Kure, Z. Yoshida, S. Tanaka, K. Fugami, Y. Tamaru, *Tetrahedron Lett.* **1990**, *31*, 4887; b) B. M. Trost, D. L. V. Vranken, *Angew. Chem.* **1992**, *104*, 194; *Angew. Chem. Int. Ed. Engl.* **1992**, *31*, 228; c) Y. Tamaru, M. Kimura, S. Tanaka, S. Kure, Z.-I. Yoshida, *Bull. Chem. Soc. Jpn.* **1994**, *67*, 2838.
- [12] a) O. V. Singh, H. Han, J. Am. Chem. Soc. 2007, 129, 774; b) O. V. Singh, H. Han, Org. Lett. 2007, 9, 4801.
- [13] K. Tissot-Croset, D. Polet, S. Gille, C. Hawner, A. Alexakis, Synthesis 2004, 2586.
- [14] L. A. Arnold, R. Imbos, A. Mandoli, A. H. M. de Vries, R. Naasz, B. L. Feringa, *Tetrahedron* **2000**, *56*, 2865.
- [15] When DMF was used as a solvent for the enantioselective iridium-catalyzed allylic amination, allylamines were obtained in 77–80% ee; see ref. [2 g].
- [16] An analogous Pd-catalyzed Heck-allylation reaction was described as a two-component domino reaction; for details, see: D. Flubacher, G. Helmchen, *Tetrahedron Lett.* **1999**, *40*, 3867–3868.
- [17] a) M. J. Doyle, J. Mc Meeking, P. Binger, J. Chem. Soc. Chem. Commun. 1976, 376; b) P. Binger, J. H. Doyle, C. Kruger, Y. H. Z. Tsay, Naturforsch. 1989, ##34b, 1289.
- [18] Because the melting point of DMSO is around 18.45 $^\circ\text{C}$, this reaction cannot be carried out below that temperature.
- [19] R. Hoen, M. Berg, H. Bernsmann, A. J. Minnaard, G. J. Vries, B. L. Feringa, Org. Lett. 2004, 6, 1433.
- [20] a) P. Von Matt, A. Pfaltz, Angew. Chem. 1993, 105, 614; Angew. Chem. Int. Ed. Engl. 1993, 32, 566; b) J. Sprinz, G. Helmchen, Tetrahedron Lett. 1993, 34, 1769.
- [21] After conversion of 4 f into 7 f, the absolute configuration of 7 f was established as S by its comparison with (S)-7 f or (R)-7 f; see: a) M. Gärtner, S. Mader, K. Seehafer, G. Helmchen, J. Am. Chem. Soc. 2011, 133, 2072; b) I. Sato, N. Asakura, T. Iwashita, Tetrahedron: Asymmetry 2007, 18, 2638.
- [22] CCDC-971845, (S)-41, contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.
- [23] a) A. Belforte, D. B. Dell'Amico, F. Calderazzo, C. Berichte, *Chem. Ber.* 1988, 121, 1891; b) T. Holas, J. Zbytovská, K. Vávrová, P. Berka, M. Mádlová, J. Klimentová, A. Hrabálek, *Thermochim. Acta* 2006, 441, 116;

Chem. Eur. J. 2014 , 20, 1 – 7	
---------------------------------------	--

0, 1–7 www.chemeurj.org

5

These are not the final page numbers! **77**

c) Pd-catalyzed reaction of an allylic carbonate in the presence of an amine gave allylic carbamates as the by-products, see: J. E. Bäckvall, K. L. Granberg, A. Heumann, *Isr. J. Chem.* **1991**, *31*, 17.

- [24] (*E*)-(3-chloroprop-1-enyl)benzene was successfully used as the allylating agent for the preparation of **1 aa**; see ref. [7 a].
- [25] Branched allylic alcohols were observed as products in the iridium-catalyzed allylic hydroxylation of allylic carbonates in the presence of either $\rm H_2O$ or KHCO₃; see ref. [2 o].

Received: February 27, 2014 Published online on ■■ ■, 0000

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

COMMUNICATION

enantioselectively transformed into branched allyl carbamates by using amines and recycling CO₂ in the presence of an Ir complex and K₃PO₄.

in fair to excellent yields, up to 98:2 regioselectivity, and up to 93% ee (see scheme; cod = 1,4-cyclooctadiene).

Synthetic Methods

S.-C. Zheng, M. Zhang, X.-M. Zhao*

Enantioselective Transformation of Allyl Carbonates into Branched Allyl Carbamates by Using Amines and Recycling CO₂ under Iridium Catalysis

Iridium Catalysis

In their Communication on page **I** ff., X.-M. Zhao et al. show that allyl carbonates can be enantioselectively transformed into branched allyl carbamates in the presence of an iridium catalyst and an amine. CO₂, which is initially expelled upon oxidative addition, is recycled by being trapped by the amine, the resulting carboxylate adduct undergoing nucleophilic addition with the allyl-iridium intermediate.