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Abstract

A bicyclo[2.2.2]octane C/D ring system, with a lactonic ring at C-8 and C-9, of the atisine-type C20-diterpenoid alkaloids, was

successfully synthesized, using an oxidative dearomatization/intramolecular Diels–Alder reaction.

# 2012 Feng Peng Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
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C20-diterpenoid alkaloids, featuring polycyclic, highly bridged, and heavily substituted structures, constitute the

most structure types group of diterpeniod alkaloids [1]. The architectural features and the important pharmacological

activities of the C20-diterpenoid alkaloids pose an alluring target for synthetic chemists and medicinal chemists. The

atisine-type C20-diterpenoid alkaloids possess a relative simplicity and extensive structural data, made it an ideal first

synthesis target, such as atisine 1 (Fig. 1) was the first total synthesis of the diterpenoid alkaloids respectively by

Nagata group [2], Masamune group [3], Wiesner group [4], Fukumoto group [5]. Recently, we reported the total

synthesis of (�)-atisine and (�)-isoazitine [6], as well as constructing A/E ring systems [7], A/E/F ring systems [8] and

B/C/D ring systems of the C19-diterpenoid alkaloids [9].

So far, five different approaches to Pelletier’s synthetic intermediate (Fig. 1) for atisine has been reported [2–6], we

also expect to efficiently and convergently construct it. Our retrosynthetic analysis of the Pelletier’s synthetic

intermediate is shown in Scheme 1. The target compound 2 was proposed to proceed from the tetracyclic compound 3,

which constructed nitrogen heterocyclic ring through the double Mannich reaction [10]. The tetracyclic 3 could be

gained, using an intramolecular aldol condensation reaction of ketone 4 to form the key C9–C10 bond. The other key

C6–C7 bond was builded to afford the ketone 4 by a Witting reaction of phosphonium salt 5 with aldehyde 6. The

aldehyde 6 could be obtained through several steps from lactone 7. Here, we hope to report an efficient approach of

constructing the [2.2.2]octane C/D ring systems of atisine-type C20-diterpenoid alkaloids, using an oxidative

dearomatization/intramolecular Diels–Alder reaction, which was developed by Liao and co-workers in 2001 [11].

Lactone 7 was prepared as shown in Scheme 2. Reduction of commercially available aromatic aldehyde 8 with

NaBH4 under 0 8C provided benzyl alcohol 9, which reacted with acryloyl chloride to afford ester 10 in 70% yield over
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Fig. 1. Structures of atisine and Pelletier’s intermediate.
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Scheme 1. Retrosynthetic analysis for Pelletier’s intermediate.
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Scheme 2. Construction of C/D ring system of C20-diterpenoid alkaloids. Conditions and reagents: (a) NaBH4, MeOH, 0 8C, 90%; (b) acryloyl

chloride, Py, CH2Cl2, 0 8C, 78%; (c) CF3COOH, CH2Cl2, rt, 85%; (d) PIDA, MeOH, 0 8C, then xylene, reflux, 67%; (e) H2, Pd/C, MeOH, rt, 87%; (f)

Ph3PCH3Br, t-BuOK, Et2O, 40 8C, 53%.
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2 steps. Using trifluoroacetic acid, was the MOM group removed to give phenol precursor 11 in 85% yield. With

phenol 11 in hand, we next explored the key oxidative dearomatization/intramolecular Diels–Alder reaction. Since a

significant amount of undesired intermolecular dimerization product was produced using the literature procedure [11],

we slightly modified the procedure as follows: the precursor 11 was oxidized with PhI(OAc)2 using methanol as

solvent in an ice-water bath, after 30 min switching the solvent from methanol to xylene, the resulting masked ortho-

quinone 12 was heated at 160 8C to provide the lactone 13 [12] in 67% yield. Compound 13 was assigned as the desired

endo product of the Diels–Alder reaction due to the critical correlation between H-9 and the methoxyl of C-15 in the

NOESY spectrum of the hydrogenation product 14 [13]. Finally, the lactone 7 [14] was yielded from ketone 14
through a Wittig methylenation.

In conclusion, an efficient construction of highly functionalized C/D rings of atisine-type C20-diterpenoid alkaloids

has been successfully accomplished within 6 steps from a know aromatic aldehyde 8, using oxidative dearomatization/

intramolecular Diels–Alder reaction, which demonstrate a convergent strategy to construct highly functionalized

bicyclo[2.2.2]octane systems by Liao and co-worker. Further elaboration into the A-, B-, E-rings base on the lactonic

ring of compound 7 are under investigated in our laboratory and will be published in due course.
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