Tetramethylsilane in Synthesis:¹ Selective Mono- and **Polymethylations of Germanium Tetrachloride**

Michel Bordeau, S. Mohammad Djamei, and Jacques Dunoguès*

Laboratoire de Chimie organique du Silicium et de l'Etain associé au CNRS No. 35, F 33405 Talence Cédex, France

Received July 30, 1984

In the presence of catalytic amounts of aluminum bromide (or chloride), selective mono-, di-, tri-, or tetramethylation of germanium tetrachloride was effected in high yield with tetramethylsilane (Me₄Si) as the methylating reagent. According to the Me₄Si/GeCl₄ ratio, MeGeCl₃, Me₂GeCl₂, Me₃GeCl, and Me₄Ge were prepared in 66, 86, 100, and 91% maximum yields, respectively. In these reactions, Me₄Si was converted into Me₃SiCl and subsequently Me₂SiCl₂. A mechanism for methylation is proposed, involving the initial formation of Me₄Ge (observed regardless of the proportions of starting reagents) followed by disproportionation reactions, with methylchlorosilanes or -germanes present when the initial molecular ratio $Me_4Si/GeCl_4$ was lower than 4/1.

Introduction

During the course of the industrial preparation (direct synthesis) of Me_2SiCl_2 , Me_4Si is formed in about 0.5% by weight relative to Me₂SiCl₂. The potentially utilizable four methyl groups attached to silicon have made this a compound of interest in our laboratory.²⁻⁶ Thus, in the context of numerous studies concerning the electrophilic reactivity of the Si-Me bonds of Me₄Si, we have previously effected its conversion into Me₃SiCl either by the reaction with chlorine in the presence of catalytic amounts of iodine^{3,4} or with other chlorosilanes such as MeSiCl₃, the main byproduct of direct synthesis,⁵ or again with common polyhalo derivatives.⁶ Moreover, some investigations in our laboratory were devoted to the use of Me₄Si as a methylating or silylating reagent for sulfonic moieties.² The useful and commercially available sulfonation reagent ClSO₃SiMe₃, for instance, was obtained from ClSO₃H and Me₄Si.²

Methylchlorogermanes are important basic starting materials of organogermanium chemistry.^{7,8} Consequently, we thought that Me₄Si could provide a convenient entry to methylchlorogermanes by methylation of germanium tetrachloride. We were encouraged by the Me/Cl exchange observed by Burch and Van Wazer⁹ between germanium compounds at 300 °C in the presence of 0.1% $AlCl_3$ (eq 1-3).

> $Me_4Ge + GeCl_4 \rightleftharpoons Me_3GeCl + MeGeCl_3$ (1)

$$Me_3GeCl + MeGeCl_3 \rightleftharpoons 2Me_2GeCl_2$$
 (2)

$$Me_4Ge + MeGeCl_3 \rightleftharpoons Me_3GeCl + Me_2GeCl_2$$
 (3)

These disproportionation reactions, slow under these conditions (4-30 days⁹), allowed the synthesis of methylchlorogermanes from Me₄Ge and GeCl₄ even at 200 °C.¹⁰ However, this route used as Me_4Ge a methyl source, which is only available from MeMgX and $GeCl_4$ (or $(Me_3Ge)_2O$, also obtained after previous methylation).⁸

Also, our proposed route seemed attractive to us in comparison to the other routes to alkylchlorogermanes.^{7,8,11} R_3GeX and R_2GeX_2 (R = Bu, X = Cl; R = Et, X = Br) had been obtained from R_4Ge and GeX_4 in the presence of large amounts of $AlCl_3$.^{7,11} R_3GeCl had been prepared previously from R_4Ge by R/Cl exchange with HCl, Me-COCl, or halo derivatives in the presence of AlCl₃ and with metal halides such as SbCl₅, GaCl₃, or SnCl₄.⁸ R₃GeCl also was obtained from $(R_3Ge)_2O$ and HCl^8 or, by halogen exchange, from R_3GeX (X = Br, I) and AgCl⁸ but R_2GeCl_2 was not generally available from these methods since cleavage of a second R-Ge bond does not occur with HCl⁷ and alkylation using organolithium or Grignard reagents generally affords a mixture of alkylchlorogermanes.⁷ The direct synthesis of R₂GeCl₂ by the Rochow method (RCl and Ge catalyzed by copper derivatives) occurs in good yields with R = Me and $Et^{7,8}$ but is complicated by secondary reactions when larger alkyl halides are used.^{7,8}

RGeCl₃ was previously difficult to obtain (as a byproduct in the direct synthesis of R₂GeCl₂,^{7,8} by addition of HGeCl₃ to alkenes,^{7,8} or by halogen exchange from $RGeX_3$ (X = Br, I)).^{7,8}

This survey of the literature encouraged us to investigate the Me/Cl exchange, starting from $SiMe_4$ and $GeCl_4$.

Results

Reactions were carried out on a scale of 50 mmol of GeCl₄ in an autoclave at temperatures over 180 °C, generally 200 °C, in the presence of 3-5 mol % of AlBr₃. Organogermanium and silicon bromides were not detected in appreciable amounts after the reaction. Although $AlCl_3$ in similar proportions gave similar results, we are reporting only attempts with AlBr₃ as it led to a much faster reaction, perhaps because of its good solubility in the medium. By a judicious choice of the ratio of Me₄Si to GeCl₄ and a convenient reaction time, this versatile reaction provided selectively Me₄Ge, Me₃GeCl, Me₂GeCl₂, or MeGeCl₃ in high or quantitative yields.

⁽¹⁾ For previous papers see ref 2-6.

⁽²⁾ Birot, M.; Dunoguès, J.; Duffaut, N.; Calas, R.; Lefort, M. Bull. Soc. Chim. Fr. 1978, I-442.

⁽³⁾ Bordeau, M.; Calas, R.; Djamei, S. M.; Dunoguès, J. French Patent 2 520 743, 1982.

⁽⁴⁾ Bordeau, M.; Djamei, S. M.; Dunoguès, J.; Calas, R. Bull. Soc. Chim. Fr. 1982, II-159.

⁽⁵⁾ Bordeau, M.; Djamei, S. M.; Calas, R.; Dunoguès, J. J. Organomet. Chem., in press. See also references therein concerning the routes to

Me₃SiCl (Me₂SiCl₂) by Si-Me cleavage in Me₄Si using halo derivatives. (6) Bordeau, M.; Djamei, S. M.; Calas, R.; Dunogues, J. Bull. Soc. Chim. Fr., in press

 ⁽⁷⁾ Mazerolles, P. Bull. Soc. Chim. Fr. 1961, 1911.
 (8) Lesbre, M.; Mazerolles, P.; Satgé, J. "The Chemistry of Organometallic Compounds"; Wiley-Interscience: London, New York, Sydney, Toronto, 1971.

⁽⁹⁾ Burch, G. M.; Van Wazer, J. R. J. Chem. Soc. A 1966, 586. For general view on redistribution reactions see, for instance: Moedritzer, K. Organomet. Chem. Rev. 1966, 1, 179; 1968, 6, 171.

⁽¹⁰⁾ Satgé, J.; Couret, C., private communication.
(11) Van der Kerk, G. J. M.; Rijkens, F.; Janssen, M. J. Recl. Trav. Chim. Pays-Bas 1962, 81, 764; 1964, 83, 723.

Table I. Selective Mono- or Polymethylation of GeCl

	molar equiv Me4Si/GeCl4	time, h	temp, °C	conversion rate,ª mol %		formed methylgermanes, ^a mol %				formed chlorosilanes,ª mol %	
run				Me₄Si, %	GeCl ₄ , %	Me ₄ Ge, %	Me ₃ GeCl, %	Me2GeCl2, %	MeGeCl ₃ , %	Me ₃ SiCl, %	Me ₂ SiCl ₂ , %
1	5/1	2.5	200	69 ^b	53	83	16	0	traces	100	0
2	$4-\epsilon/1$	8	200	77 ⁶	72	40	60	0	0	91	9
3	5/1	10	200	79 ^b	73	60	40	0	0	100	0
4	4.5/1	22	200	69^{b}	80	91	9	0	0	100	0
5	3/1	21	200	92	77	$\frac{91}{20}$	80	0	0	80	20
6	2'/1	2.75	180	50	30	82	18	0	0	100	0
7	2/1	3.5	200	53	43	87	13	0	0	100	0
8	2/1	4.5	180	53		77	23	0	0	100	0
9	2'/1	6	200	100	100	0	71	29	0	85	15
10	2'/1	15	200	100	100	0	100	0	0	50	50
11	1/1	6	200	100	80	0	54	35	11	60	40
12	1/1	22	200	100	100	0	30	56	15	6	94
13	1/1	56	200	100	100	0	14	<u>86</u> 37	0	0	100
14	0.5/1	6	200	100	66	0	33	37	30	26	74
15	0.5/1	28	200	100	90	0	0	36	<u>64</u>	0	100
16	0.33/1	5	200	91		26	74	0	$\overline{0}$	89	11
17	0.3/1	65	200	100	85.7	0	0	32	<u>68</u>	0	70°

^a Determined by ¹H NMR spectroscopy and GLC. Yields after distillation were $\sim 10\%$ lower. ^b Calculated in reference to the stoichiometric proportions $Me_4Si/GeCl_4 = 4/1$ (mol). In this case $MeSiCl_3$ also was formed in 30% yield.

As specified below, the formation of Me₄Ge at the beginning of the reaction is observed regardless of the conditions used. It is for this reason that tetra-, tri-, di-, and finally monomethylations of GeCl₄ are successively described.

Tetramethylation of GeCl₄. Tetramethylation of $GeCl_4$ was performed according to eq 4.

$$\operatorname{GeCl}_{4} + 4\operatorname{Me}_{4}\operatorname{Si} \xrightarrow[200 \circ C]{\operatorname{AlBr}_{3}} \operatorname{Me}_{4}\operatorname{Ge} + 4\operatorname{Me}_{3}\operatorname{SiCl} \quad (4)$$

With 4.5 molar equiv of Me₄Si and 3-5 mol % of AlBr₃ relative to $GeCl_4$ (run 4, Table I), the conversion rate of GeCl₄ was 80% and Me₄Ge was formed in 91% yield, together with Me₃GeCl (9%) after 22 h at 200 °C. Me₂SiCl₂ was not detected in any appreciable proportion, this likely being due to the equilibrium favoring Me₃SiCl (eq 5).^{12,13}

$$Me_4Si + Me_2SiCl_2 \rightleftharpoons 2Me_3SiCl$$
 (5)

Trimethylation of GeCl₄. With 2 molar equiv of Me₄Si relative to GeCl₄, Me₃GeCl was quantitatively formed (cf. run 10) (eq 6).

$$GeCl_4 + 2Me_4Si \xrightarrow[15 h, 200 \circ C]{} \xrightarrow{AlBr_3 (3-5 \mod \%)} \\ Me_3GeCl + Me_3SiCl + Me_2SiCl_2 (6) \\ 100\% 50\% 50\%$$

It is worth noting that two methyl groups can be exchanged in Me₄Si; thus Me₃SiCl also acts as a methylating reagent. This result was corroborated by experiments in which the reaction conditions were varied. Thus with 3 molar equiv of Me₄Si relative to GeCl₄, Me₂SiCl₂ was formed as well as Me₃SiCl (20%), but Me₄Ge and Me₃GeCl $(\sim 20\%)$ were still present when equilibrium was achieved (over 15 h) (run 5).

Dimethylation of GeCl₄. Optimum conditions required the use of $Me_4Si/GeCl_4$ (ca. 1/1 molar equiv) (cf. run 13) as expected from the stoichiometry in eq 7.

$$\operatorname{GeCl}_{4} + \operatorname{Me}_{4}\operatorname{Si} \xrightarrow{\operatorname{AlBr}_{3}} \operatorname{Me}_{2}\operatorname{GeCl}_{2} + \operatorname{Me}_{2}\operatorname{SiCl}_{2} \quad (7)$$

Scheme I Me4Ge Me₃GeCl (-MegGeCI) (I) MeGeCl₃ Me₃GeCI (-Me_SiCla) (II)GeCL (a) MezGeCI (b) Me₃GeCl MeGeCl₃ (III) (-MegGeCla) le-GeCi-MeGeCl₃ (IV) (-MeGeCl.

Even after prolonged reaction times, Me₃GeCl did not disappear completely (14% after 56 h). GeCl₄, however, reacted completely and, as previously observed, Me₃SiCl behaved as a methylating reagent and Me₂GeCl₂ was formed in 86% yield.

Monomethylation of $GeCl_4$. An excess of $GeCl_4$ is theoretically necessary to perform reaction 8.

$$2\text{GeCl}_4 + \text{Me}_4\text{Si} \xrightarrow[200 \circ \text{C}]{\text{AlBr}_3} 2\text{MeGeCl}_3 + \text{Me}_2\text{SiCl}_2 \quad (8)$$

In fact only 90% of the GeCl₄ was converted after 28 h, whereas Me₄Si completely disappeared (cf. run 15). MeGeCl₃ and Me₂GeCl₂ were formed in 64% and 36%yields, respectively, and Me_2SiCl_2 was the only chlorosilane isolated (with $Me_4Si/GeCl_4 = ca. 0.5/1$). Under these conditions, MeGeCl₃ seems to be more difficult to obtain because it easily undergoes subsequent methylation. Consequently, it was not possible to isolate MeGeCl₃ when the $Me_4Si/GeCl_4$ ratio was greater than 2/1.

Discussion

The behavior of intermediate and final products was examined as a function of the parameters of reaction time and the proportion of unreacted starting materials (Table I). This would suggest the following mechanism.

(a) Tetramethylation of GeCl₄. This should be a fast reaction because Ge is large enough to undergo an easy tetramethylation despite the possible steric interactions among the four methyl groups (eq 9).

$$\operatorname{GeCl}_4 \xrightarrow{4\operatorname{Me}_4\operatorname{Si}} \operatorname{Me}_4\operatorname{Ge}$$
 (9)

(b) Redistribution Reactions between GeCl₄ and the Products Formed during the Course of Methylation.

⁽¹²⁾ Frey, V.; Graf, V.; John, P. German Offen 2728196, 1979.
(13) Bažant, V.; Chvalovský, V.; Rathouský, J. "Organosilicon Compounds"; Academic Press: New York and London, 1965; Vol. 1, p 238 and further editions.

Methylation was done by Me_4Si as previously observed during the synthesis of methylchlorogermanes from $GeCl_4$ and Me_4Ge (Scheme I).¹⁰

These reactions could occur simultaneously.

With a very large excess of Me₄Si (Me₄Si/GeCl₄ \geq 4/1), tetramethylation was almost the only reaction. Tetramethylation of GeCl₄ began relatively fast (53% conversion rate of GeCl₄ after 2.5 h (run 1, Table I)). MeGeCl₃ and Me₂GeCl₂ seem to react faster than GeCl₄ as they were not detected in appreciable amounts (previously observed during butylation of GeCl₄^{8,11}). Then the reaction slowed down; the conversion ratio of GeCl₄ reached 72, 73, and 80% after 8, 10, and 22 h, respectively, while the percentage of Me₃GeCl present in the medium increased to 60% (after 8 h) and decreased between 8 and 22 h in favor of Me₄Ge (runs 2-4, Table I).

Working with Me₄Si/GeCl₄ < 4/1, the formation of Me₃GeCl and Me₄Ge was still observed at the beginning of the reaction regardless of the amount of Me₄Si lacking. Thus, with Me₄Si/GeCl₄ = 2/1 (reaction time betwen 2.75 and 4.5 h), only Me₃GeCl (~20%) and Me₄Ge (~80%) were formed (runs 6–8). Even with a large excess of GeCl₄ (Me₄Si/GeCl₄ = 0.33/1), we initially observed the formation of Me₃GeCl (74%) and Me₄Ge (26%, run 16).

However, once the Me₄Si had disappeared and the reaction time was prolonged, Me/Cl exchange between GeCl₄ or Me_nGeCl_{4-n} and Me₄Ge, Me₃SiCl, Me₃GeCl, and perhaps Me₂GeCl₂ was observed (reactions I–IV). Thus with Me₄Si/GeCl₄ = 2/1 and a reaction time of 4.5–6 h, Me₄Ge was observed to disappear, being progressively replaced by Me₃GeCl and Me₂GeCl₂ (reaction I), with Me₃SiCl being accompanied by Me₂SiCl₂ (runs 8 and 9, reaction II). After 6–15 h of reaction time, Me₂GeCl₂ was completely converted to Me₃GeCl (100%) by Me₃SiCl (which gave the corresponding amount of Me₂SiCl₂ (run 10, reaction IIc).

Methylation by Me₃SiCl after 6 h was confirmed by runs 11 and 14. With Me₄Si/GeCl₄ = 1/1, methylation from Me₃SiCl was achieved after 22 h, the percentage of Me₃GeCl decreasing because of its conversion into Me₂GeCl₂ (disproportionation with MeGeCl₃, reaction III, run 12). The yield of Me₂GeCl₂ was optimized by continuing the reaction for 56 h (run 13) (the decrease of Me₃GeCl and MeGeCl₃ was the same).

When $Me_4Si/GeCl_4$ was decreased to 0.5/1, Me_4Si , Me_4Ge , Me_3SiCl , and Me_3GeCl were completely consumed by GeCl₄ after 28 h and formation of MeGeCl₃ was largely favored (64% of the methylchlorogermanes, run 15). A comparison of runs 14 and 15 showed the disproportionation of GeCl₄/Me₃GeCl as not being the only source of $MeGeCl_3$ as it also results from the redistribution between $GeCl_4$ and Me_2GeCl_2 according to reaction IV.

As the final point, we note that when a very large excess of GeCl₄ was used (Me₄Si/GeCl₄ = 0.33/1), the yield of MeGeCl₃ (68% of the formed methylgermanes) did not increase notably even after a 65-h reaction time (run 17). Quasi-equilibrium was reached after 28 h (run 15). It was observed, however, that because MeSiCl₃ was formed (run 17), Me₂SiCl₂ acts as a methylation reagent according to eq 10 and 11.

$$GeCl_4 + Me_2SiCl_2 \xrightarrow{AlBr_3} MeGeCl_3 + MeSiCl_3$$
 (10)

$$MeGeCl_3 + Me_2SiCl_2 \xrightarrow{AlBr_3} Me_2GeCl_2 + MeSiCl_3 \quad (11)$$

In conclusion, we note that the reaction between GeCl₄ and Me₄Si appears to be a versatile source of Me₄Ge, Me₃GeCl, Me₂GeCl₂, and even MeGeCl₃. The product obtained is a result of varying the respective ratios of starting reagents and the reaction time.

Experimental Section

Regardless of the proportions of GeCl₄ and Me₄Si, specified in Table I, we worked with 10.75 g of GeCl₄ (50 mmol). Similarly 3-5 mol % of AlBr₃ (0.4-0.67 g) or AlCl₃ (0.2-0.33 g) with respect to GeCl₄ were introduced. Results summarized in Table I were obtained with 5 mol % of AlBr₃; when 3 mol % was used, the reaction time was increased slightly to obtain the same yields.

Reagents were introduced with a syringe and weighed in an Erlenmeyer flask equipped with a sleeve stopper and previously cooled in an ice-water bath. In order to solubilize it and limit loss due to its volatility, Me₄Si always was introduced after GeCl₄ when the reagents were poured into an autoclave (125 mL) containing previously cooled dry argon. The autoclave was agitated at the temperature and time specified in Table I. After being cooled in an ice-water bath, the reaction mixture was analyzed by NMR, mass spectrometry, and gas chromatography (columns, Versilube F 50, 25% on Chromosorb P DMSCS, or QF₁ (2-m length, $^{1}/_{8}$ -in. diameter); Me₂GeCl₂ and MeGeCl₃ not separable on Versilube thus were separated on QF₁ were separated on Versilube columns at 100 °C).

In order to avoid any modification of the reaction mixture during distillation, products were isolated upon distillation at temperatures lower than 100 °C after complexation of the Lewis acid with an excess of anhydrous NaCl. All products were identified by comparison of their NMR, mass spectra, or chromatography data with those of authentic samples.

Registry No. Me₄Si, 75-76-3; GeCl₄, 10038-98-9; Me₄Ge, 865-52-1; Me₃GeCl, 1529-47-1; Me₂GeCl₂, 1529-48-2; MeGeCl₃, 993-10-2; Me₃SiCl, 75-77-4; Me₂SiCl₂, 75-78-5; AlBr₃, 7727-15-3; AlCl₃, 7446-70-0.