

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 3676-3681

Cytotoxic effects of C-glycosides in HOS and HeLa cell lines

Carlos A. Sanhueza,^a Carlos Mayato,^a Rubén P. Machín,^{a,b} José M. Padrón,^{a,b} Rosa L. Dorta^a and Jesús T. Vázquez^{a,*}

^aInstituto Universitario de Bio-Orgánica "Antonio González", Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain ^bBioLab, Instituto Canario de Investigación del Cáncer (ICIC), Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain

> Received 12 March 2007; revised 12 April 2007; accepted 15 April 2007 Available online 25 April 2007

Abstract—Fifty-two *C*-glycosides were synthesized and their in-vitro antiproliferative activity screened against human cervical carcinoma (HeLa) and osteosarcoma (HOS) cell lines. Nine of them had growth inhibitions (GI₅₀ values) below 10 μ M, the *C*-glucopyranoside **38** being the most active against HeLa (5.4 μ M) and the dichlorocyclopropyl derivative **42** against HOS (1.6 μ M). Some preliminary structure–activity relationships were established. © 2007 Elsevier Ltd. All rights reserved.

A large number of bioactive *C*-glycosides have been obtained from natural sources¹ as well as via different synthetic approaches.² In addition, they possess high stability against chemical and enzymatic hydrolysis and retain the biological properties of natural *O*-glycosides.³ Therefore, *C*-glycosides are good candidates to test their cytotoxic activities.

In a previous study,⁴ we reported the antiproliferative and apoptotic properties of structurally simple C-glyco-sides against human leukemia cancer cells (HL60).

However, solid tumors represent over 85% of all cancers and many of these show resistance to treatment with anticancer drugs, so the development of new drugs still plays a major role in the fight against cancer. Herein, we report the antiproliferative activity of a large series of *C*-glycosides against two types of human solid tumor cell lines: osteosarcoma (HOS) and cervical carcinoma (HeLa).

Most C-glycosides were synthesized using Danishefsky's procedure.⁵ Epoxidation of a series of D-glucal derivatives (Scheme 1, R = benzyl, *n*-butyl, *n*-pentadecyl, 4-flu-

orobenzyl, and 2-methylenenaphthyl) using dimethyldioxirane in CH₂Cl₂ and subsequent epoxide ring opening by a stabilized carbanion,⁶ such as Grignard reagents (\mathbf{R}^1 = methyl, ethyl, *n*-propyl, *i*-butyl, allyl, *n*pentyl, cyclohexylmethyl, phenyl, and benzyl), led to a mixture of *C*-glycosides, the α/β ratio being variable. The stereochemistry at the *pseudo*-anomeric carbon was established by analyzing the ¹H NMR *J*_{1,2} value and the crosspeaks between H-1 and H-3 and H-5 from T-ROESY experiments.⁷ Oxidation of the hydroxyl group at C-2 with dimethylsulfoxide/acetic anhydride⁸ led to the corresponding 2-keto *C*-glycosides **44–52**.

Scheme 1. Synthesis of *C*-glycosides, 2-keto-*C*-glycosides, and *C*-mannosides. Reagents and conditions: (a) i—DMDO, CH_2Cl_2 , 0 °C; ii— R^1MgX , Et_2O , -78 °C; (b) DMSO/Ac₂O (2:1), rt; (c) NaBH₄, $CH_2Cl_2/MeOH$ (1:1) 0 °C.

Keywords: *C*-Glycosides; 2-Keto-*C*-glycosides; *C*-Mannosides; Osteosarcoma (HOS); Cervical carcinoma (HeLa); Cytotoxic; Cancer.

^{*} Corresponding author. Tel.: +34 922318581; fax: +34 922318571; e-mail: jtruvaz@ull.es

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.04.060

Scheme 2. Synthesis of *C*-glucosides 28–30. Reagents and conditions: (a) $1-O_3$, CH₂Cl₂/MeOH (1:1), -78 °C; $2-NaBH_4$; (b) 1-TBSOTf, Et₃N, CH₂Cl₂, rt; $2-BH_3$ ·Me₂S, THF, rt, then H₂O₂; $3-Bu_4NF$, CH₂Cl₂, rt; (c) ZnEt₂, CH₂I₂, Et₂O, rt.

Scheme 3. Synthesis of cyclopropyl derivatives. Reagents and conditions: (a) ZnEt₂, CH₂I₂, Et₂O, rt; (b) CHCl₃, NaOH, rt; (c) LiAlH₄, THF, rt.

Reduction of compounds **46** and **48** with NaBH₄ gave the corresponding mannopyranoside derivatives **10** and **22**.⁹

The tetra-O-benzyl derivatives 26 and 35 were obtained from 24 and 34, respectively, by treatment with BnBr and NaH in DMF. Compounds with an acetyl group at C-2 (4, 7, 17, 23, and 25) were obtained from the corresponding alcohols by acetylation with Ac_2O/Py . Compounds 36–40 were obtained from the benzyl Cglucoside 34 by partial catalytic hydrogenolysis with H₂/Pd(C) in ethanol and, for some of them, consecutive acetylation with Ac_2O/Py .

The 2-hydroxyethyl *C*-glucoside **28** was obtained from the β allyl derivative **24** (Scheme 2) by ozonolysis and subsequent reduction with NaBH₄, while the hydroxymethyl derivative **27** was obtained similarly from the corresponding β vinyl *C*-glycoside. The 3-hydroxypropyl derivative **29** was obtained in three steps from **24**: protection of the hydroxyl group at C-2 with *tert*-butyl dimethyl silyl triflate, hydroboration with BH₃·Me₂S in THF, and finally, deprotection of silyl group with Bu₄NF. The cyclopropylmethyl derivative **30** was obtained from **24** by means of a Simmons–Smith cyclopropanation.

The cyclopropyl derivatives **41–43** were synthesized from 3,4,6-tri-*O*-benzyl D-glucal (Scheme 3).^{12,13} The effective use of the Simmons–Smith reagent¹⁴ led to the β -cyclopropyl **41**, while dichlorocarbene gave the

 α -dichlorocyclopropyl **42**, which after reduction with LiAlH₄ provided the α -cyclopropyl **43**.

The cytotoxic activity of the whole series was measured as growth inhibition or decreased viability of the two human solid tumor cell lines. Tables 1 and 2 show the antiproliferative activities for all synthesized products, while Schemes 3 and 4 show the structure of those compounds with a 50% growth inhibition (GI₅₀) below 20 μ M. Cytotoxicity data were determined by the SRB assay¹⁵ and calculated from at least three independent experiments.

The *C*-glucopyranosides **15** and **38** (Scheme 4) exhibited the best activity against the HeLa cell line (GI₅₀ = 5.6 and 5.4 μ M, respectively), whereas the α -dichlorocyclopropyl derivative **42** (Scheme 5) was the most active on HOS (GI₅₀ = 1.6 μ M).

The present study reveals some structure–activity relationships. For example, the presence of benzyl or 4-fluorobenzyl groups at C-3, C-4, and C-6 favored the cytotoxicity against both cell lines (Table 1). However, derivatization of the hydroxyl groups at these positions with other alkyl or acyl groups, such as *n*-butyl, *n*-pentadecyl, 2-naphthylmethyl, and acetyl, led to no activity or to a lower activity. In addition, the lack of one or more of these benzyl groups (**39** and **40**) decreases or annuls antiproliferative activity (compare with **34**). See also, for example, the tetrol **18** versus the tri-*O*-benzyl derivative **8**. *C*-Glucosides with 4-fluorobenzyl groups (compounds

Table 1. Effects of C-glycosides 1-43 on the growth of HeLa and HOS cell lines^{10,11}

Compound	Config. ^a	R ¹	\mathbf{R}^2	R ³	R ⁴	R ⁵	HeLa		HOS	
							${\rm GI}_{50}{}^{\rm b}$	SD ^c	GI ₅₀	SD
1	_	Н	Н	Bn	Bn	Bn	33.3	4.6	22.2	0.8
2		Н	OH	Bn	Bn	Bn	n.a. ^d		37.9	6.1
3	β	Methyl	OH	Bn	Bn	Bn	n.a.		n.a.	
4	β	Methyl	OAc	Bn	Bn	Bn	n.a.		8.8	7.0
5	β	Ethyl	OH	Bn	Bn	Bn	19.8	6.7	34.2	14.7
6	α	Ethyl	OH	Bn	Bn	Bn	n.a.		n.a.	
7	β	Ethyl	OAc	Bn	Bn	Bn	n.a.		n.a.	
8	β	<i>n</i> -Propyl	OH	Bn	Bn	Bn	18.9	7.1	38.6	6.1
9	α	n-Propyl	OH	Bn	Bn	Bn	17.4	5.9	23.6	5.9
10	β	<i>n</i> -Propyl	OHe	Bn	Bn	Bn	23.3	4.4	n.a.	
11	β	n-Propyl	OH	<i>n</i> -Butyl	<i>n</i> -Butyl	<i>n</i> -Butyl	n.a.		n.a.	
12	β	n-Propyl	OH	n-Pentadecyl	n-Pentadecyl	n-Pentadecyl	n.a.		n.a.	
13	α	n-Propyl	OH	n-Pentadecyl	n-Pentadecyl	n-Pentadecyl	28.7	8.4	29.9	0.3
14	β	n-Propyl	OH	4-F–Bn	4-F–Bn	4-F–Bn	12.3	7.3	17.2	6.3
15	α	n-Propyl	OH	4-F–Bn	4-F–Bn	4-F–Bn	5.6	1.1	n.a.	
16	β	n-Propyl	OH	2-Naphthylmethyl	2-Naphthylmethyl	2-Naphthylmethyl	n.a.		n.a.	
17	β	n-Propyl	OAc	2-Naphthylmethyl	2-Naphthylmethyl	2-Naphthylmethyl	n.a.		n.a.	
18	β	n-Propyl	OH	OH	OH	OH	n.a.		n.a.	
19	β	n-Butyl	OH	Bn	Bn	Bn	n.a.		40.1	3.1
20	β	<i>i</i> -Butyl	OH	Bn	Bn	Bn	n.a.		45.2	10.4
21	α	<i>i</i> -Butyl	OH	Bn	Bn	Bn	43.9	8.2	44.5	17.7
22	β	<i>i</i> -Butyl	OH ^e	Bn	Bn	Bn	24.6	4.1	26.3	1.1
23	α	<i>i</i> -Butyl	OAc	Bn	Bn	Bn	n.a.		n.a.	
24	β	Allyl	OH	Bn	Bn	Bn	26.2	6.9	44.1	5.1
25	β	Allyl	OAc	Bn	Bn	Bn	n.a.		11.0	1.4
26	β	Allyl	OBn	Bn	Bn	Bn	n.a.		n.a.	
27	β	Hydroxymethyl	OH	Bn	Bn	Bn	25.8	16.1	27.3	11.2
28	β	2-Hydroxyethyl	OH	Bn	Bn	Bn	30.2	14.9	39.7	16.5
29	β	3-Hydroxypropyl	OH	Bn	Bn	Bn	n.a.		n.a.	
30	β	Cyclopropylmethyl	OH	Bn	Bn	Bn	n.a.		n.a.	
31	β	Cyclohexylmethyl	OH	Bn	Bn	Bn	9.5	2.9	4.4	0.2
32	α	Cyclohexylmethyl	OH	Bn	Bn	Bn	n.a.		20.7	2.7
33	β	Phenyl	OH	Bn	Bn	Bn	n.a.		n.a.	
34	β	Benzyl	OH	Bn	Bn	Bn	17.4	3.1	29.2	3.9
35	β	Benzyl	OBn	Bn	Bn	Bn	n.a.		n.a.	
36	β	Benzyl	OAc	Bn	Ac	Ac	n.a.		n.a.	
37	β	Benzyl	OAc	Ac	Ac	Bn	n.a.	_	n.a.	
38	β	Benzyl	OAc	Bn	Ac	Bn	5.4	3.5	6.1	4.1
39	β	Benzyl	OH	Bn	Bn	OH	38.0	0.1	31.6	2.1
40	β	Benzyl	OH	OH	Bn	Bn	47.9	8.6	33.5	5.9
41	β	-CH2-e		Bn	Bn	Bn	n.a.	—	n.a.	
42	α	-CCl ₂ -		Bn	Bn	Bn	n.a.		1.6	0.1
43	α	CH2		Bn	Bn	Bn	n.a.	—	n.a.	

^a Configuration of R¹ (C-aglycon).

^bGI₅₀, μM.

^c SD, standard deviation.

^d n.a., not active ($GI_{50} > 50 \ \mu M$).

^e Axial configuration (\mathbb{R}^2).

14 and 15) were more cytotoxic than those with underivatized benzyl groups (8 and 9). Other structure-activity relationships depend on the particular tumor cell line.

Cervical carcinoma (HeLa). Analysis of the data in Tables 1 and 2, and of the chemical structures, particularly those shown in Scheme 4, reveals further structure–

activity relationships for this cell line. The underivatized hydroxyl group at C-2 in all active compounds, except the di-acetyl compound **38**, seems to favor antiproliferative activity. This was also observed in the corresponding study of the cytotoxic activity of *C*-glycosides against leukemia (HL60), although in the present study the configuration at C-2 is not so critical. Either

Table 2. Effects of 2-keto C-glycosides 44-52 on the growth of HeLa and HOS cell lines

Compound	Config. ^a	\mathbb{R}^1	\mathbb{R}^2	R^3	\mathbb{R}^4	HeLa		HOS	
						$\mathrm{GI}_{50}^{\mathbf{b}}$	SD ^c	GI ₅₀	SD
44	β	Methyl	Bn	Bn	Bn	n.a. ^d	_	n.a.	
45	β	Ethyl	Bn	Bn	Bn	n.a.	_	4.3	0.8
46	β	n-Propyl	Bn	Bn	Bn	n.a.		n.a.	
47	α	n-Propyl	Bn	Bn	Bn	n.a.	_	n.a.	_
48	β	<i>i</i> -Butyl	Bn	Bn	Bn	n.a.		n.a.	
49	β	n-Pentyl	Bn	Bn	Bn	n.a.	_	n.a.	
50	β	Benzyl	Bn	Bn	Bn	n.a.	_	n.a.	
51	β	Allyl	Bn	Bn	Bn	n.a.	_	7.6	1.6
52	β	n-Propyl	n-Butyl	<i>n</i> -Butyl	<i>n</i> -Butyl	n.a.		n.a.	

^a Configuration of R¹.

^b GI₅₀, μM.

^cSD, standard deviation.

^d n.a., not active (GI₅₀ > 50 μ M).

Scheme 4. Structures of C-glycosides with antiproliferative activity against the HeLa cell line below 20 µM.

Scheme 5. Structures of C-glycosides with antiproliferative activity against the HOS cell line below 20 µM.

an equatorial or an axial configuration provides cytotoxicity (for instance, the C-glucoside 8 or its stereoisomer the C-mannoside 10). In addition, even the C-mannoside 22 showed some activity, while its epimer at C-2 (C-glucoside 20) was not cytotoxic.

To test the relationship between antiproliferative activity and the C-aglycon (R^1) , different alkyl and aryl groups were introduced at C-1. The length of the chain in compounds having a linear C-aglycon seems to be critical for cytotoxicity. Thus, C-glycosides with a hydrogen, a methyl, or a *n*-butyl group as aglycon (\mathbb{R}^1) were not active (compounds **2**, **3**, and **19**), while those with an ethyl (**5**), a *n*-propyl (**8**), or an allyl (**24**) group were antiproliferative (GI₅₀ 19.8, 18.9, and 26.2 μ M, respectively). On the other hand, compounds having a hydroxyl group in the aglycon, as do 27–29, exhibited a moderate cytotoxicity, their activity decreasing as the length of the chain increased. Thus, while the hydroxymethyl group had a GI₅₀ of 25.8 μ M (compound 27), the 2-hydroxyethyl showed a higher value of 30.2 μ M (28) and the 3-hydroxypropyl had no activity (29). β -C-Glucosides with branched or cyclic aglycons, like the *iso*-butyl 20, phenyl 33, or cyclopropyl compounds 41–43, were inactive. However, those compounds having a cyclohexylmethyl (31) or benzyl group (34) as aglycon were cytotoxic (GI₅₀ 9.5 and 17.4 μ M, respectively).

Analysis of the data also reveals that the antiproliferative activity is strongly dependent on the configuration at C-1, although sometimes favoring the β stereoisomer and other times the α . Thus, while the β stereoisomers of the ethyl and cyclohexylmethyl glucosides (compounds **5** and **31**) were active, their α stereoisomers **6** and **32** were not. However, both stereoisomers of the *n*-propyl glucosides **8** and **9** showed similar antiproliferative activities. On the other hand, the α stereoisomer of the *n*-propyl tri-*O*-(4-fluoro-benzyl) glucoside **15** was more active (GI₅₀ 5.6 μ M) than the β **14** (GI₅₀ 12.3 μ M). This α preference was also observed in the stereoisomers of *n*-propyl tri-*O*-(*n*-pentadecyl) glucosides **12** and **13**, and in those of the *iso*-butyl tri-*O*-benzyl derivatives **20** and **21**.

Osteosarcoma (HOS). Structural analysis of the C-glycosides (Scheme 5) and of their corresponding data (Tables 1 and 2) reveals some structure-activity relationships for this cell line. Besides the already-mentioned preference for the benzyl groups as substituents for the hydroxyl groups at C-3, C-4, and C-6, other features can be established. In contrast to that observed with HeLa and HL60 cell lines, some C-glycosides with an acetyl or carbonyl group at position 2 were more cytotoxic than those with an underivatized hydroxyl group. Thus, while the methyl glucoside 3 was inactive, its acetyl derivative 4 had a GI_{50} of 8.8 μ M. Moreover, acetylation of the hydroxyl group at C-2 in the allyl glucoside 24 (GI₅₀ 44.1 μ M), giving the allyl derivative 25, led to higher antiproliferative activity (GI₅₀ 11.0μ M). The 2-keto C-glycosides 45 and 51 (Table 2) also showed higher cytotoxicity (GI₅₀ 4.3 and 7.6 μ M,) than their respective reduced compounds 5 and 24 (GI₅₀ 34.2 and 44.1 µM, respectively). Note that none of these 2-keto C-glycosides had antiproliferative activity against HeLa.

Concerning the aglycon, *C*-glycosides having a cyclic aglycon, such as the cyclohexylmethyl β -glucoside **31** (GI₅₀ 4.4 μ M), or the benzyl derivatives **34** and **38** (29.2 and 6.1 μ M, respectively), were more cytotoxic than compounds with linear aglycons (GI₅₀ > 35 μ M) (Table 1). However, 2-keto *C*-glycosides (Table 2) do not seem to follow this relationship, since the ethyl (**45**) and the allyl (**51**) were cytotoxic but not the benzyl (**50**).

Regarding the configuration at C-1, all C-glucosides with high antiproliferative activity against the HOS cell line (Scheme 5) possessed a β configuration, with the sole exception of the dichlorocyclopropyl **42**. For instance, the *n*-propyl β -*C*-glucoside **14** had a GI₅₀ of 17.2 μ M, while its α stereoisomer **15** was not active. Similarly, the cyclohexylmethyl β -*C*-glucoside **31** showed significant antiproliferative activity (GI₅₀ 4.4 μ M), while its α stereoisomer **32** was less active (GI₅₀ 20.7 μ M).

In summary, a large series of *C*-glycosides were synthesized and screened against cervical carcinoma (HeLa) and osteosarcoma (HOS) cell lines. Several *C*-glucosides had high antiproliferative activity against these cell lines. Thus, compounds **15**, **31**, and **38** showed GI₅₀ values below 10 μ M against the HeLa cell line, while compounds **4**, **31**, **38**, **41**, **45**, and **51** against HOS. The easy synthetic access to these *C*-glycosides, together with their high activities, makes them promising substrates against these cancer cell lines. Some significant structure-activity relationships were established.

Acknowledgments

This work was financed by the Universidad de La Laguna, the EU INTERREG IIIB-MAC initiative (05/MAC/ 2.5/C14 BIOPOLIS), the MEC, co-financed by the European FEDER (CTQ2005-09074-C02-01/BQU) and the Gobierno de Canarias. C.A.S. and C.M. thank the Universidad de La Laguna and the Consejería de Educación y Deportes del Gobierno de Canarias for a fellowship. J.M.P. thanks the Spanish MEC-FSE for a Ramón y Cajal contract.

References and notes

- 1. Hultin, P. G. Curr. Top. Med. Chem. 2005, 5, 1299.
- (a) Sas, B.; Van der Eycken, J.; Van hemel, J.; Blom, P.; Vandenkerckhove, J.; Ruttens, B. PCT Int. WO03032905, 2003; (b) Blom, P.; Ruttens, B.; Van Hoof, S.; Hubrecht, I.; Van der Eycken, J.; Sas, B.; Van hemel, J.; Vandenkerckhove, J. J. Org. Chem. 2005, 70, 10109; (c) Van Hoof, S.; Ruttens, B.; Hubrecht, I.; Smans, G.; Blom, P.; Sas, B.; Van hemel, J.; Vandenkerckhove, J.; Van der Eycken, J. Bioorg. Med. Chem. Lett. 2006, 16, 1495.
- (a) Wei, A.; Boy, K. M.; Kishi, Y. J. Am. Chem. Soc. 1995, 117, 9432; (b) Wellner, E.; Gustafsson, T.; Backlund, J.; Holmdahl, R.; Kihlberg, J. Chembiochem 2000, 1, 272; (c) Yang, J.; Franck, R. W.; Bittman, R.; Samadder, P.; Arthur, G. Org. Lett. 2001, 3, 197.
- Sanhueza, C. A.; Mayato, C.; García-Chicano, M.; Díaz-Peñate, R.; Dorta, R. L.; Vázquez, J. T. *Bioorg. Med. Chem. Lett.* 2006, 16, 4223.
- 5. Danishefsky, S. J.; Halcomb, R. L. J. Am. Chem. Soc. 1989, 111, 6661.
- Allwein, S. P.; Cox, J. M.; Howard, B. E.; Johnson, H. W. B.; Rainier, J. D. *Tetrahedron* 2002, 58, 1997.
- 7. For easier discussion, *C*-glycosides are numbered here according to semisystematic names generally accepted for this class of compounds.
- Albright, J. D.; Goldman, L. J. Am. Chem. Soc. 1967, 89, 2416.
- Liu, K. K.-C.; Danishefsky, S. J. J. Org. Chem. 1994, 59, 1892.
- Registry numbers for known compounds: 1, 91780-41-5; 2, 152840-34-1; 3, 105938-03-2; 4, 105938-04-3; 5, 909533-21-

7; 6, 151100-74-5; 8, 320576-39-4; 9, 909533-28-4; 10, 909533-39-7; 11, 909533-51-3; 12, 909533-52-4; 13, 909533-53-5; 18, 3736-73-0; 19, 909714-58-5; 20, 909533-22-8; 21, 909533-23-9; 22, 909533-41-1; 24, 161275-25-8; 25, 193546-84-8; 26, 81972-19-2; 27, 135561-09-0; 29, 288584-96-3; 30, 909533-56-8; 31, 909533-24-0; 32, 909533-25-1; 33, 130912-38-8; 34, 130912-39-9; 35, 155590-31-1; 39, 909533-29-5; 40, 909533-31-9; 41, 162332-11-8; 42, 162332-13-0; 43, 162428-31-1; 51, 192929-31-0.

11. Spectroscopic data for new representative C-glycosides: (a) 4,8-anhydro-1,2,3-trideoxy-6,7,9-tris-O-(4-fluorobenzyl)-D-glycero-D-gulo-nonitol (14): ¹H NMR (δ , ppm): 7.28–7.25 (m, 4H), 7.15–7.12 (m, 2H), 7.05–6.96 (m, 6H), 4.87 (d, J = 11.5 Hz, 1H), 4.71 (d, J = 11.0 Hz, 1H), 4.71 (d, J = 11.0 Hz, 1H), 4.60 (d, J = 12.2 Hz, 1H), 4.54-4.49 (m, 2H), 3.70-3.64 (m, H-9 and H-9'), 3.56 (dd, J = 9.0 and 9.0 Hz, H-7), 3.43 (dd, J = 9.0 and 9.0 Hz, H-6), 3.38 (ddd, J = 2.5, 3.9 and 9.7 Hz, H-8), 3.30 (dd, J = 9.0 and 9.0 Hz, H-5), 3.16 (ddd, J = 2.4, 8.8 and 8.8 Hz, H-4), 1.77 (m, H-3), 1.56 (m, H-2), 1.50–1.36 (m, H-2', H-3'), 0.92 (dd, J = 7.3 and 7.3 Hz, 3H); ¹³C NMR (δ , ppm): 129.4 (s), 129.3 (s), 129.3 (s), 129.2 (s), 129.2 (s), 129.2 (s), 115.5–114.8 (aromatic C's), 86.6 (d, C-6), 79.0 (d, C-4), 78.7 (d, C-8), 78.2 (d, C-7), 74.2 (t), 73.8 (t), 73.7 (d, C-2), 72.5 (t), 68.6 (t, C-9), 33.6 (t, C-3), 18.3 (t, C-2), 13.9 (q, C-1). (b) 3, 7-Anhydro-5,6,8-tri-O-benzyl-1,2-dideoxy-D-gluco-oct4-ulose (**45**): ¹H NMR (δ , ppm): 7.35–7.18 (m, 15H), 5.01 (d, J = 11.3 Hz, 1H), 4.86 (d, J = 10.9 Hz, 1H), 4.62 (d, J = 12.2 Hz, 1H), 4.60 (d, J = 11.3 Hz, 1H), 4.56 (d, J = 12.2 Hz, 1H), 4.55 (d, J = 10.9 Hz, 1H), 4.18 (d, J = 8.6 Hz, H-5), 3.87 (dd, J = 9.0 and 9.0 Hz, H-6), 3.82–3.67 (m, H-3, H-7, H-8 and H-8'), 1.90 (m, H-2), 1.69 (m, H-2'), 1.02 (dd, J = 7.5 and 7.5 Hz, 3H-1); ¹³C NMR (δ , ppm): 202.5 (s, C-4), 138.1 (s), 137.8 (s), 137.6 (s), 128.4–127.6 (aromatic C's), 86.7 (d, C-5), 81.9 (d, C-3), 80.3 (d, C-6), 79.2 (d, C-7), 74.9 (t), 73.7 (t), 73.5 (t), 6.8.9 (t, C-8), 21.8 (t, C-2), 9.7 (q, C-1). 12. (a) Murali, R.; Ramana, C. V.; Nagarajan, M. J. Chem.

- (a) Murali, R.; Ramana, C. V.; Nagarajan, M. J. Chem. Soc., Chem. Commun. 1995, 2, 217; (b) Ramana, C. V.; Murali, R.; Nagarajan, M. J. Org. Chem. 1997, 62, 7694.
- 13. Cousins, G. S.; Hoberg, J. O. Chem. Soc. Rev. 2000, 29, 165.
- (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323; (b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256; (c) Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness, C. M. Org. React. 1973, 20, 1.
- (a) Skehan, P.; Storeng, P.; Scudeiro, D.; Monks, A.; McMahon, J. H.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1107; (b) Monks, A.; Scudeiro, D.; Skehan, P.; Shoemaker, R. H.; Paull, K. D.; Vistica, D. T.; Hose, C.; Langley, J.; Cronice, P.; Vaigro-Wolf, M.; Gray-Goodrich, M.; Cambell, H.; Mayo, M. R. J. Natl. Cancer Inst. 1991, 83, 757.