Synthese, Struktur und magnetische Eigenschaften der Verbindungen $NaM^{II}Zr_2F_{11}$ ($M^{II} = Ti$, V und Cu) und einem Anhang über $NaPdZr_2F_{11}$

H. Bialowons und B. G. Müller*

Gießen, Institut für Anorganische und Analytische Chemie I der Universität

Bei der Redaktion eingegangen am 16. Dezember 1995.

Inhaltsübersicht. Mit der Synthese von rotem NaTiZr₂F₁₁ in Form von Einkristallen gelang es erstmals, Ti²⁺ in ein komplexes Fluorid einzubauen. Es kristallisiert wie die entsprechende blaugrüne Vanadiumverbindung NaVZr₂F₁₁ isotyp zu AgPdZr₂F₁₁ [1] monoklin, R.G. C2/m - C³_{2h} (Nr. 12) mit a = 918,0 bzw. 911,5 pm, b = 682,6 bzw. 675,7 pm, c = 780,8 bzw. 776,6 pm, β = 116,2° bzw. 116,2° und Z = 2. Farbloses NaCuZr₂F₁₁ hingegen gehört mit der Jahn-Teller-Verzerrung um Cu²⁺ triklin (Raumgruppe $PI - C_1^{\dagger}$ (Nr. 2), a = 552,7 pm, b = 568,2 pm, c = 768,0 pm, α = 111,0°, β = 97,4° und γ = 106,4°) erwartungsgemäß zum NaAgZr₂F₁₁-Typ [1].

Synthesis, Structure, and Magnetic Properties of Compounds $NaM^{II}Zr_2F_{11}$ ($M^{II} = Ti$, V, Cu) and a Notice on $NaPdZr_2F_{11}$

Abstract. By synthesizing NaTiZr₂F₁₁ in form of red single crystals, it was possible to obtain a complex fluoride with Ti²⁺ for the first time. It crystallizes like the analogous greenish blue vanadium compound isotypic to AgPdZr₂F₁₁ [1] monoclinic, spacegroup C2/m - C_{2h}³ (No. 12) with a = 918.0/911.5 pm, b = 682.6/675.7 pm, c = 780.8/776.6 pm, β = 116.2/116.2° and Z = 2.

Colourless NaCuZr₂ F_{11} however crystallizes as a result of the

Jahn-Teller distortion of Cu²⁺ triclinic (space group $P\bar{1} - C_i^1$ (No. 2), a = 552.7 pm, b = 568.2 pm, c = 768.0 pm, α = 111.0°, β = 97.4°, γ = 106.4°) and is – as expected – isotypic to NaAgZr₂F₁₁ [1].

Keywords: Complex fluorides with Ti^{2+} , V^{2+} , Cu^{2+} , Zr^{4+} , structure determination, magnetic properties

1 Einleitung

Die Darstellung von (einkristallinem) NaPdZr₂F₁₁, AgPdZr₂F₁₁ und NaAgZr₂F₁₁ [1] hatte gezeigt, daß dieser Strukturtyp Pd²⁺, insbesondere aber auch thermisch sehr empfindliches Ag²⁺ stabilisiert. Daher wurde versucht, weitere Übergangsmetallkationen M²⁺ – dabei bevorzugt solche, die in Fluoriden selten oder bislang überhaupt nicht in dieser Oxidationsstufe beobachtet wurden – in die vorgegebene "Strukturmatrix" einzubauen. So galt unser Hauptinteresse zunächst Verbindungen mit M^{II} = Sc, Ti, V, Cr und schließlich – in Analogie zu Ag²⁺ – auch Cu.

2 Darstellung der Verbindungen

NaTiZr₂F₁₁. Ein Gemenge von TiF₃ (durch Symproportionierung von Ti-Pulver (99,9% p. a. Aldrich, unter Ar) und TiF₄ (aus Ti-Pulver durch Umsetzung mit F₂/Ar im Monelautoklaven) bei T ≈ 600 °C, t $\approx 7d$ im unter Schutzgas (He) mittels Lichtbogen verschweißten Ti-Rohr) und ZrF₄ (dargestellt durch 5tägige Fluorierung von ZrOCl₂ · 8H₂O p. a., T ≈ 400 °C im mit Stickstoff verdünnten (F₂: N₂ $\approx 1:10$) Fluor-Strom) wurde mit metallischem Natrium (p. a Merck) unter Argon in einer Glove-Box (Fa. Braun) im molaren Verhältnis von 1:2:1 in ein Tantalrohr abgefüllt. Dieses wurde unter Helium im Lichtbogen zugeschweißt, unter Argon in eine Quarzglasampulle eingeschmolzen und innerhalb von 10 Tagen in einem Standofen lang

Kristallsystem	monoklin	Kristallsystem	monoklin
Raumeruppe	$C^{2}/m^{2} C^{3}_{2}$ (Nr 12)	Raumgrunne	$C^{2}/m^{2} C^{3} (Nr 12)$
Gitterkonstanten	C_{2h} (10. 12)	Gitterkonstanten	C_{2h} m, C_{2h} (m. T_{2h}
IPDS-Daten [nm]	a = 920(2) $[a = 918.0(1)]$	AFD2-Daten [nm]	$a = 913.6(2) \cdot 1a =$
Guinier-de Wolff-Daten]	h = 682(1); $[h = 682(1)]$	[Guinier-de Wolff-Daten]	h = 677.3(2); [h =
[pm]	c = 777(1); [c = 780.8(1)]	[oumer de wont buten]	c = 778 4(2); [c =
[bm]	$B = 116.2(1)^{\circ}$		B = 11624(2)
	$\beta = 116, 2(1)^\circ$		$\beta = 116,24(2),$ R = 116,226(8)
Zahl der Formeleinheiten	b = 110,12(1)	Zahl der Formeleinheiten	[p = (10, 220(0)]
pro Elementarzelle	7 = 2	pro Elementarzelle	7 = 2
Kristallform -farbe	unregelmäßig rot	Kristallform, -farbe	unregelmäßig bla
Diffraktometer	STOF-IPDS	Diffraktometer	Siemens-AED2
Linearer Absorptionskoeffi-	5102 11 25	Linearer Absorptionsko-	
zient $\mu(M_0K\alpha, cm^{-1})$	34.7	effizient μ (MoK α , cm ⁻¹)	36.5
Strahlung	MoK α : $\lambda = 71.073 \text{ pm}$	Strahlung	MoK α ; $\lambda = 71.07$
Korrektur der Intensitäten	Polarisations- und Lorentz-	Korrektur der Intensitäten	Polarisations- und
	korrektur		korrektur
Meßbereich	$9,5^\circ \le 2\theta \le 56,3^\circ$	Meßbereich	$5,8^\circ \le 2\theta \le 60^\circ$
Belichtete Platten/Zeit pro Pla	t-	Anzahl der gemessenen	2490, davon 0 syst
te (Min.)	150/3,5	Reflexe	ausgelöscht
Anzahl der gemessenen	1855, davon 82 systematisch	Anzahl der symmetrie-	
Reflexe	ausgelöscht	unabhängigen Reflexe; R _m	674; 2,0
Anzahl der symmetrie-		Lösungsverfahren	Direkte Methoden
unabhängigen Reflexe; R _m	565; 2,67%		renz-Fourier-Synth
Lösungsverfahren	Direkte Methoden, Diffe-	Nicht berücksichtigte	
	renz-Fourier-Synthese	Reflexe I _o (hkl)	keine
Nicht berücksichtigte		Anzahl der freien	
Reflexe I _o (hkl)	keine	Parameter	45
Anzahl der freien		Absorptionskorrektur	empirisch (ψ -scan
Parameter	45	Gütefaktor	$wR(F^2) = 3,8\%$
Absorptionskorrektur	keine		R(F) = 1,7%
Gütefaktor	$wR(F^2) = 10,7\%$	Max. und min. Rest-	
	R(F) = 3,5%	elektronendichte [e ⁻ /Å ³]	0,4/-0,9
Max. und min. Rest-		·	
ktronendichte [e ⁻ /Å ³]	1, 1/-1, 1		

Tabelle 1 Kristallographische Daten von NaTiZr₂F₁₁

Tabelle 2 Kristallographische Daten von NaVZr₂F₁₁

sam auf 730 °C geheizt. Nach ca. 3 Wochen wurde in Schritten von 40°C/d auf Raumtemperatur abgekühlt. Die auf diesem Wege erhaltenen Kristalle waren - abhängig von ihrer Größe transparent gelb bis tiefrot, die Proben selbst enthielten - dies belegen auch Guinieraufnahmen - noch TiF₃ bzw. metallische Anteile (Ti, eventuell auch Zr).

 $NaVZr_2F_{11}$. Die Synthese erfolgte – abgesehen von einer wesentlich höheren Reaktionstemperatur (900 °C) – analog zur NaTiZr₂F₁₁-Darstellung. Als Ausgangsmaterial diente ein Gemenge von VF₃ (aus VCl₃ (96% Fluka) mit HF/H₂ bei ca. 600 °C) mit ZrF4 und elementarem Natrium, welches unter den genannten Bedingungen im Tantalrohr umgesetzt wurde.

NaCuZr₂F₁₁. NaF (p. a. Merck, im Vakuum ausgeheizt), farbloses CuF₂ (aus CuCl₂ \cdot 2H₂O (99% \leq , Merck) im verdünnten F_2 -Strom bei T $\simeq 600$ °C in 5 Tagen hergestellt) und ZrF₄ wurden im molaren Verhältnis von 1:1:2 fein verrieben, unter Schutzgas in ein Goldrohr überführt, dieses zugeschweißt und vier Wochen bei T ≈ 650 °C getempert und so zu farblosem einkristallinem NaCuZr₂F₁₁ umgesetzt.

	$C_{2/m}$; C_{2h}^{3} (Nr. 12)
en	
pm]	a = 913,6(2); [a = 911,52(8)]
olff-Daten]	b = 677,3(2); [b = 675,72(7)]
-	c = 778,4(2); [c = 776,55(7)]
	$\beta = 116,24(2);$
	$[\beta = 116,226(8)]$
eleinheiten	
zelle	Z = 2
farbe	unregelmäßig, blaugrün
	Siemens-AED 2
ptionsko-	
$K\alpha$, cm ⁻¹)	36.5
. ,	MoK α ; $\lambda = 71.073$ pm
Intensitäten	Polarisations- und Lorentz-
	korrektur
	$5.8^\circ \le 2\theta \le 60^\circ$
nessenen	2490, davon 0 systematisch
	ausgelöscht
nmetrie-	
Reflexe; R _m	674; 2,0
en	Direkte Methoden, Diffe-
	renz-Fourier-Synthese
chtigte	
e e	keine
ien	
	45
rrektur	empirisch (ψ -scans)
	$wR(F^2) = 3.8\%$

3 Röntgenographische Untersuchung

Nach Vierkreisdiffraktometerdaten (Siemens AED2) bzw. IPDS-Messungen (Stoe-IPDS) kristallisieren NaTi Zr_2F_{11} und NaVZr₂ F_{11} isotyp zu AgPdZr₂ F_{11} (und NaPdZr₂ F_{11} , s. u.) in der Raumgruppe C2/m – C_{2h}^3 (Nr. 12), NaCuZr₂F₁₁ hingegen triklin (R.G. $P1 - C_i^{\dagger}$ (Nr. 2)) isotyp zur entsprechenden Ag²⁺-Verbindung.

Die durch Einkristalluntersuchungen ermittelten Gitterkonstanten konnten anhand von Guinier-de Wolff-Aufnahmen jeweils bestätigt werden. In den Tabellen 1, 2 und 3 sind die Ergebnisse der röntgenographischen Messungen und die daraus abgeleiteten kristallographischen Daten aufgeführt. (Für die Abstandsrechnungen wurden die aus den Pulveraufnahmen bestimmten Gitterkonstanten verwendet.) Die Strukturverfeinerung erfolgte jeweils mit Hilfe des Programmes SHELXL-93 [2].

Strukturbeschreibung 4

Die beiden eng verwandten Strukturen dieses Formeltyps sind bekannt [1] und wurden inzwischen auch von anderer Seite mit M^{II} = Mn, Fe, Co, Ni, Zn bestätigt [3], eine detaillierte Strukturbeschreibung ist daher nicht notwendig. Es seien daher an dieser Stelle nur die besonderen Merkmale nochmals kurz hervorgehoben.

Kristallsystem	triklin
Raumgruppe	$P\bar{1}$ - C _i ; (Nr. 2)
Gitterkonstanten	
IPDS-Daten [pm]	a = 556(2); [a = 552,7(1)]
[Guinier-de Wolff-Daten]	b = 563(1); [b = 568, 2(1)]
[pm]	c = 771(2); [c = 768,0(1)]
	$\alpha = 111,1(2)^{\circ}; [\alpha = 111,00(1)^{\circ}]$
	$\beta = 98,0(2)^{\circ}; [\beta = 97,41(2)^{\circ}]$
	$\gamma = 106,5(2)^\circ; [\gamma = 106,41(2)^\circ]$
Zahl der Formeleinheiten	
pro Elementarzelle	Z = 1
Kristallform, -farbe	unregelmäßig, farblos
Diffraktometer	STOE-IPDS
Linearer Absorptionsko-	
effizient μ (MoK α , cm ⁻¹)	52,0
Strahlung	MoK α ; $\lambda = 71,073 \text{ pm}$
Korrektur der Intensitäten	Polarisations- und Lorentzkor-
	rektur
Meßbereich	$9,5^\circ \le 2\theta \le 56,3^\circ$
Belichtete Platten/Zeit pro	
Platte (Min.)	160/9
Anzahl der gemessenen	1842, davon 0 systematisch
Reflexe	ausgelöscht
Anzahl der symmetrie-	
unabhängigen Reflexe; R _m	904; 4,6%
Lösungsverfahren	Direkte Methoden, Differenz-
	Fourier-Synthese
Nicht berücksichtigte	
Reflexe I _o (hkl)	keine
Anzahl der freien	
Parameter	74
Absorptionskorrektur	keine
Gütefaktor	$wR(F^2) = 15,0\%$
	R(F) = 5,4%
Max. und min. Restelektro-	
nendichte [e ⁻ /Å ³]	1,2/-1,7

Tabelle 3 Kristallographische Daten von $NaCuZr_2F_{11}$

Primärstruktur

Zr⁴⁺ ist in allen drei Verbindungen pentagonal-bipyramidal von sieben F⁻ umgeben. Die acht F⁻ um Na⁺ sind in Form einer verzerrten hexagonalen Bipyramide angeordnet, wobei vier Abstände d(Na—F) in der erwarteten Größenordnung von 225 pm liegen, die anderen vier mit d(Na—F) \approx 274 pm jedoch wesentlich länger sind (Tabellen 7, 8 und 9). Die Koordinationszahl für Ti²⁺ bzw. V²⁺ beträgt C.N. (Me^{II}) = 6, beide sind jeweils annähernd regulär oktaedrisch umgeben. Cu²⁺ – ein 3 d⁹-System hingegen weist erwartungsgemäß bei gleicher Koordinationszahl eine deutlich verzerrt oktaedrische Umgebung auf; diese lokale Symmetrieerniedrigung (näherungsweise von O_h nach D_{4h}) bedingt auch den Gesamtsymmetrieabbau von C2/m nach P1.

Abb. 1 Schicht der Koordinationspolyeder längs [201]

Tabelle 4 Lageparameter und Koeffizienten der "anisotropen" Temperaturfaktoren (Å²) von NaTiZr₂F₁₁. Standardabweichungenjeweils in der zweiten Zeile

Atom	х	у	Z	\mathbf{U}_{11}	U ₂₂	U ₃₃	U ₂₃	U13	U12
Na	0	0	0	,019	,018	.086	0	.016	0
				,003	,003	,005		,003	
Ti	0	0	,5	,0147	,0135	,0140	0	,0066	0
				,0008	,0008	,0008		,0007	
Zr	,50060	0	,23240	,0142	,0137	,0127	0	,0069	0
	,00007	0	,00008	,0004	,0004	,0004		,0003	
F(1)	0	,5	,5	,064	,031	,021	0	,027	0
				,005	,004	,004		,004	
F(2)	0	,3322	0	,042	,012	,019	0	,019	0
		,0006		,003	,002	,002		,002	
F(3)	,2547	0	,6482	,011	,037	,028	0	,004	0
	,0005		,0007	,002	,003	,003		,002	
F(4)	,2652	0	,1086	,013	,041	,039	0	,006	0
	,0006		,0008	,003	,004	,003		,002	
F(5)	,0101	,2115	,3053	,040	,015	,025	,005	,018	,0005
	,0004	,0005	,0005	,002	,002	,002	,002	,002	,0013

Der "anisotrope" Temperaturfaktor hat die Form: $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + \cdots + 2U_{12}hka^*b^*)]$

Atom	x	у	Z	\mathbf{U}_{11}	U_{22}	U_{33}	U ₂₃	U_{13}	\mathbf{U}_{12}
Na	0	0	0	,0139 ,0008	,0104 ,0008	,093 ,002	0	,0144 .0009	0
v	0	0	,5	,0094 ,0003	,0081	,0066 ,0003	0	,0035 ,0002	0
Zr	,50284 ,00002	0	,23415 ,00003	,0091 ,0002	,0081 ,0002	,0053 ,0001	0	,00341,00008	0
F(1)	0	,5	,5	,070 ,002	,021 ,002	,017	0	,032 ,002	0
F(2)	0	,3303 ,0002	0	,0351 ,0008	,0077	,0126	0	,0143 .0006	0
F(3)	,2526 ,0002	Ő	,6492 ,0003	,0097 ,0007	,0285 ,0009	,0223 ,0008	0	,0030 ,0006	0
F(4)	,2660 ,0002	0	,1087 ,0003	,0105 ,0007	,036 ,002	,037 ,001	0	,0061 ,0007	0
F(5)	,0125 ,0002	,2083 ,0002	,3091 ,0002	,0310 ,0006	,0110 ,0005	,0144 ,0005	,0028 ,0004	,0131 ,0005	,0006 ,0004

Tabelle 5 Lageparameter und Koeffizienten der "anisotropen" Temperaturfaktoren (Å²) von NaVZr₂F₁₁. Standardabweichungen jeweils in der zweiten Zeile

Der "anisotrope" Temperaturfaktor hat die Form: $exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + \cdots + 2U_{12}hka^*b^*)]$

Tabelle 6 Lageparameter und Koeffizienten der "anisotropen" Temperaturfaktoren (Å²) von NaCuZr₂ F_{11} . Standardabweichungen jeweils in der zweiten Zeile

Atom	X	У	Z	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Na	0	0	0	,020	,042	,072	,043	,007	,009
				,002	,003	,005	,003	,003	,002
Cu	0	,5	,5	,0234	,0255	,0224	,0116	,0069	,0097
				,0007	,0007	,0009	,0007	,0005	,0005
Zr	,4894	,2682	,76281	,0178	,0168	,0158	,0071	,0048	,0062
	,0001	,0002	,00009	,0005	,0005	,0006	,0004	,0003	,0003
F(1)	,5	0	,5	,060	,027	,041	-,0008	,032	-,0005
. ,				,005	,004	,005	,0031	,004	,0030
F(2)	,2389	,405	,6480	,030	,037	,031	,021	,004	,018
.,	,0008	,001	,0007	,003	,003	,004	,003	,002	,003
F(3)	,2269	,5139	,3288	,029	,029	,026	,013	,016	,008
.,	,0008	,0009	,0007	,002	,003	,003	,002	,002	,002
F(4)	,1874	,9272	,6994	,028	,022	,034	,009	,009	-,0006
	,0009	,0009	,0008	,003	,002	,003	,002	,002	,0016
F(5)	,740	,165	,8892	,035	,050	,055	,034	,006	,024
.,	,001	,002	,0009	,003	,003	,004	,003	,003	,003
F(6)	,3352	,3343	,0110	,028	,019	,024	,003	,012	,0005
. /	,0009	,0009	,0007	,002	,002	,003	,002	,002	,0015

Der "anisotrope" Temperaturfaktor hat die Form: $exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + \cdots + 2U_{12}hka^*b^*)]$

Sekundärstruktur

Die drei verschiedenen Koordinationspolyeder sind zunächst ausschließlich über äquatoriale F^- zu Schichten (Abb. 1) verknüpft, welche senkrecht zu [201] in der Stapelfolge ABCDA... über transständige F^- ("Kopf und Fuß" der betreffenden Polyeder) verbrückt werden.

Im übrigen spiegelt der Verlauf der Gitterkonstanten den Gang der Ionenradien [4]) M^{2+} in klarer Weise wieder (Abb. 2, Tabelle 10). Schließlich belegt die gute Übereinstimmung der MAPLE-Werte [5/6] (vgl. Tabelle 11) der quaternären mit der Summe der binären Verbindungen die Güte der Strukturbestimmungen. Für MAPLE (TiF₂) wurde MAPLE (VF₂) eingesetzt.

5 Magnetische Eigenschaften

Die paramagnetischen Kationen M^{2+} liegen im NaMZr₂F₁₁ isoliert vor, eine kollektive Wechselwirkung (z. B. Antiferromagnetismus) ist also nicht zu erwarten. Die magnetischen Momente sollten daher nahe den "spin-only" Werten (Ti²⁺ \simeq 2,89, V²⁺ \simeq 3,87, Cu²⁺ \simeq

			-					
Atom	F(1)	F(2)	F(3)	F(4)	F(5)	C. N.	ECoN ^a)	MEFIR ^a)
Na		2/1 226.8(5)		2/1 219.6(5)	4/1 275.3(4)	8	5,3	94,6
Ti			2/1 210,2(4)		4/1 212,8(3)	6	6,0	78,5
Zr	1/1 209,2(3)	2/1 214,4(3)	1/1 201,6(4)	1/1 1 93,9(5)	2/1 204,1(4)	7	7,0	71,0
C. N.	1	2	2	2	3			
ECoN ^b) MEFIR ^b)	2,0 137,6	3,0 138,8	2,0 131,7	2,0 123,5	2,3 135,9			

Tabelle 7 Motive der gegenseitigen Zuordnung [9] und Koordinationszahlen C. N. von NaTi Zr_2F_{11} [Abstände in pm]

^a) nur F⁻ als Liganden; ^b) nur Kationen als Liganden

Aus den nach den ECoN-Konzept [10] gewichteten Abstandsmitteln folgen mit $r(F^-) = 133$ pm als Startwerte: $r(Na^+) = 94,4$ pm; $r(Ti^{2+}) = 78,5$ pm; $r(Zr^{4+}) = 71,0$.

Tabelle 8 Motive der gegenseitigen Zuordnung [9] und Koordinationszahlen C.N. von NaV Zr_2F_{11} [Abstände in pm]

Atom	F(1)	F(2)	F(3)	F(4)	F(5)	C. N.	ECoN ^a)	MEFIR ^a)
Na		2/1 223.2(3)		2/1 218.7(2)	4/1 274.1(3)	8	5,2	92,2
V			2/1 206,8(2)		4/1 208.4(2)	6	6,0	74,5
Zr	1/1 207,6(3)	2/1 214,0(2)	1/1 200,3(2)	1/1 193,7(2)	2/1 204,6(2)	7	7,0	70,6
C. N.	1	2	2	2	3			
ECoN ^b)	2,0	2,9	2,0	2,0	2,3			
MEFIR ^b)	137,0	139,2	130,7	125,2	136,1			

^a) nur F⁻ als Liganden; ^b) nur Kationen als Liganden

Aus den nach den ECoN-Konzept [10] gewichteten Abstandsmitteln folgen mit $r(F^-) = 133$ pm als Startwerte: $r(Na^+) = 92,1$ pm; $r(V^{2+}) = 74,5$ pm; $r(Zr^{4+}) = 70,6$.

Tabelle 9	Motive der	gegenseitigen .	Zuordnung [[9] und	Koordinationszahler	C.N.	von NaCuZr ₂ F ₁	[Abstände in pm]
-----------	------------	-----------------	-------------	---------	---------------------	------	--	------------------

Atom	F(1)	F(2)	F(3)	F(4)	F(5)	F(6)	C.N.	ECoN ª)	MEFIR *)
Na			$\frac{2}{1}$	2/1	2/1	2/1	8	5,4	90,1
Cu		2/1 194,5(4)	2/1 193.7(4)	2/1 2/9,5(6)	210,5(5)	221,5(5)	6	5,7	65,0
Zr	1/1 206,8(3)	1/1 202,1(4)	1/1 207,3(4)	1/1 201,6(5)	1/1 193,0(5)	1/1 213,9(6) 1/1 214 2(5)	7	6,9	70,4
C. N. ECoN ^b) MEFIR ^b)	1 2,0 136,3	2 2,0 130,6	3 2,0 133,0	3 2,4 143,0	2 2,0 125,7	3 2,9 139,4			

a) nur F⁻ als Liganden; ^b) nur Kationen als Liganden

Aus den nach den ECoN-Konzept [10] gewichteten Abstandsmitteln folgen mit $r(F^-) = 133$ pm als Startwerte: $r(Na^+) = 90,1$ pm; $r(Cu^{2+}) = 65,0$ pm; $r(Zr^{4+}) = 70,4$.

Abb. 2 Korrelation von Ordnungszahl und Gitterkonstanten

Tabelle 10 Korrelation der Gitterkonstanten mit den Ionenradien [4] der M^{2+} (die Werte für die Kupferverbindung wurden durch Transformation der triklinen Zelle ermittelt)

M^{2+} in NaMZr ₂ F ₁₁	Radius M ¹¹ [pm]	a [pm]	b [pm]	c [pm]	β [°]
Ti V Mn Fe Co Ni	86 79 82 77 73,5 70 73	918 911,5 913,1 906,9 903,7 900,2 895,9	682,6 675,7 677,5 673,6 670 667,5 669,2	781 777 777 776 773 771 777	116,20 116,22 116,22 116,22 116,26 116,24
Zn	74,5	902,5	669,5	772	116,18

Tabelle 11MAPLE-Werte [5/6]

	MAPLE (binär) [kcal/mol]	MAPLE (quaternär) [kcal/mol]	Abweichung
$\begin{array}{l} NaTiZr_{2}F_{11}\\ NaVZr_{2}F_{11}\\ NaCuZr_{2}F_{11} \end{array}$	5676	5633	0,76
	5676	5658	0,32
	5702	5686	0,28

1,73 B.M.) liegen und das Curie-Gesetz weitgehend befolgt werden (vgl. Tabelle 12).

Die Ergebnisse der magnetischen Untersuchungen an NaCuZr₂ F_{11} sowie NaVZr₂ F_{11} stimmen in der Tat gut mit den berechneten Werten überein (vgl. Abb. 3, Tabelle 13).

Für NaTiZr₂F₁₁ findet man im untersuchten Temperaturbereich ebenfalls Curie-Verhalten, der gemessene Wert liegt mit $\mu_{eff.}$ (298 K) = 2,59 allerdings unter dem erwarteten Wert, was auf Verunreinigungen durch TiF₃ und u. U. auch Ti, Zr (vgl. oben) zurückzuführen sein dürfte.

Abb. 3 Reziproke Suszeptibilitäten in Abhängigkeit von der Temperatur

 Tabelle 12
 Ergebnisse der magnetischen Messungen (ermittelt nach dem Curie-Gesetz)

Tempe- ratur [K]	$\mu_{\rm eff.}$ NaTiZr ₂ F ₁₁	Fehler	$\mu_{\rm eff.}$ NaVZr ₂ F ₁₁	Fehler	$\mu_{\rm eff.}$ NaCuZr ₂ F ₁₁	Fehler
297,5	2,59	0,03				
296	,				1,98	0,02
295,5			3,75	0,02		
251,3	2,54	0,02	3,77	0,03	1 ,96	0,02
227,2	2,49	0,02	3,76	0,03	1,95	0,02
201,1	2,46	0,03	3,77	0,03	1,95	0,01
174,3	2,41	0,02	3,77	0,02	1,95	0,01
150,4	2,35	0,02	3,77	0,02	1,94	0,01
126,2	2,31	0,02	3,80	0,02	1,94	0,00
100,4	2,25	0,01	3,84	0,01	1,95	0,01
81,4					1,86	0,01
76,3	2,08	0,01				
75,8			3,72	0,02		

 Tabelle 13
 Reziproke Suszeptibilität in Abhängigkeit von der Temperatur

Temperatur [K]	$1/\chi$ [mol/cm ³] NaTiZr ₂ F ₁₁	1/χ [mol/cm ³] NaVZr ₂ F ₁₁	$1/\chi$ [mol/cm ³] NaCuZr ₂ F ₁₁
297.5	355,39		
296.0			605,71
295,5		168,13	· · · · , ·
251.3	312,63	141,78	520,71
227,2	292,44	128,26	478,15
201,1	266,28	113,23	423,71
174,3	240,47	98,30	367,72
150,4	217,10	84,52	320,68
126,3	189,74	70,05	268,49
100,4	158,60	54,40	210,46
81,4			187,86
76,3	141,02		
75,8		43,76	

6 Schlußbemerkung

Die bisherigen Ergebnisse zeigen, daß der vorliegende Strukturtyp eine Reihe sonst schwierig zugänglicher Kat-

Tabelle 14 Kristallographische Daten von $NaPdZr_2F_{11}$ (durchTransformation des triklinen Datensatzes)

Kristallsystem	monoklin
Raumgruppe	$C2/m; C_{2h}^3$ (Nr. 12)
Gitterkonstanten	
AED2-Daten [pm]	a = 922,0
	b = 685,8
	c = 782, 1
	$\beta = 116,0^{\circ}$
Zahl der Formeleinheiten pro	
Elementarzelle	Z = 2
Gütefaktor	$wR(F^2) = 5,7\%$
	R(F) = 2,3%

ionen wie einerseits Ag^{2+} , andererseits aber auch Ti^{2+} oder V^{2+} zu stabilisieren vermag. Versuche, die entsprechenden Verbindungen mit Sc^{2+} oder Cr^{2+} darzustellen, lieferten bislang keine eindeutigen Resultate, möglicherweise wird in diesen Fällen (insbesondere mit Scandium) eher Zr reduziert. Zur Zeit sind Versuche im Gange, die entsprechenden Hafniumverbindungen herzustellen.

NaPdZr₂F₁₁

Abgeleitet aus Vierkreisdiffraktometerdaten wurde NaPdZr₂F₁₁ ursprünglich [1] isotyp zu NaAgZr₂F₁₁ in der Raumgruppe P1 beschrieben. Die Strukturrechnungen (SHELX-76 [7]) führten zu befriedigenden bzw. durchaus plausiblen Ergebnissen (keine Korrelationen, R = 3,1%, plausible Temperaturkoeffizienten, interatomare Abstände etc., vgl. auch hierzu [1]); daher wurde die oben genannte Aufstellung beibehalten.

Tabelle 15 Lageparameter und Koeffizienten der "anisotropen" Temperaturfaktoren (Å²) von NaPdZr₂F₁₁. Standardabweichungen jeweils in der zweiten Zeile

Atom	x	у	Z	\mathbf{U}_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Na	0	0	0	,012	,013	,075	0	,012	0
				,002	,002	,003		,0032	
Pd 0	0	0	,5	,0081	,0083	,0076	0	,0030	0
				,0002	,0002	,0002		,0002	
Zr ,	,49928	0	,23120	,0072	,0089	,0054	0	,0026	0
	,00003	0	,00004	,0002	,0002	,0002		,0002	
F(1)	0	,5	,5	,049	,024	,012	0	,020	0
				,003	,002	,002		,002	
F(2)	0	,3325	0	,038	,007	,013	0	,015	0
		,0004		,002	,001	,001		,001	
F(3)	,2595	0	,6504	,009	,035	,028	0	,003	0
	,0003		,0004	,002	,002	,002		,001	
F(4)	,2647	0	,1092	,009	,039	,036	0	,005	0
	,0003		,0005	,001	,002	,002		,002	
F(5)	,0086	,2117	,3010	,0360	,0124	,0184	,0038	,0001	,0210
	,0003	,0003	,0003	,0009	,0008	,0007	,0007	,0007	,0004

Der "anisotrope" Temperaturfaktor hat die Form: exp $\left[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + \cdots + 2U_{12}hka^*b^*)\right]$

Tabelle 16Motive der gegenseitigen Zuordnung [9] und Koordinationszahlen C. N. von NaPdZr2F11[Abstände in pm]

Atom	F(1)	F(2)	F(3)	F(4)	F(5)	C. N.	ECoN ^a)	MEFIR ^a)
Na		2/1 228.0(3)		2/1 220.4(3)	4/1 273.7(2)	8	5,7	96,8
Pd		,(,)	2/1 215,4(2)	,(c)	4/1 215,5(2)	6	6,0	78 , 9
Zr	1/1 209,9(1)	2/1 214,5(1)	1/1 200,0(2)	1/1 1 94,4(3)	2/1 204,3(2)	7	7,0	72,2
C. N.	1	2	2	2	3			
ECoN ^b) MEFIR ^b)	2,0 137,6	3,0 139,1	2,0 131,6	2,0 123,8	2,3 136,8			

a) nur F⁻ als Liganden; b) nur Kationen als Liganden

Aus den nach den ECoN-Konzept [10] gewichteten Abstandsmitteln folgen mit $r(F^-) = 133$ pm als Startwerte: $r(Na^+) = 96,4$ pm; $r(Pd^{2+}) = 78,9$ pm; $r(Zr^{4+}) = 72,2$.

Nach [8] kann NaPdZr₂ F_{11} jedoch sinnvollerweise analog zu den übrigen Verbindungen ebenfalls in der Raumgruppe C2/m beschrieben werden, die entsprechenden Daten sind in den Tabellen 14, 15 und 16 zusammengestellt.

Naturgemäß bleibt der prinzipielle Aufbau der Struktur erhalten, auch Strukturdetails selbst wie etwa interatomare Abstände ändern sich dabei kaum (z. B. $d(Pd-F) = 2 \times 215,3, 2 \times 215,5, 2 \times 215,7 \text{ pm } (P\overline{1}) \text{ bzw.}$ $d(Pd-F) = 2 \times 215,4, 4 \times 215,5 \text{ pm } (C2/m)).$

Wir danken der DFG, dem Fond der Chemie und *Prof. Dr. Dr. hc. mult. Hoppe* für Unterstützung mit Sach- und Personalmitteln. Herrn *F. Gingl* danken wir für den Hinweis, daß NaPdZr₂F₁₁ auch monoklin beschrieben werden kann. Unser Dank gilt ferner den Herren *Dr. M. Serafin* und *G. Koch* für die Datensammlung am IPDS sowie am AED-Vierkreisdiffraktometer.

Literatur

- [1] B. G. Müller, Z. anorg. allg. Chem. 553 (1987) 205
- [2] G. M. Sheldrick, SHELXL-93 Program for Crystal-Structure Refinement, Göttingen 1993
- [3] M. H. Kettani, Acta. Crystallogr. C51 (1995) 2207
- [4] R. D. Shannon, Acta. Crystallogr. A32 (1976) 75
- [5] R. Hoppe, Angew. Chem. 78 (1966) 52
- [6] R. Hoppe, Crystal Structure and Chemical Bonding in Inorganic Chemistry, Amsterdam 1975, S. 127ff
- [7] G. M. Sheldrick, SHELX-76, Program for Crystal-Structure Determination, U.K., 1976
- [8] F. Gingl, pers. Mitteilung
- [9] R. Hoppe, Angew. Chem. 92 (1980) 106
- [10] R. Hoppe, Angew. Chem. Int. Ed. 9 (1970) 25

Anschr. d. Verf .:

Prof. Dr. Bernd G. Müller, Dipl.-Chem. Horst Bialowons Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität Heinrich-Buff-Ring 58 D-35392 Gießen