SYNTHESIS OF OPTICALLY ACTIVE VERRUCARINIC ACID DERIVATIVES

Barry M. Trost and Patrick G. McDougal McElvain Laboratories of Organic Chemistry, Department of Chemistry University of Wisconsin, 1101 University Avenue, Madison, WI 53706

SUMMARY: Two syntheses of verrucarinic acid highlighting an oxidative cleavage of hydroxysulfides and use of mandelate esters for chromatographic resolution are reported.

Verrucarin A (1) is a member of the biologically active macrocyclic tricothecanes.¹ This class of mycotoxins exhibits outstanding <u>in vitro</u> cytotoxicity²a and has been shown to be potent inhibitors of protein synthesis.²b Because of our interest in the total synthesis of 1 from verrucarol (3)³, verrucarinic acid (2), and an <u>E,Z</u>-muconic acid, recent reports on the synthesis of verrucarinic acid (2) and its derivatives⁴,⁵ prompt us to report our work in this area at this time.

The first approach highlights the utility of the lead tetraacetate (LTA) cleavage of cyclic hydroxysulfides which generate a chemodifferentiated dialdehyde.⁶ Applying such a reaction for the cleavage of **8** generates a flexible intermediate for the elaboration of a number of verrucarinic acid derivatives. Scheme I outlines this approach starting from the well-described <u>cis</u>-diol **4**.⁷ The corresponding monobenzoate **5**, mp 54.5-60, [PhCOC1 (1.0x), pyridine (1.1x), DME, 00, 64%] was reacted with lithium dimethylcuprate (4x, ether, -200). After standard workup the crude residue was first treated with MCPBA (CH₂Cl₂, 00) and then with benzoyl chloride (NaH, ether) to yield after chromatography the epoxide **6** (53%) along with its isomer **7** (26%, both yields from **5**).⁸ Opening of the epoxide occurred completely regioselectively with lithium thiophenoxide⁹ to give, after a protection-deprotection sequence [(1)1x t-C4H9(CH3)2SiC1(TBDMS-C1), imidazole, DMF (2) Dibal·H, ether, -780, 4h], the desired hydroxysulfide **8** (68% from **6**). Cleavage of **8** under our improved conditions⁶b [LTA (2x), HOAc (3x), pyr (4x), benzene, 800C, 10 min] proceeded smoothly to yield the aldehyde **9** in 83%.

In order to confirm our regio- and stereochemical assignments, the cleavage product was converted to t-butyldimethylsilyl verucarinolactone 11. This was achieved by first treating 9 with Dibal.H (2.2x, toluene, -700, 14h) which both reduced the aldehyde and unmasked the acetoxysulfide¹⁰ to yield the lactol 10 (73%) as a mixture of anomers. Simple oxidation (Cr03.2pyr, CH2Cl2) gave the desired lactone (91%) whose ¹H NMR was almost identical to that

5497

SCHEME II. Asymmetric Synthesis of Verrucarinic Acid

reported for vertucarinolactone,⁵ except for the presence of the silyl group. Most importantly a coupling of 9.5 Hz between H_a and H_b was recorded indicative of a diaxial orientation for the two protons. Although the resolution of various derivatives of the diol 4 was known¹¹, another route was developed for the synthesis of optically active 2.

The asymmetric synthesis, shown in Scheme II, is based on the resolution of the propargylic alcohol 13 <u>via</u> its (S)-O-methylmandelate ester 14.12,13 The requisite alcohol was prepared (63%) from the crotyl epoxide 12 by treatment with diethylaluminum trimethylsilylacetylide¹⁴ (1.5x, toluene rt, 2h) followed by removal of the TMS group with sodium methoxide (1.2x, MeOH, rt, 1.5h). When the alcohol was acylated with (S)-O-methylmandelic acid ($[\alpha]_D^{23} = 1480$ (c=1.17, EtOH)) in THF containing DCC (1.5x) along with one equivalent of N-hydroxybenzotriazole (HBT) and pyridine the esters 14a and 14b were formed in 93% without any detectable epimerization of the mandelate piece.¹⁵ Separation of the esters was easily achieved by HPLC¹⁷ and the absolute configuration assigned by both ¹H NMR^{13a},¹⁸ and chemical correlation.¹⁹ Using the model we presented earlier,^{13a} inspection of the extended Newman projections A and B allows assignment of the less polar isomer to the absolute configuration in A and the more polar one to that depicted in B.

The least polar ester $\left(\left[\alpha\right]_{D}^{23}\right] = +5.83$ (c=1.47, acetone)) was partially hydrogenated to an olefin [H2 (1.02X), Lindlar cat., 96%], hydroborated with disiamylborane in THF (7h, RT, oxidatively worked up with MCPBA20 at 00 to rt, 1h) and silylated (TBDMS-C1, CH2C12, DMAP) to yield 15 in 89%. The mandelate was then exchanged for a silyl protecting group by hydrolysis with sodium methoxide (1.0x, MeOH, rt, 3h) and silylation [TBDMS-C1, DMF, imidazole (2x), 370] to give 16 (85%, $\left[\alpha\right]_{D}^{23} = -13.090$ (c=1.10, acetone)). The final step needed was to convert 16 to an active acylating agent necessary for its inclusion into verrucarin A. Demethylation of the ester with excess LiSCH3²¹ (HMPA, rt, 48h) also effected desilylation at the secondary position, so that the crude mixture was resilylated [TBDMS-C1 (7x), DMF, imidazole (14x)] to yield the trisilyl derivative 17 (88%). Attempts to convert 17 to an acid chloride²² failed; however, an equally attractive acylating agent 18 could be synthesized by treating 17 with DCC (1.5x), HBT (2.0x), and pyridine (1.0x). Standard aqueous workup (hexane as co-solvent) followed by chromatography (silica gel) gave the acyl hydroxybenzotriazole 18 (54%) as a colorless oil. Similar species²³ have been utilized as acylating agents and in our hands 18 has esterified various alcohols, with the aid of DMAP.

In conclusion, two routes²⁴ have been developed for the synthesis of the verrucarinate moiety of verrucarin A in racemic and optically active form. We are presently utilizing compounds synthesized by this latter route for the reconstruction of verrucarin A from verrucarol.

ACKNOWLEDGMENT. We wish to thank the National Institutes of Health, National Cancer Institute, for their generous support of our program. REFERENCES.

- Reviews: Tamm, Ch. <u>Fortsch. Chem. Org. Naturst.</u> 1974, <u>31</u>, 63. Bamberg, J.R.; Strong, F.M. in "Microbial Toxins"; Kadis, S.; Ed. ; Academic Press: New York, 1973, Vol. 3, pp 207-292. Doyle, T.W.; Bradner, W.T. in "Anticancer Agents Based on Natural Product Models"; Cassidy, G.M.; Duros, J.; Eds.; Academic Press: New York, 1980, Chapter 2.
- a) Harri, C.; Loeffler, W.; Sigg, H.P.; Stahelin, Ch.; Tamm, Ch.; Wresinger, D. <u>Helv.</u> <u>Chim. Acta</u>, 1962, 45, 839. b) Ueno, Y. <u>Pure Appl. Chem</u>. 1977, 49, 1737.
- For our recent synthesis of verrucarol see: a) Trost, B.M.; McDougal, P.G. J. Am. Chem. Soc. in press. b) McDougal, P.G.; Ph.D. Thesis, University of Wisconsin, Madison, 1982.
- 4. a) Still, W.C.; Ohmizu, H. J. Org. Chem. 1981, <u>46</u>, 5242. b) Roush, W.R.; Blizzard, T.A.; Basha, F.Z. <u>Tetrahedron Lett</u>. <u>1982, 23</u>, 2331. c) Also see: ref 13a. d) Tomioka, k.; Sato, F.; Koga, K. <u>Heterocycles</u>, 1982, <u>17</u>, 311.
- Gutzwiller, J.; Tamm, Ch. <u>Helv. Chim. Acta</u>, 1965, <u>48</u>, 157. Mohr, P.; Tori, M.; Grossen, P.; Herold, P.; Tamm, Ch. <u>ibid</u>., 1982, <u>65</u>, 1412.
- a) Trost, B.M.; Hiroi, K. J. Am. Chem. Soc. 1975, 97, 6911.
 b) Trost, B.M.; Ochiai, M.; McDougal, P.G. J. Am. Chem. Soc. 1978, 100, 7103.
- 7. We chose to synthesize the diol <u>via</u> the photooxygenation of cyclopentadiene. See: Schenck, G.O.; Dunlap, D.E. <u>Angew. Chem</u>. **1956**, <u>63</u>, 248.
- 8. The mixture arises at the cuprate step where a 2:1 ratio of $S_N 2$ vs $S_N 2$ ' attack was observed. When the free hydroxyl group was silylated even greater amounts of $S_N 2$ ' were obtained.
- 9. Interestingly the lithium salt is an absolute necessity to achieve a clean reaction.
- 10. This presumably occurs by reduction of the acetate to the aluminum acetal, which falls apart to an aldehyde upon workup.
- a) Terashima, S.; Yamada, S.; Nara, M. <u>Tetrahedron Lett</u>. 1977, 1001. b) Miura, S.; Kurozumi, S.; Toru, T.; Tanaka, T.; Kobayashi, M.; Matsubara, S. <u>Tetrahedron</u>, 1976, <u>32</u>, 1893.
- For a leading reference on the resolution of enantiomers via chromatography, see Pirkle, W.H.; Adams, P.E. <u>J. Org. Chem.</u> 1980, <u>45</u>, 4111.
- For examples of the use of mandelate derivatives see: a) Trost, B.M.; in "Asymmetric Reactions and Processes in Chemistry", Eliel, E.L.; Otsuka, S.; Eds.; Advances in Chemistry Series 168; American Chemical Society: Washington, DC 1982, pp 3-20. b) Trost, B.M.; Curran, D.P. <u>Tetrahedron Lett</u>. 1981, <u>22</u>, 4929. c) Corey, E.J.; Hopkins, P.B.; Kim, S.; Yoo, S.E.; Nambiar, K.P.; Fack, J.R. <u>J. Am. Chem. Soc</u>. 1979, <u>101</u>, 7131.
- 14. Chavdarian, C.G.; Wood, S.L.; Clark, R.D.; Heathcock, C.H. Tetrahedron Lett. 1976, 1769.
- 15. Esterification with DCC and DMAP (ref 16) proceeded with substantial ($^{\circ}30\%$) epimerization of the mandelate as demonstrated by a chiral shift study.
- 16. Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 4475.
- 17. 6.5 g of the mixture could be separated by HPLC (Waters Prep 500) in two injections onto two columns (one recycle).
- 18. Dale, J.A.; Mosher, H.S. J. Am. Chem. Soc. 1973, 95, 512.
- 19. The undesired antipode 14b was converted to the benzhydrylamide of verrucarinic acid and found to rotate light in the opposite sense than that from the natural isomer (ref. 5).
- For oxidation of alkylboranes with peracid, see Johnson, J.R.; Van Campen, M.G. Jr. <u>J. Am.</u> <u>Chem. Soc.</u> 1938, <u>60</u>, 121. Normal basic H₂O₂ oxidation gave substantial amounts of lactone.
- 21. Kelly, T.R.; Dali, H.M.; Tsang, W.G. <u>Tetrahedron Lett</u>. 1977, 3859.
- 22. Wissner, A.; Grudzinskas, C.V. J. Org. Chem. 1978, 43, 3972.
- 23. Itoh, M.; Hagiwara, D.; Notani, J. Synthesis, 1975, 456.
- 24. All new compounds have been fully characterized (IR, NMR, MS). Also, satisfactory elemental analysis was obtained by either high resolution MS or combustion analysis.

(Received in USA 28 September 1982)