LANTHANIDES AS LEWIS-ACID CATALYSTS IN ALDOL ADDITION, CYANOHYDRIN-FORMING AND OXIRANE RING OPENING REACTIONS

Angelos E.VOUGIOUKAS and Henri B.KAGAN*

Laboratoire de Synthèse Asymétrique, associé au CNRS, Bât. 420 Centre d'Orsay, Université Paris-Sud, 91405 Orsay Cedex France

<u>Summary</u>: Lanthanide trichlorides (Ln = La, Ce, Sm) and $Eu(fod)_3$ catalyze the aldol addition of silyl enol ethers to aldehydes, the addition of trimethylsilyl cyanide to aldehydes and ketones as well as the synthesis of B-cyanosilyl ethers.

The formation of C-C bonds promoted by Lewis acids is of prime importance in organic synthesis, especially when it proceeds smoothly under mild conditions¹. Typical processes mediated by Lewis acids (such as BF₃,SnCl₄,TiCl₄, etc., either in stoichiometric or, less commonly, in catalytic amounts) are the cross-aldol addition² of aldehydes to silyl enol ethers³ (eq [1]), the cyanohydrin formation⁴ (eq [2]) and the oxirane ring opening⁵ (eq [3]). Lanthanide complexes have been used as Lewis-acid catalysts in some organic transformations⁶, such as the Diels-Alder⁷ and the Friedel-Crafts⁸ reactions. Anhydrous lanthanide trichlorides, which are considered as hard acids⁶, are now reported to be efficient, low-cost catalysts for the processes mentioned above under mild conditions.

$$R-CHO + \frac{Me}{Me} C = C < OMe \qquad \frac{LnCl_3 \text{ cat.}}{CH_2Cl_2 - r.t.} > R-CH-C-CO_2Me \qquad [1]$$

$$R = C_6H_5 \quad \text{or } n-C_5H_{11} : Ln = La, Ce, Sm : X = Me_3Si \text{ or } H$$

$$R_1R_2CO + Me_3SiCN \qquad \frac{LnCl_3 \text{ cat.}}{CH_2Cl_2 - r.t.} > R_1 - C - CN \qquad [2]$$

-

$$R_{1} \xrightarrow{C} C \xrightarrow{C} R_{4} + Me_{3}SiCN \xrightarrow{LnCl_{3} cat.} Me_{3}SiO \xrightarrow{C-C} CN \xrightarrow{CN} CH_{2}Cl_{2} - r.t. R_{1} \xrightarrow{R_{2}} R_{3}$$
[3]

 R_{1-4} = H,alkyl or aryl ; Ln = La,Ce,Sm ; X = Me_3Si or H

Table (I) : Ln(III) - Catalyzed Aldol Addition of Trimethylsilyl Ketene Acetal to Aldehydes
 (eq. [1])

Entry	R	Catalyst (m	ol equiv.)	Reaction Conditions	Isoloted yield O-Silylated Aldol	(%) Aldol
1	C ₆ H ₅	SmCl ₃	(0.1)	r.t./ 12 h	66	28
2	C ₆ H ₅	CeCl ₃	(0.1)	r.t./ 24 h	61	27
3	C ₆ H ₅	LaCl 3	(0.1)	r.t./ 4 days	21	42
4	С _б Н _Б	LaCl ₃	(0.05)	r.t./ 4 days	23	41
5	C ₆ H ₅	LaCl ₃	(0.1)	∆ / 18 h	17	51
6	C ₆ H ₅	Eu(fod) ₃ 0	(0.05)	r.t./ 8 h	48	19
7	n-C ₅ H ₁₁	SmCl ₃	(0.1)	r.t./ 36 h	47	16
8	n-C ₅ H ₁₁	CeCl ₃	(0.1)	r.t./ 1 week	11	12
9	n-C ₅ H ₁₁	LaCl ₃	(0.1)	r.t./ 1 week	No reac	tion ^b
10	n-C ₅ H ₁₁	Eu(fod) ₃ °	(0.1)	r.t./ 36 h	16	45

(a) : Homogeneous solution ; $Eu(fod)_3 = tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)europium (III). (b) : Product traces on TLC plate not observed.$

A typical preparative procedure (equations [1] and [2]) involves the addition of equimolar amounts of reagents (eg : benzaldehyde and silylenol ether, 8 mmol each) to a suspension of $LnCl_3$ catalyst (0.05 or 0.10 mol equiv.) in CH_2Cl_2 (2 ml) under argon at ambient temperature. After the given time⁹ (Table (I)) the solvent was evaporated <u>in vacuo</u> and the non-hydrolyzed residue was extracted with hexane/ethyl acetate (4:1) and then chromatographed (flash/SiO₂, hex./EtOAc = 4:1). The isolated <u>Table (II)</u> : Ln(III)-Catalyzed Addition of Trimethylsilyl Cyanide to Aldehydes and Ketones (eq.[2])

ţ

Entry	(R1R2C0	Catalyst (mol equiv.)		Rxn. Time (h)	Isolated vield (%)	
		,	(0-Si prod.	0-H prod.
1	PhCHO	SmCl ₃	(0.05)	6	> 98	a
2	PhCHO	CeCl ₃	(0.05)	10	> 98	a
3	PhCHO	LaCl 3	(0.05)	18	92	a
4	PhCHO	Eu(fod) ₃ b	(0.05)	4	26	62
5	n-C ₅ H ₁₁	SmCl ₃	(0.1)	18	14	61
6	n-C ₅ H ₁₁	LaCl 3	(0.1)	18	34	39
7	n-C ₅ H ₁₁	Eu(fod) ₃ b	(0.1)	8	31	47
8	(CH ₃) ₂ CHCH ₂ CHO	SmCl ₃	(0.1)	18	33	38
9	(CH ₃) ₂ CHCH ₂ CHO	LaCl 3	(0.1)	48	11	37
10	(CH ₃) ₂ CHCHO	SmCl ₃	(0.1)	12	83	a
11	(CH ₃) ₂ CHCHO	LaCl ₃	(0.1)	72	15	17
12	PhCOCH 3	SmCl ₃	(0.1)	18	50	۵
13	PhCOCH ₃	LaCl 3	(0.1)	48	35	a
14	PhCOCH ₃	Eu(fod) ₃ b	(0.1)	18	25	29
15	CH ₃ CO(n-C ₄ H ₉)	SmCl ₃	(0.1)	18	14	31
16	CH ₃ CO(n-C ₄ H ₉)	LaCl ₃	(0.1)	48	35	a

(a) : Only traces on TLC plate observed ; (b) : Homogeneous solution.

1

yields of both the O-silylated and desilylated products are summarized in Tables (I) and (II). The identity of the products was confirmed by spectral data comparison^{1,2,10}. Complete desilylation using $HF/H_2O/THF$ is possible^{1,2}. Although kinetic studies were not undertaken yet, it is evident that the comparative catalyst efficiency is in the order Sm > Ce > La when the reaction mixture is in the form of a suspension in CH_2Cl_2 . Lower amounts of catalyst (eg : 0.01-0.03 mol equiv.) afford

products (eqs. [1] and [2]) with considerably lower yields and after extended reaction times. $Eu(fod)_3$ plays the role of a soluble, efficient but more expensive catalyst.

Preliminary studies show that lanthanide chlorides are also efficient catalysts in oxirane ring-opening⁵. For example, propylene oxide reacts with Me₃SiCN (8 mmol each - eq. [3]) to yield 3-methyl-3-[(trimethylsilyl)oxy]propionitrile¹¹ in the presence of 0.1 mol equiv. LnCl₃ in CH₂Cl₂ (2 ml) at room temperature (Ln = Sm : 5 h, 88%; Ln = Ce : 8 h, 85%; Ln = La : 18 h, 77%).

Our research efforts continue in the field of the application of lanthanides as catalysts in organic synthesis including enantioselective C-C bond formation.

Acknowledgements

We are grateful to CNRS for financial support and for a fellowship to one of us (AEV). REFERENCES-NOTES

- (1) See, <u>inter alia</u>, T.Mukaiyama, <u>Org.React.</u>, <u>28</u>, 253 (1982); M.T.Reetz, <u>Angew.Chem.Int.Ed.</u> <u>Engl.</u>, <u>22</u>, 989 (1983) and references therein.
- (2) C.H.Heathcock, "The Aldol Addition Reaction" in J.D.Morrison, (ed.), "Asymmetric Synthesis", Academic Press, NY, Vol.3, pp.111-212 (1984).
- (3) R.Brownbridge, <u>Synthesis</u>, 1 (1983); idem, ibid, 85 (1983).
- W.J.Greenlee and D.G.Hangauer, <u>Tetrahedron Lett.</u>, <u>24</u>, 4559 (1983); R.Amouroux and G.P.Axiotis, <u>Synthesis</u>, 270 (1981); W.C.Brouillette and J.A.Finney, <u>Tetrahedron Lett.</u>, <u>22</u>, (1980), 1219; M.Oda, A.Yamamuro and T.Watabe, <u>Chem.Lett.</u>, 1427 (1979); P.G.Gassman and G.L.Carrol, <u>J.C.S.Chem.Commun.</u>, 55 (1973); W.Lidy and W.Sundermeyer, <u>Chem.Ber.</u>, <u>106</u>, 587 (1973).
- (5) P.G.Gassman and T.L.Guggenheim, <u>J.Am.Chem.Soc.</u>, <u>104</u>, 5849 (1982); R.S.Gremban, <u>Tetrahe-</u> <u>dron Lett.</u>, <u>25</u>, 3259 (1984); G.O.Spessard, A.R.Ritter, D.M.Johnson and A.M.Montgomery, <u>ibid</u>, <u>24</u>, 655 (1983).
- (6) H.B.Kagan and J.L.Namy, "Lanthanides in Organic Synthesis" in <u>Tetrahedron</u>, <u>42</u>, 6573 (1986); a review article.
- (7) M.Bednarski, C.Maring and S.Danishefsky, <u>Tetrahedron Lett.</u>, <u>24</u>, 3451 (1983); M.Quimere and K.Jankowski, <u>J.C.S.Chem.Commun.</u>, 676 (1987).
- (8) N.Mine, Y.Fujiwara and H.Taniguchi, <u>Chem.Lett.</u>, 357 (1986).
- (9) The reaction progress was followed by TLC (SiO₂, hex./EtOAc = 4:1)
- (10) M.T.Reetz and A.E.Vougioukas, <u>Tetrahedron Lett.</u>, <u>28</u>, 793 (1987).
- (11) G.A.Gornowicz and R.West, <u>J.Am.Chem.Soc.</u>, <u>93</u>, 1714 (1971); J.C.Mullis and W.P.Weber, <u>J.Org.Chem.</u>, <u>47</u>, 2873 (1982); K.Imi, N.Yanagihara and K.Utimoto, <u>ibid.</u>, <u>52</u>, 1013 (1987).

(Received in France 2 July 1987)