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Synthesis of Fluorinated exo-Glycals through Modified Julia Olefination
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An efficient synthesis of fluorinated enol ethers derived from
carbohydrates is reported. A modified Julia olefination reac-
tion of functionalized lactones with fluorine-substituted sulf-

Introduction

The introduction of a fluorine atom into a biologically
active molecule strongly modifies the chemical and physical
properties of the latter. In the specific case of fluorine-sub-
stituted enol ethers, the presence of fluorine additionally
stabilizes the enol ether function and radically alters its elec-
tronic distribution.[1] In the field of carbohydrates, exo-
glycals[2] are an important class of glycomimetics in which
their monohalogenated counterparts[3] have been prepared
for chemical purposes. Monofluorinated exo-glycals[4] have
been studied as probes for glycosyl-processing enzymes,
whereas 6-fluoro-5,6-anhydrocarbohydrates[5] have been in-
vestigated as inactivators of (S)-adenosyl-l-homocysteine
hydrolase. However, these monofluoroenol ethers were pre-
pared through stepwise methods that provide limited struc-
tural flexibility and little generality.

An original route to exo-glycals was recently developed
in our group in Lyon[6] by using modified Julia reagents[7]

on sugar-derived lactones. The reaction was further ex-
tended to the synthesis of tri- and tetrasubstituted enol
ethers.[8] This methodology was used for the preparation of
glycomimetics[9] and chiral ligands for catalysis[10] and for
the total synthesis of bistramide A and its analogues.[11]

Julia olefination has proven to be among the more prom-
ising direct methods for the synthesis of fluoroalkenes.[12]

Since a Caen’s group initial work describing the one-step
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ones gives the corresponding monofluorinated tri- or tetra-
substituted exo-glycals.

preparation of fluoroalkenes by a modified Julia reac-
tion,[13] this reaction has been extended by different groups
for the preparation of diversely functionalized di-, tri-, and
tetrasubstituted fluoroalkenes.[14] This reaction proceeds
smoothly from aldehydes or ketones to fluoroalkenes, but
it has not been applied to the olefination of lactones. We
report herein the synthesis of fluorinated exocyclic enol
ethers through the modified Julia olefination of lactones.

Results and Discussion

Fluoroalkyl sulfones were prepared according to a litera-
ture procedure,[15] and their addition to lactones was tested
to prepare exo-glycals. The reaction was first performed
with 2,3,4,6-tetra-O-benzyl-d-gluconolactone and 2-benzo-
thiazolyl fluoromethyl sulfone (Scheme 1). Using our pre-
vious standard conditions,[11] we were gratified to learn that
trisubstituted fluoroalkene 1 could be obtained in 85% iso-
lated yield as an E/Z mixture, with a slight preference for
the E isomer.[16]

Scheme 1. Initial attempt under our standard conditions.

This result prompted us to explore the scope of this reac-
tion by using various fluoroalkyl sulfones and benzyl ether
protected sugar lactones[17] (Table 1). 2-Benzothiazolyl
fluoromethyl sulfone and 2-deoxy-3,4,6-tri-O-benzyl-d-
gluconolactone gave the corresponding fluorinated exo-
glycal 2 in 82% yield. In contrast to the previous result, the
observed E/Z selectivity was in favor of the Z alkene, and
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this showed the influence of the 2-alkoxy group on the rela-
tive diastereoselectivity. Furanose lactones were tested, and

Table 1. Synthesis of fluorinated exo-glycals from benzyl-protected
sugar lactones.

Figure 1. Observed NOEs for some fluorinated enol ethers.
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in these cases, products 3 and 4 were isolated in good yields.
A mixture of E/Z enol ethers was obtained in a 7:3 and
6:4 ratio, respectively. 2-Benzothiazolyl fluoroethyl sulfone
provided similar results, as tetrasubstituted exo-glycals 5–8
were isolated in 60–85 % yield. An interesting inversion in
the selectivity was observed: the Z isomers were preferen-
tially obtained for 2-alkoxy-substituted derivatives 5, 7, and
8, whereas the E isomer was favored for deoxy derivative 6.
This illustrates the opposing influences of the electronic ef-
fects of the fluorine atom and the steric effects of the methyl
group.

The stereochemistry of the double bond was established
in compounds 2, 3, 6, and 7 by homonuclear and hetero-

Table 2. Influence of the protecting group.[a]

[a] TES = triethylsilyl, TBDMS = tert-butyldimethylsilyl. [b] Pro-
cedure A: reaction performed with BF3·OEt2; procedure b: reaction
performed without BF3·OEt2.
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nuclear NOE measurements (Figure 1). The stereochemis-
try of the remaining compounds could be assigned by 1H–
1H NOESY experiments or by the combination of the rela-
tive chemical shifts of the signals in the 19F NMR spectra
and the magnitudes of the 2JCF and 3JCF coupling con-
stants (see the Supporting Information).[18]

We next focused on the influence of the protecting
groups on the course of the olefination reaction (Table 2).
Both isopropylidene and silyl ether protecting groups were
tolerated on the lactone, and trisubstituted and tetrasubsti-
tuted glycals 9–16 were obtained in moderate to good
yields. In the case of triethylsilyl ethers 9, 12, 13, and 16,[19]

better yields were obtained without the addition of a Lewis
acid.[20] As in the non-fluorine-substituted case, we noticed
that a tert-butyldimethylsilyl protecting group on the C-2
hydroxy group of the γ-lactone derivative negatively influ-
enced the course of the reaction, and significantly lower
yields were observed for 10 and 14. The stereoselectivity of
the formation of the double bond improved when the reac-
tion was conducted with a silyl ether protecting group, as
in the case of glucopyranose 9 when compared to benzyl-
protected 1. However, the opposite effect was observed for
furanoses 12 and 16, as the selectivity shifted towards the
Z isomer.

Having a straightforward method in hand to access alkyl-
ated exo-glycal derivatives, we investigated the synthesis of
fluorinated neoglycolipid skeletons. The reaction of tetra-
benzylgluconolactone with a benzothiazolyl sulfone con-
taining a fatty acid like hydrocarbon chain gave corre-
sponding fluoroalkene 17 in 53% yield (Figure 2). Better
results were observed when the olefination was performed
with a protected d-ribonolactone; in that case, tetrasubsti-
tuted fluorinated enol ether 18 was obtained in 83 % yield.
Again, the steric demand of the alkyl chain appeared to be
significant, as improved Z selectivity was observed in both
cases.

Figure 2. Introduction of long alkyl chains.

To extend the panel of fluorinated exo-glycals, Julia ole-
fination was attempted with amino-substituted sulfones de-
rived from morpholine and piperidine. The amino group
was found to be compatible with the reaction. Indeed,
fluoroallylamines 19–23 were obtained in modest to good
yields (Table 3). As observed previously, the Z alkenes were
formed preferentially, as the steric demand of the amino
group directed the selectivity of the formation of the double
bond. Low yields were observed in some cases because of
difficulties during the separation of the products on silica gel.
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Table 3. Reaction with aminosulfones.[a]

[a] TBDMS = tert-butyldimethylsilyl.

Conclusions

In conclusion, we have developed a fluoroenol ether syn-
thesis by using modified Julia reagents for the preparation
of tri- and tetrasubstituted fluorinated exocyclic enol ethers
from lactones. This general route offers original and conve-
nient access to the synthesis of fluoro C-glycoside and nu-
cleoside analogues. This series of compounds constitutes a
new family of glycomimetics with, for example, potential
biological activities as glycosidase inhibitors.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, spectroscopic data, and copies of
the 1H NMR and 13C NMR spectra of all reported compounds.
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