

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 3097-3102

Tetrahedron Letters

An easy access to unsymmetric trisubstituted methane derivatives $(\text{TRSMs})^{\ddagger}$

Sajal Kumar Das, Shagufta and Gautam Panda*

Medicinal and Process Chemistry Division, Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226001, UP, India

Received 19 November 2004; revised 22 February 2005; accepted 1 March 2005 Available online 16 March 2005

Abstract—A new series of unsymmetric trisubstituted methane derivatives (TRSMs) has been synthesized through Friedel–Crafts alkylation of aromatic nucleophiles using acid-sensitive heteroaryl carbinols. © 2005 Elsevier Ltd. All rights reserved.

Trisubstituted methane derivatives (TRSMs) represent an important class of biologically active molecules. Substituted triarylmethanes (TRAMs), a class of TRSMs is of considerable interest as dyes, photochromic agents and materials for theoretical studies.¹ Examples of TRSMs include the potent and selective non-steroidal aromatase inhibitors² (NSAIs) letrozole³ 1 (Ciba Geigy) and vorozole⁴ 2 (Janssen). Recently, the antiproliferative activity of the nonimidazole part of clotrimazole analogues such as 3 was also reported,⁵ Figure 1.

TRAMs have also served as suitable building blocks for generating dendrimers.⁶ Dendrimers with appropriate peripheral functionalities have been used in bioconjugation,⁷ cross-linking,⁸ mass spectrometry,⁹ fluorescence¹⁰ and optics.¹⁰ Triphenylmethyl (trityl) derivatives, are widely used as protecting groups in organic synthesis

Keywords: TRAMs; FC reaction.

0040-4039/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.03.001

to block various functional moieties. These applications are well documented and have been the subject of a number of reviews.¹¹

Recently, we reported a new series of substituted triarylmethane derivatives (TRAMs) having antitubercular activity.¹² In continuation of our earlier work, we became interested in synthesizing some heteroaryldiarylmethane derivatives where one of the aryl rings is replaced by a heterocycle. Two well-established methods are known for the synthesis of TRAMs.¹³ One is the Bayer condensation in which an aromatic or heterocyclic aldehyde is condensed with another aromatic or heterocyclic ring. A second method involved Friedel–Crafts alkylation of aromatic compounds using diaryl carbinols as alkylating agents. Surprisingly, to the best of our knowledge, the synthesis of unsymmetric triarylmethanes is less developed. One method involves displacement of a benzotriazole moiety in (benzotriazol-1-yl)-diarylmethanes either by an electron rich arene or by [4-(N,N-dimethylamino)phenyl]magnesiumbromide.1 Furthermore, the synthesis of heteroaryldiarylmethanes is not well established using acid catalyzed Friedel-Crafts alkylation chemistry. This could be due to the fact that the heterocyclic ring of heteroaryl carbinols, especially acid sensitive rings, for example, furan and pyridine, are easily attacked by the protic or Lewis acid catalysts used in Friedel-Crafts alkylation reactions. Isomerization of 2-furylcarbinols to cyclopentenones in the presence of acids has also been described.¹⁴ Another disadvantage is that the synthesis of unsymmetric heteroaryldiarylmethanes is not possible using the Bayer condensation as it leads to symmetric heteroaryldiaryl or aryldiheteroarylmethanes. Thus, we

^{*} CDRI Communication No. 6652.

^{*} Corresponding author. Tel.: +91 5222364635; fax: +91 522223938; e-mail addresses: bapi.rm@yahoo.com; gautam_panda@lycos.com

have undertaken the synthesis of unsymmetric heteroaryldiarylmethanes, a class of trisubstituted methanes (TRSMs) by way of a Friedel–Crafts alkylation strategy using thienyl, pyridyl and (5-methyl)-furyl carbinols.

4-Methoxyphenyl magnesium bromide 4 was reacted with thiophene-2-carbaldehyde 5, pyridine-3-carbaldehyde 6 and 5-methylfurfural 7 at room temperature to furnish the carbinols 8, 9 and 10, respectively (Table 1). It is important to mention that the carbinol 10 was not stable and got decomposed at room temperature. The isolation of the carbinol 10 was achieved through column chromatography (basic alumina) and was stored at 0 °C.

To begin with, carbinol 8 was used as a building block for the synthesis of various unsymmetric heteroaryldiarylmethane derivatives. Towards this objective, 8 was treated with the various nucleophiles such as phenol, anisole, N,N-dimethylaniline, N-ethylaniline, thiophenol and 3-thiocresol in the presence of concd H₂SO₄ to furnish TRSMs 11, 12, 13, 14, 15 and 16 as the arylated products.¹⁵ Nucleophilic attack of phenol occurred through the o- and p-carbon atoms of the benzene ring to give 11b as the major product and 11a as the minor one. The singlet methine proton appeared at δ 5.55 ppm in the ¹H NMR of **11b** whereas the same proton appeared at δ 5.86 ppm in **11a** due to the increased -I effect of the o-hydroxyl in 11a than the p-hydroxyl in 11b, Table 2. We did not isolate any o-substituted product in the cases of anisole and N,Ndimethylaniline. However, reaction with N-ethylaniline, contrary to our expectation, furnished 13 through attack of the *p*-carbon of the *N*-ethylaniline. It was interesting to note that nucleophilic attack occurred through sulfur

when thiophenol and 3-thiocresol were used as the nucleophiles. This is possibly due to the higher nucleophilicity of sulfur than the carbon atoms of the benzene ring. We did not isolate any O-alkylated product when phenol was used as the nucleophile.

We next used carbinol 9 as the alkylating agent in the Friedel-Crafts (FC) reaction. During FC alkylation using protic or Lewis acids, the N atom of the pyridine ring is protonated or complexed with metals and thus the heterocycle separates out from the reaction mixture giving no FC alkylated product. Under our reaction conditions, treatment of carbinol 9 with various aromatic nucleophiles in the presence of anhydrous AlCl₃ furnished heteroaryldiarylmethane derivatives 17-23.15 As indicated in Table 2, nucleophilic attack occurred through the sulfur of thiophenol and 3-thiocresol onto the carbinol carbon atom of 9 giving rise to 21 and 22, respectively.

After the successful demonstration of the FC reaction with thiophenes and pyridines, we wanted to explore our synthetic strategy with acid sensitive furans. Furyl carbinols are well known for their isomerization to cyclopentenones in the presence of protic and Lewis acids.¹⁴ However, treatment of furyl carbinol 10 with N,N-dimethylaniline, N-ethylaniline, thiophenol, 2-thiocresol and 3-thiocresol in the presence of anhydrous AlCl₃ gave the corresponding alkylated products 24, 25, 26, 27 and 28, respectively, in good yields and purity.¹⁵

In conclusion, we have developed a very short and easy synthetic route for the preparation of unsymmetric trisubstituted methane derivatives. A new series of TRSMs 15, 16, 21, 22, 26, 27 and 28 containing a

Entry	Grignard reagent	RCHO	Carbinol	Conditions and yield
1	MgBr OMe 4	CHO 5	MeO S 8 (yellow oil)	rt, THF, 1 h, 68%
2	MgBr OMe 4	CHO N 6	MeO OH OH N 9 pale yellow solid, m.p. 105°C	rt, THF, 2 h, 68%
3	MgBr OMe 4	СНО 7	MeO OH JO yellow oil	rt, THF, 1 h, 65%

Table 2. Synthesis of unsymmetric methane derivatives 11-28 from the carbinols 8, 9 and 10

	H ₃ CC 8, F 9, F 10,	$\begin{array}{c} Arom: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	atic Nucleophiles r r r r r R^1 R^2	$\frac{H_3CO}{P}X$ or $\frac{H_3CO}{R}R^1$	
Entry	Carbinol (1 equiv)	Nucleophile (1.5 equiv)	Product ^a	Reaction conditions ^{b,c}	Yield ^d
1	8	Phenol	MeO S ortho-OH, 11a , brown semi-solid para-OH, 11b , brown semi-solid	Benzene, concd H ₂ SO ₄ , 60 °C, 2 h	11a (10%) 11b (60%)
2	8	Anisole	MeO S 12, pale yellow solid, m.p. 90°C	Benzene, concd H ₂ SO ₄ , 60 °C, 2 h	63%
3	8	<i>N</i> -Ethylaniline	MeO S 13, black semi-solid	Benzene, concd H ₂ SO ₄ , 60 °C, 45 min	76%
4	8	N,N-Dimethylaniline	MeO S 14, black semi-solid	Benzene, concd H ₂ SO ₄ , 60 °C, 45 min	73%
5	8	Thiophenol	MeO S S 15, white solid, m.p. 76°C	Benzene, concd H ₂ SO ₄ , 60 °C, 30 min	80%
6	8	3-Thiocresol	MeO S S 16, yellow oil	Benzene, concd H ₂ SO ₄ , 60 °C, 30 min	70%
7	9	Phenol	MeO MeO MeO MeO MeO MeO MeO MeO	Benzene, anhyd AlCl ₃ , 70 °C, 2 h	17a (5%) 17b (55%)
8	9	Anisole	MeO N 18, light yellow semi-solid	Benzene, anhyd AlCl ₃ , 70 °C, 2 h (<i>continued o</i>	67% n next page)

Table 2 (continued)

Entry	Carbinol (1 equiv)	Nucleophile (1.5 equiv)	Product ^a	Reaction conditions ^{b,c}	Yield ^d
9	9	N-Ethylaniline	MeO NHC ₂ H ₅ N 19, light yellow semi-solid	Benzene, anhyd AlCl ₃ , 70 °C, 1 h	65%
10	9	<i>N,N-</i> dimethylaniline	MeO	Benzene, anhyd AlCl ₃ , 70 °C, 45 min	70%
11	9	Thiophenol	MeO S N 21, light yellow solid, m.p. 84°C	Benzene, anhyd AlCl ₃ , 70 °C, 30 min	72%
12	9	3-Thiocresol	MeO S S N 22, yellow semi-solid	Benzene, anhyd AlCl ₃ , 70 °C, 30 min	64%
13	9	Aniline	MeO NH ₂ N 23, brown semi-solid	Benzene, anhyd AlCl ₃ , 70 °C, 2 h	50%
14	10	N-Ethylaniline	MeO NHC ₂ H ₅ 24, pale yellow oil	Benzene, anhyd AlCl ₃ , rt, 30 min	63%
15	10	N,N-Dimethylaniline	MeO 25. yellow oil	Benzene, anhyd AlCl ₃ , rt, 45 min	61%
16	10	Thiophenol	MeO S S 26, light yellow semi-solid	Benzene, anhyd AlCl ₃ , rt, 30 min	60%
17	10	3-Thiocresol	MeO S O 27. vellow oil	Benzene, anhyd AlCl ₃ , rt, 30 min	78%
18	10	2-Thiocresol	MeO S S S S S S S S S S S S S S S S S S S	Benzene, anhyd AlCl ₃ , rt, 30 min	75%

^a Although all the Friedel–Crafts alkylated products were unsymmetric except for **12** and **18**, they were isolated as racemic mixtures. ^b Concd H_2SO_4 was used in catalytic amounts. ^c One equivalent of anhydrous AlCl₃ was used.

^d Isolated yield after silica gel column chromatography.

thioether group has been synthesized in only two steps, that is, the Grignard reaction and Friedel–Crafts alkylation. These thioethers cannot be synthesized using previously reported methodology.¹ We have shown that carbinols containing acid-sensitive heterocycles can be used as alkylating agents in FC reactions.

Acknowledgements

Shagufta and S.K.D. thank CSIR for providing fellowships.

References and notes

- (a) Terrier, M.; Boubaker, T.; Xiao, L.; Farrell, P. G. J. Org. Chem. 1992, 57, 3924; (b) Muthyala, R.; Katritzky, A. R.; Lan, X. Dyes Pigments 1994, 25, 303; (c) Aldag, R. Photochromism Based on Dissociation Processes. In Photochromism: Molecules and Systems; Durr, H., Bouas-Laurent, H., Eds.; Elsevier: London, 1990; and references cited therein.
- Recanatini, M.; Cavalli, A.; Valenti, P. Med. Res. Rev. 2002, 22, 282.
- Bhatnagar, A. S.; Hausler, A.; Schieweck, K.; Lang, M.; Bowman, R. J. Steroid Biochem. Mol. Biol. 1990, 37, 1021.
- Vanden Bossche, H.; Willemsens, G.; Roels, I.; Bellens, D.; Moereels, H.; Coene, M. C.; Le Jeune, L.; Lauwers, W.; Janssen, P. A. *Biochem. Pharmacol.* **1990**, *40*, 1707.
- Al-Qawasmeh, R. A.; Lee, Y.; Cao, M. Y.; Gu, X.; Vassilakos, A.; Wright, J. A.; Young, A. *Bioorg. Med. Chem. Lett.* 2004, 14, 347.
- Baker, L. A.; Sun, L.; Crooks, R. M. Bull. Korean Chem. Soc. 2002, 23, 647.
- Koster, H.; Beck, S.; Coull, J. M.; Dunne, T.; Gildea, B. D.; Kissinger, C.; O'Keeffe, T. *Nucleic Acids Symp. Ser.* 1991, 24, 318.
- (a) Kwiatkowski, M.; Chattopadhyaya, J. B. Nucleic Acids Symp. Ser. 1984, 14, 299; (b) Ramage, R.; Wahl, F. O. Tetrahedron Lett. 1993, 34, 7133; (c) Letsinger, R. L.; Finnan, J. L. J. Am. Chem. Soc. 1975, 97, 7197.
- (a) Shchepinov, M. S.; Chalk, R.; Southern, E. M. *Tetrahedron* 2000, 56, 2713; (b) Chattopadhyaya, J. B.; Reese, C. B. J. Chem. Soc., Chem. Commun. 1978, 639.
- (a) Breslow, R.; Kaplan, L.; LaFollette, D. J. Am. Chem. Soc. 1968, 90, 4056; (b) Fisher, E. F.; Caruthers, M. H. Nucleic Acids Res. 1983, 11, 1589; (c) Fourrey, J. L.; Varenne, J.; Blonski, C.; Dousset, P.; Shire, D. Tetrahedron Lett. 1987, 28, 5157; (d) Meier, H.; Kim, S. Eur. J. Org. Chem. 2001, 1163; (e) Noack, A.; Hartmann, H. Chem. Lett. 2002, 644; (f) Brasselet, S.; Cherioux, F.; Audebert, P.; Zyss, J. Chem. Mater. 1999, 11, 1915.
- (a) Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003, 32, 170; (b) Dinger, M. B.; Scott, M. J. J. Chem. Soc., Perkin Trans. 1 2000, 1741, and references therein.
- Panda, G.; Shagufta; Mishra, J. K.; Chaturvedi, V.; Srivastava, A. K.; Srivastava, R.; Srivastava, B. S. *Bioorg. Med. Chem.* 2004, 12, 5269.
- (a) Casiraghi, G.; Casnati, G.; Cornia, M. Tetrahedron Lett. 1973, 679; (b) Pindur, U.; Flo, C. J. Heterocycl. Chem. 1989, 26, 1563; (c) Ungnade, H. E.; Crandall, E. W. J. Am. Chem. Soc. 1949, 71, 2209; (d) Snyder, H. R.; Konecky, M. S. J. Am. Chem. Soc. 1958, 80, 4388.
- (a) D'Auria, M. *Heterocycles* 2000, 52, 185; (b) Piancatelli, G.; Scettri, A.; Barbadoro, S. *Tetrahedron Lett.* 1976,

3555; (c) Piancatelli, G.; Scettri, A.; David, G.; D'Auria, M. *Tetrahedron* **1978**, *34*, 2775, and references therein.

15. Friedel–Crafts Alkylation: (i) To a solution of carbinol 8 {0.18 g, 0.818 mmol (1 equiv)} and nucleophile (1.5 equiv) in dry benzene (10 mL) was added a catalytic amount of H₂SO₄ and the mixture was refluxed at 60 °C until completion of the reaction. Extraction with ethyl acetate and column chromatography of the crude product over silica gel (ethyl acetate/hexane) furnished compounds 11a–b, 12, 13, 14, 15 and 16.

(ii) To a solution of carbinol **9** {0.18 g, 0.83 mmol (1 equiv)} and nucleophile (1.5 equiv) in dry benzene (15 mL), anhydrous AlCl₃ (1.0 equiv) was added and the mixture was refluxed at 70 °C. After usual work-up, column chromatography over silica gel (ethyl acetate/hexane) furnished **17a–b**, **18**, **19**, **20**, **21**, **22** and **23**. (iii) To a solution of carbinol **10** {0.18 g, 0.82 mmol (1 equiv)} and nucleophile (1.5 equiv) in dry benzene (15 mL), anhydrous AlCl₃ (1.0 equiv) was added and the mixture was stirred at rt. After usual work-up, column chromatography over silica gel (ethyl acetate/hexane) furnished **24**, **25**, **26**, **27** and **28**.

Selected Spectral Data: 2-[(4-Methoxyphenyl)phenylsulfanylmethyl]thiophene **15**: IR (KBr): 1603, 1511, 1352, 1251, 1177, 695 cm⁻¹, ¹H NMR (200 MHz, CDCl₃): δ 7.33 (d, 2H, J = 6.8 Hz), 7.31–7.29 (m, 2H), 7.18–7.14 (m, 4H), 6.86 (d, 2H, J = 8.6 Hz), 6.81 (d, 2H, J = 8.6 Hz), 5.64 (s, 1H), 3.75 (s, 3H); ¹³C NMR (50 MHz, CDCl₃): δ 159.4, 146.3, 135.9, 133.6, 131.9, 129.7, 129.2, 127.5, 127.0, 126.4, 125.6, 114.3, 55.6, 53.0; MS (FAB): 312 (M⁺), Anal. C₁₈H₁₆OS₂; calcd: C, 69.19; H, 5.16. Found: C, 69.29; H, 5.25.

4-[(4-Methoxyphenyl)pyridin-3-ylmethyl]phenol **17b**: IR (KBr): 3428, 1611, 1510, 1458, 1249, 757 cm⁻¹, ¹H NMR (200 MHz, CDCl₃): δ 8.43 (d, 1H, J = 7.0 Hz), 8.37 (s, 1H), 7.44 (d, 1H, J = 7.8 Hz), 7.26 (m, 1H), 6.98 (d, 2H, J = 8.6 Hz), 6.87 (d, 2H, J = 8.6 Hz), 6.81 (d, 2H, J = 8.6 Hz), 6.75 (d, 2H, J = 8.6 Hz), 5.41 (s, 1H), 3.76 (s, 3H), ¹³C NMR (50 MHz, CDCl₃): δ 158.7, 156.3, 150.1, 146.8, 141.5, 138.0, 135.4, 134.1, 130.5, 124.0, 116.1, 114.3, 55.6, 53.1; MS (FAB): 292 (M⁺+H), Anal. C₁₉H₁₇NO₂; calcd: C, 78.33; H, 5.88; N, 4.81. Found: C, 78.43; H, 5.90; N, 4.83.

{4-[(4-Methoxyphenyl)pyridin-3-ylmethyl]phenyl} dimethylamine 20: IR (neat): 1612, 1515, 1249, 757 cm⁻¹, ¹H NMR (200 MHz, CDCl₃): δ 8.33 (m, 2H), 7.67 (d, 1H, J = 7.8 Hz), 7.27 (m, 1H), 6.91 (d, 2H, J = 8.6 Hz), 6.84 (d, 2H, J = 8.6 Hz), 6.71 (d, 2H, J = 8.6 Hz), 6.55 (d, 2H, J = 8.6 Hz), 5.30 (s, 1H), 3.64 (s, 3H), 2.79 (s, 6H), ¹³C NMR (50 MHz, CDCl₃): δ 158.5, 151.2, 149.7, 147.8, 140.9, 137.0, 136.1, 131.3, 130.5, 130.2, 123.5, 114.2, 113.0, 55.6, 53.1, 41.0, 30.1 MS (FAB): 318 (M⁺), Anal. C₂₁H₂₂N₂O: Calcd: C, 79.21; H, 6.96; N, 8.80. Found: C, 79.25; H, 6.99; N, 8.90.

{4-[(4-Methoxyphenyl)-(5-methyl-furan-2-yl)methyl]phenyl}dimethylamine **25**: IR (neat): 2951, 1612, 1516, 1448, 1349, 1220, 1033, 759 cm⁻¹, ¹H NMR (200 MHz, CDCl₃): δ 7.07 (d, 2H, J = 8.6 Hz), 7.01 (d, 2H, J = 8.6 Hz), 6.79 (d, 2H, J = 8.8 Hz), 6.64 (d, 2H, J = 8.8 Hz), 5.83 (d, 1H, J = 2.0 Hz), 5.71 (d, 1H, J = 2.0 Hz), 5.24 (s, 1H), 3.72 (s, 3H), 2.87 (s, 6H), 2.21 (s, 3H); ¹³C NMR (50 MHz, CDCl₃): δ 158.6, 156.5, 151.5, 149.8, 135.5, 131.0, 130.1, 129.7, 114.1, 113.1, 109.0, 106.3, 55.6, 49.7, 41.1, 14.1; MS (FAB): 321 (M⁺), Anal. C₂₁H₂₃NO₂: Calcd: C, 78.47; H, 7.21; N, 4.36. Found: C, 78.50; H, 7.25; N, 4.40.

2-[(4-Methoxyphenyl)phenylsulfanylmethyl]-5-methylfuran **26**: IR (neat): 1602, 1510, 1352, 1250, 760 cm⁻¹, ¹H NMR (200 MHz, CDCl₃): δ 7.32 (d, 2H, *J* = 6.8 Hz), 7.32– 7.16 (m, 5H), 6.82 (d, 2H, *J* = 8.8 Hz), 6.01 (d, 1H, J = 3.0 Hz), 5.84 (d, 1H, J = 3.0 Hz), 5.35 (s, 1H), 3.77 (s, 3H), 2.25 (s, 3H); $^{13}\mathrm{C}$ NMR (50 MHz, CDCl₃): δ 159.4, 152.4, 152.1, 135.7, 132.5, 131.7, 129.9, 129.0, 127.6, 114.3,

109.5, 106.7, 55.6, 51.3, 14.0; MS (FAB): 201 ($M^+-SC_6H_5$), Anal. $C_{19}H_{18}O_2S$: Calcd: C, 73.52; H, 5.84. Found: C, 73.40; H, 5.90.