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Abstract: The ~-symmetric axiridmes 1 and 1’ (available Iiom (+)- and (-)-tartaric acid,. 

respectively) are excellent chiral auxiliaries for asymmetric alkylation and aldol reactions. 

In 1977, Whitesell observed good asymmetric induction in the alkylation of a chiial 

cyclohexanone enamine. and the discussion of competing transition states presented in his paper’ 

included the perspicacious observation: “Clearly what is needed is an amine with a C2 axis of symmetry”. 
The chiral auxiliary intmduced at that time was (+)-rrans-2.5dimethylpyrrolidine, and since then the 

importance of molecular C+ymmetry in a variety of chemical2 and physical3 processes has become 

widely appreciated. Of the series of C&-symmetric4 cyclic amines 1 - 4 , the pyrrolidine 3 (or its 

enantiomer) has been used extensively for substrate-controlled asymmetric synthesis by Katsuki and 

Yamaguch? while piperidine 4 and its enantiomer have been introduced by Km&. 
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Our own interest in chiral small-ring systems, particularly axiridines7, has now turned toward 

amines 1 and 2. In the context of asymmetric amide enolate chemistry (e.g. based on 6) the axiridine 1 

was felt to be a particularly promising candidate as a chiral auxiliary, for the following reasons: (i) 1 and 

its enantiomer 1’ are readily available in multi-gram quantities from (+)- and (-)-tar&c acid, 

respectively (Scheme 1 and ref. 10); (ii) inspection of molecular models suggested that the enolate 

derived from the corresponding amide 6 (or 6’) might undergo diastereoselective processes (such as 

asymmetric akylation and aldol reactions) with the side-chain oxygens playing a key role (chelation to 

the metal counter-ion); (iii) the expected relative ease of non-destructive removal of the axiridine 

auxiliary by hydrolytic* or other9 methods. 

In this Letter we describe the preparation of 1 and 1’ and report that the lithium enolates of 6 and 

6’ do indeed display high levels of diastemoselectivity in asymmetric alkylation and aldol reactions. We 

also present attempts to probe the stereochemical factors responsible for our results. The synthesis of the 

two enantiomeric pairs of axiridines l/l’ and 6/6’ is shown in Scheme 1. 

Epoxides 5 or 5’ am readily available’O on a large scale tiom (+)- and (-)-tar&c acid, 

respectively, and provide straightforwsrd access to optically pure 1 or 1’; these were tested as chiral 

auxiliaries (following acylation to 6 or 6’) in a standard enoIate alkylation (shown for 6 in Scheme 2). 
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Scheme 1: (a) NaNs, NH&l, MeO(CH&0H/H20, 94%; (b) k&Cl, NEts, CH,CI,, 89%; (c) LiAlH,, THF, 79%; 
(d) propionic anhydride, NEts, DMAP (cat.), CH,CI,, 91% 

BnOpvOBn 
N 

6 .--=-. 

79% yield 

Ph Y 
0 

diastereomerk ratio: > 99 : -z 1 

7 
Scheme 2: (a) LiHMDS, THF, -78’C; (b) PhCH*Br, -78’C to RT 

According to 13C NMR spectroscopic analysis (75 MHz, S/N ratio 500~1) the crude product 7 was 

a single diastereomerll with the absolute configuration shown . The importance of auxiliary 

G-symmetry was then pmbed,as shown in Eq.1. optically pure 8 being derived from commercially 

available (s)-(-)-glycidol. 

< 
OBn 

=iY 
OBn 

+ 

i) LiHMDS, THF N 

ii) PhCH,Br 
) 

0 
Y 

diastereomertc ratio: 75 : 25 (Eq. 1) 
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The absolute configuration of the major diastereomer of 9 was assigned by analogy with 7. 

These results show that the (Is,-symmetry element4 is truly important in the ahcylation of 6. Steric effects 

and the chelation/non-chelation question were then addressed, as shown in Eq. 2. For this purpose,it was 

sufficient to use racemic 10 and 11. 
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The diphenylaziridine moiety of 10 was a poor chit-al inducer,while 11 gave more respectable 

results. The higher &. values obtained using 6, as compared to 11, may be due mainly to steric effects, 

but it is also plausible to invoke internal chelation in the enolate of the former to explain the results. 

While we are aware that (i) it may be naive to rationalize the stereochemical outcome of enolate 

chemistry on the basis of monomeric smwures*2. and (ii) subtle stereoelectronic factors13 may be 
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operative, we nevertheless offer the “working model” depicted below: 
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The importance of the ring geometry‘tb and the C,-symmetry of the auxiliary have aheady been 

pointed out; we have also good grounds for the assumptions that (i) the Z-enolate is formed under our 

reaction conditionst4 and (ii) the enolate nitrogen is markedly pyramidalizedt3*15. Chelation of the 

lithium cation, as depicted, then directs the incoming electrophile to the “lower” face of the enolate, 

resulting in the (R) absolute configuration at Co of 7 shown in Scheme 2. A more systematic study of 

possible chelation effects (variation of metal ion and ethereal side-chains) is now under way. 

The good leaving-group ability of nitrogen in aziridino-amides is the basis of Brown’s aldehyde 

synthesis9 and we have exploited this to remove the auxiliary from 7 with only slight epimerization16. 

Details of other (hydrolytic) procedures to remove/recover the auxiliaries will be presented elsewhere, as 

will the results of our synthetic efforts directed towards the chiral azetidine 2 shown in the introduction. 

Finally, preliminary studies indicate that the enolate of 6 undergoes a highly syn-selective aldol 

reaction14 with benzaldehyde (Eq 3). 

i) LiHMDS, THF, -78°C O’H 73% yield 

6 
ii) C,H,CHO 

b ,&N ..,y 

Itle J 

s;,“:: raioiz98 : 2 (Eq. 3 ) 
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The syn geometry of the aldol product (expected from the reaction of a Z-enolate if the 

Zimmerman-Traxler transition state model14 is invoked) was confirmed by the coupling constant 

analysis14 shown above. The diastereomeric pair of and aldols (if at all present) could not be detected by 

13C NMR spectroscopic analysis l7 of the crude product. Further results, including rigorous assignments 

of absolute stereochemistry, will be reported in due course. 
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