

Tetrahedron Letters 39 (1998) 5751-5754

TETRAHEDRON LETTERS

[Pd/Base/QX] catalyst systems for directing Heck-type reactions

Tuyet Jeffery* and Marc David

ESCOM, Département de Chimie, 13, Boulevard de l'Hautil - 95092 - Cergy Pontoise Cédex - France^a ENSCP, Laboratoire de Synthèse Organique, 11, Rue P. et M. Curie - 75231 - Paris - France^h

Received 4 May 1998; accepted 26 May 1998

Abstract:

Palladium-catalyzed arylation of 2,3-dihydrofuran can be *directed at will* by an appropriate selection of the [Pd/Base/QX] catalyst systems. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Ammonium salts, Arylation, Heck reactions, Palladium and compounds.

Within the past decade, the extensive study of Heck-type reactions [1-3] and their application in organic synthesis has led to the introduction of various improvements [4-6]. In particular, addition of a tetraalkylammonium salt (QX) has proved useful in enhancing the reaction rate [4, 6] whatever the anion [7, 8] and appropriate reaction conditions have been determined to obtain the optimum accelerating effect of QX [9]. Tetraalkylammonium salts have also been found to enhance the selectivity of Heck-type reactions [4, 6, 10-16]. We now wish to report that variations in the nature of the [Pd/Base/QX] catalyst system can allow to *direct at will* the outcome of the reactions.

In some cases, silver salts have been shown to be complementary to tetraalkylammonium salts in controlling the selectivity of the reactions [6]. In particular, treatment of iodobenzene with 2,3-dihydrofuran [17, 18] gives rise to the formation of 2-phenyl 2,5-dihydrofuran $\underline{1}$ when the reaction is performed in the presence of silver carbonate, while 2-phenyl 2,3-dihydrofuran $\underline{2}$ is formed in the presence of a mixture of potassium acetate and tetra-n-butylammonium chloride.

The results reported herein show that a highly selective formation of *either* 2-phenyl 2,5-dihydrofuran $\underline{1}$ or 2-phenyl 2,3-dihydrofuran $\underline{2}$ can be achieved using tetraalkylammonium salts (Scheme 1 and Table 1).

As shown in Table 1, formation of a mixture of compounds $\underline{1}$ and $\underline{2}$ was observed when iodobenzene was reacted with 2,3-dihydrofuran at 80 °C in N,N-dimethylformamide, in the presence of potassium acetate, tetra-n-butylammonium chloride (hydrated or not), and catalytic amounts of palladium acetate and triphenylphosphine (entries 1 and 2). In net contrast, compound $\underline{2}$ was obtained with high selectivity (entries 3-6) and in high yield (entries 4 and 5) when triphenylphosphine was omitted and when the reaction was performed at room temperature (20 °C). It is noteworthy that the reaction yield can be substantially increased (entry 4 compared to entry 3) by using an excess of tetraalkylammonium chloride which

^a Present address

^b Previous address

Table 1

Influence of [Pd/Base/QX] catalyst system on the phenylation of 2,3-dihydrofuran ^{a)}

Entry	Base	QX	PPh ₃ (equiv.)	Temperature /Time ^{b)}	Conversion (%) ^{c)}	Yield (%) ^{c)}	<u>2</u> / <u>1</u> Ratio ^{d)}
1	KOAc	nBu ₄ NC1,xH ₂ O (1 equiv.)	0.1	80 °C / 3 h	100	90	56 / 44
2	KOAc	nBu ₄ NCl (1 equiv.)	0.1 ^{e)}	80 °C / 3 h	100	90	51 / 49
3	KOAc	nBu ₄ NCl (1 equiv.)	-	20 °C / 40h	82	66	90 / 10
4	KOAc	nBu₄NCl (2.5 equiv.)	-	20 °C / 16h	100	100	92 / 8
5	KOAc	nBu ₄ NCl (2.5 equiv.)	-	40 °C / 16h	100	100	88 / 12
6	KOAc	nBu₄NBr (2.5 equiv.)	-	20 °C / 40h	94	63	97 / 3
7	KOAc	nBu₄NOAc (1 equiv.)	-	20 °C / 40h	85	85	44 / 56
8	nBu ₄ NOAc (1.5 equiv.)	nBu ₄ NOAc ^{î)} (1 equiv.)	-	20 °C / 6h	100	97	3 / 97

^{a)} To a well-stirred mixture of KOAc (2.5 equiv. when indicated), QX (as indicated) and 4Å molecular sieves in DMF (1 ml/ 1 mmol of PhI) were successively added iodobenzene (1 equiv.), 2,3-dihydrofuran (10 equiv.), PPh₃ (as indicated) and Pd(OAc)₂ (0.05 equiv.).

^{b)} Reaction times were not optimized.

^{c)} Determined by GLC against an internal standard.

^{d)} Determined by GLC.

^{e)} Selective formation of $\underline{2}$ has been reported [17, 18] in reaction performed at 80 °C, in the presence of Pd(OAc)₂ and PPh₃ (Pd / L= 1).

ⁿ in N,N-dimethylformamide or acetonitrile.

 Table 2

 Palladium-catalysed arylation of 2,3-dihydrofuran.^{a), b)}

ArX	Conditions	Product	Yield (%) ^{c), d)}
<u></u> ı	A ^{a)}	() () ()	78 ^{e)} (94) ^{e)}
n	B ^{bì}	o	77 (92)
MeO	A ^{a)}	MeO	75 °)
v	B ^{b)}	MeO	75
	A ^{a)}	CH, O	77 (95)
n	B ^{b)}	OH, OCH,	80
	A ^{a)}	o	92
n	B ^b	o	90

- ^{a)} General procedure (conditions A): To a well-stirrred suspension of n-Bu₄NOAc (2 2.5 equiv.) and 4A molecular sieves in dry DMF were successively added the aryl iodide (1 equiv.), 2,3-dihydrofuran (10 equiv.) and palladium acetate (0.05 equiv.). The reaction mixture was then stirred at room temperature (20 °C) overnight (for convenience) unless otherwise stated. Diethyl ether was then added and the mixture filtered over celite. The filtrate was washed with water, dried (MgSO₄), the solvent evaporated under reduced pressure and the crude product purified by flash chromatography.
- ^{b)} General procedure (conditions B): To a well-stirred suspension of KOAc (2 2.5 equiv.), nBu₄NCl (2.5 equiv.) and 4A molecular sieves in dry DMF were successively added the aryl iodide (1 equiv.), 2,3-dihydrofuran (10 equiv.), and palladium acetate (0.05 equiv.). For convenience, the reaction mixture was then stirred overnight at room temperature (20 °C), unless otherwise stated. Work-up was performed as detailed in conditions A.

^{c)} Non optimised yields of isolated products.

^{d)} Yields in parentheses were determined by GLC against an internal standard.

e) Reaction time: 5h - 6h.

might stabilize the palladium catalyst in the absence of ligand phosphine. On the other hand, the selectivity of the reaction was lowered as the temperature increased (entry 5 compared to entry 4).

Although detrimental to the reaction yield, use of tetra-n-butylammonium bromide was beneficial for the selectivity (entry 6). Surprisingly, tetra-n-butylammonium acetate was far less efficient than tetra-nbutylammonium chloride or bromide when used in conjunction with potassium acetate, as a mixture of compounds 1 and 2 was obtained (entry 7). Interestingly however, when KOAc was omitted, i. e. when tetra-nbutylammonium acetate was used both as base and tetraalkylammonium salt, phenylation of 2,3-dihydrofuran led to the formation of compound 1, in high yield and with a high selectivity (entry 8).

Optimum conditions (Table 1, entries 4 and 8) have thus been found to synthesize 2-aryl 2,5-dihydrofuran and 2-aryl 2,3-dihydrofuran conveniently, under mild conditions (room temperature) and in high yields (Table 2 and Scheme 2).

$$ArI + \begin{pmatrix} O \\ M \end{pmatrix} \xrightarrow{\text{Cat. Pd(OAc)_2}} Ar \xrightarrow{\text{O}} 75\% - 95\%$$

$$ArI + \begin{pmatrix} O \\ M \end{pmatrix} \xrightarrow{\text{Cat. Pd(OAc)_2}} Ar \xrightarrow{\text{O}} 75\% - 95\%$$

$$Cat. Pd(OAc)_2 \xrightarrow{\text{KOAc, n-Bu_4NCl}} Ar \xrightarrow{\text{O}} 75\% - 92\%$$
Scheme 2
$$DMF, 20 \circ C \xrightarrow{\text{O}} 75\% - 92\%$$

These results clearly show that selectivity of the arylation of 2,3-dihydrofuran can be highly controlled by an appropriate selection of the [Pd/Base/QX] catalyst system (very probably by efficiently preventing or promoting the migration of the double bond formed).

In conclusion, the procedure using tetraalkylammonium salts can be highly *flexible*. It can be effective, not only for enhancing the rate and selectivity of Heck-type reactions, but moreover, for directing at will the outcome of the reactions in order to perform them with the desired selectivity.

REFERENCES

- Heck RF. Palladium-catalyzed vinylation of organic halides. Org. React. 1982; 27. 345-390 and references cited therein. [1]
- Daves GD Jr, Hallberg A. Chem Rev. 1989; 89: 1433-1445.
- [2] [3] Heck RF. Vinyl substitutions with organopalladium intermediates. In: Trost BM, Fleming I, editors. Comprehensive Organic Synthesis. Oxford: Pergamon Press, 1991; Vol 4: 833-863 and references cited therein.
- De Meijere A, Meyer FE. Angew. Chem., Int. Ed. Engl. 1994; 33: 2379-2411 and references cited therein. [4]
- Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2-7 and references cited therein.
- Jeffery T. Recent improvements and developments in Heck-type reactions and their potential in organic synthesis. In: Liebeskind [6] LS, editor. Advances in Metal-Organic Chemistry. Greenwich CT: JAI Press, 1996, Vol 5: 153-260 and references cited therein. [7] Jeffery T. Tetrahedron Lett. 1994; 35: 3051-3054.
- Jeffery T, Galland, JC. Tetrahedron Lett. 1994; 35: 4103-4106. [8]
- [9] Jeffery T. Tetrahedron, 1996; 52: 10113-10130.
- Rigby JH, Hughes RC, Heeg MJ. J. Am. Chem. Soc. 1995; 117: 7834-7835. [10]
- Gibson SE, Middleton RJ. J. Chem. Soc., Chem. Commun. 1995: 1743-1744. [11]
- Rigby JH, Mateo ME. Tetrahedron, 1996; 52: 10569-10582. [12]
- Grigg R, Loganathan V, Sridharan V, Stevenson P, Sukirthalingam S, Worakun T. Tetrahedron, 1996, 52: 11479-11502. [13]
- [14] Overman LE, Poon DJ, Angew. Chem. Int. Ed. Engl., 1997, 36: 518-521.
- Moreno-Manas M, Pleixats R., Roglans A. Synlett, 1997: 1157-1158. [15]
- [16] De Meijere A, König B. Synlett, 1997: 1221-1232.
- Larock RC, Gong WH, Baker BE. Tetrahedron Lett. 1989; 30: 2603-2606. [17]
- [18] Larock RC, Gong WH. J. Org. Chem., 1990; 55: 407-408.