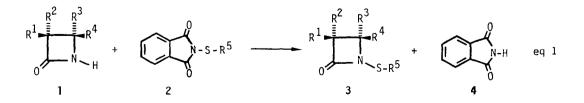
EFFICIENT N-SULFENYLATION OF 2-AZETIDINONES USING S-SUBSTITUTED THIOPHTHALIMIDES


bν

Steven R. Woulfe, Hisao Iwagami⁺ and Marvin J. Miller^{*+} Department of Chemistry, University of Notre Dame. Notre Dame, IN 46556

Reaction of N-unsubstituted β -lactams with various S-substituted thiophthalimides provides an efficient route to the corresponding N-thio-2-azetidinones.

As part of ongoing studies related to the synthesis of heteroatom activated β -lactam antibiotics¹, we required an efficient method for the preparation of substituted N-thio-2azetidinones 3. While a few simple N-thioaryl-2-azetidinones have been prepared by the reaction of 2-azetidinones with aryl sulfenyl halides², none of the related synthetic methods could be effectively utilized for our eventual goals. Because of the utility of substituted thiophthalimides 2^3 as reagents for sulfenylations⁴, we examined their reaction with 2azetidinones 1 (eq. 1). We found that treatment of variously substituted g-lactams 1 with derivatives of 2 in the presence of a catalytic amount of triethylamine cleanly gave the desired substituted N-thio-2-azetidinones 3 in good to excellent yields⁵. Representative results are summarized in Table I.

In a typical reaction, 1 mmol of the 2-azetidinone, 1 mmol of the substituted thiophthalimide and 2 µL of triethylamine were added to 20 mL of dry benzene and stirred under nitrogen at 25°C. The reaction was monitored by TLC. Upon completion, the solution was cooled in an ice bath and the precipitated phthalimide was removed by filtration. The filtrate was evaporated and the residue chromatographed on silica gel to provide the product in yields ranging from 46-96% (Table I).

Т	at	1	е	I
	~ ~		<u> </u>	•

Products from the sulfenylation of 2-azetidinones with S-substituted thiophthalimides

entry	2-azetidinone	thiophthalimide	solvent ^a rxn time	product	yield (%)
			(h)		
1		Ft-S CO ₂ R	benzene (0.75)	$CbzNH = H \\ 0 \\ N \\ S \\ Cb_2 \\ N \\ S \\ Cb_2 \\ R \\ Cb_2 \\ R \\ S \\ Cb_2 \\ R \\ Cb_2 \\ R \\ S \\ Cb_2 \\ $	90
	5	6 R=CH ₃		7 R=CH ₃ ^b	
2	5	8 R=t-Bu	benzene (0.33)	9 R=t-Bu	96
3	5	Ft-S CbzNH 10	benzene (2.0)	$\begin{array}{c} H \\ CbzNH \\ 0 \\ 11 \\ CbzNH \\ H \\ CbzNH \\ H \end{array}$	66
4	0Ac 0 N H	6	benzene (1.0)	0 13 0Ac	74
5	$ \begin{array}{c} $	Ft-S-Ft 15	DMF (15.0)	$0 \qquad SR^{1} \qquad SF^{1} \qquad SF^{1}$	46
6	17 R ¹ =CS ₂ Et	15	chloroform (2.75)	18 R ¹ =CS ₂ Et	53
7	12	15	benzene (15.0)	$ \begin{array}{c} $	64
8	12	15	chloroform (2.0)	OAc 0 S-Ft 20	80

a All reactions were performed in the presence of a catalytic amount of triethylamine at room temperature.

b Obtained as a mixture of configurational isomers^{5,14}.
c See text for details.

Sulfenylation of the 3(S)-(benzyloxyformamido)-4(S)-methyl-2-azetidinone 5^6 , a useful intermediate in the synthesis of the monobactam antibiotics⁷, with S-phthalimido-thioacetic acid esters **6** and 8^8 provided the novel S-azetidinyl-thioacetates **7** and **9** respectively (Table I, Entries 1 and 2). The S-azetidinyl-cysteine derivative **11** was also prepared from 2-azetidinone **5** and the corresponding S-phthalimido-cysteine compound 10^9 (Entry 3). Even the sterically hindered 4-tritylthio-2-azetidinone 14^{10} reacted with N-N'thiobisphthalimide 15^{11} to give **16** in moderate yield (Entry 5). Other 4-substituted 2-azetidinones (12^{12} and 17^{13}) that are useful for the synthesis of bicyclic β -lactam antibiotics were also sulfenylated in the same manner (Entries 4 and 6). Interestingly, treatment of the 4-acetoxy-2-azetidinone **12** with **15** in refluxing benzene for 2 h gave a mixture of the S-azetidinyl-thiophthalimide **20** (45%) and the novel bis-azetidinyl sulfur compound **19** (39%). Longer reaction times in benzene gave predominatly the bis-sulfenylated product **19** (Entry 7). Compound **20** was isolated in 80% yield by performing the reaction in chloroform at room temperature (Entry 8).

Additional examples of a second nucleophilic displacement reaction on S-azetidinyl thiophthalimides are being explored. In addition, we are currently examining the scope of this sulfenylation reaction in attempts to make substituted N-thio-2-azetidinones suitable for biological testing.

Acknowledgements: We gratefully acknowledge the support of NIH, Eli Lilly and Company, a Reilly Fellowship for SRW, and support for a leave of absence for HI from Ajinomoto Co. Inc.

References and Notes

- [#] Fellow of the Alfred P. Sloan Foundation, 1981-1985. Recipient of a NIH Career Development Award (1983-1988).
- * 🛛 On leave from Central Research Laboratories, Ajinomoto Co. Inc., Kawasaki, Japan.
- A) Woulfe, S. R.; Miller, M. J. <u>Tetrahedron Lett</u>. 1984, 3293. The Squibb Group has recently disclosed similar results. See: Breuer, H.; Straub, H.; Treuner, U. D.; Drossard, J.-M.; Höhn, H.; Lindner, K. R. abstract no. 135 presented at the Twenty-fourth Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, D. C. 1984. See also: Von Heyden GmbH, [German Patent] DE 33 28 047 Al (issued Feb. 9, 1984) [inventors H. Breuer, H. Straub and U. D. Treuner].
 B) Gordon, E. M.; Ondetti, M. A.; Pluscec, Jelka,; Cimarusti, C. M.; Bonner, D. P.; Sykes, R. B. J. Am. Chem Soc. 1982, 104, 6053.
- Drey, C. N. C.; Lowbridge, J.; Ridge, R. J. <u>J. Chem. Soc. Perkin I</u> 1973, 2001. Ihara, M.; Haga, Y.; Yonekura, M.; Ohsawa, T.; Fukumoto, K.; Kametani, T. <u>J. Am. Chem. Soc.</u> 1983, <u>105</u>, 7345.
- 3. Behforouz, M.; Kerwood, J. E. J. Org. Chem. 1969, 34, 51.
- Boustany, K. S.; Sullivan, A. B. <u>Tetrahedron Lett</u>. 1970, 3547. Harpp, D. N.; Ash, D. K.; Back, T. G.; Gleason, J. G.; Orwig, B. A.; VanHorn, W. F. <u>Tetrahedron Lett</u>. 1970, 3551.

Harpp, D. N.; Back, T. G. Tetrahedron Lett. 1971, 4953.

- 5. A partial list of characterization data includes: 7, colorless oil; ¹H NMR (CDCl₂, 300 MHz, 30°C) 6 = 1.45 (d, 3H), 3.5 (dd, 2H), 3.75 (s, 3H), 3.85 (m, 1H), 4.4 (dd, 1H), 5.1 (s, 2H); 5.6 (bd, 1H), 7.4 (s, 5H). At lower temperatures (-20°C) a 9:1 mixture of configurational isomers about the N-S linkage was discernable¹⁴. The coalescence temperature was near room temperature. IR (in CDCl₂) 1775 cm⁻¹. 9, colorless oil; 1 H NMR (CDC12, 90 MHz) & = 1.35 (d, 3H), 1.45 (s, 9H), 3.4 (dd, 2H), 3.9 (m, 1H), 4.3 (dd, 1H), 5.2 (s, 2H), 6.1 (bd, 1H), 7.4 (s, 5H); IR (in CDCl₃) 1775 cm⁻¹. 11, colorless oil; 1 H NMR (CDC1₂, 90 MHz) & = 1.3 (d, 3H), 3.15 (dq, 2H), 3.7 (m, 1H), 3.75 (s, 3H), 4.4 (dd, 1H), 4.7 (m, 1H), 5.15 (pair of s, 4H total), 6.0 (bd, 1H), 6.2 (bd, 1H), 7.3 (s, 10 H); IR (in CDCl₂) 1770 cm⁻¹, 13, yellow oil; ¹H NMR (CDCl₂, 90 MHz) δ = 2.1 (s, 3H), 3.1 (dd, 1H), 3.4 (dd, 1H), 3.5 (dd, 2H), 3.8 (s, 3H), 6.2 (dd, 1H); IR (neat) 1785 cm⁻¹. 16 white solid; ¹H NMR (CDCl₃, 90 MHz) δ = 2.4 (t, 2H), 4.6 (dd, 1H), 7.2-7.6 (m, 15H), 7.8-8.1 (m, 4H); IR (in CHCl₃) 1805, 1780 cm⁻¹. 18, yellow oil; ¹H NMR (CDCl₃, 90 MHz) $\delta = 1.4$ (t, 3H), 3.25 (dd, 1H) 3.4 (q, 2H), 3.8 (dd, 1H), 6.0 (dd, 1H), 7.9 (m, 4H); IR (in CHCl₃) 1810, 1790 cm⁻¹. 19, white powder, mp 126-128°C; ¹H NMR (CDCl₃, 90 MHz) δ = 2.2 (s, 6H), 3.0 (dd, 2H), 3.5 (dd, 2H), 6.3 (dd, 2H); IR (KBr) 1790 cm⁻¹. 20, white solid, mp 146-149°C; ¹H NMR (CDCl₂, 90 MHz) δ = 2.1 (s, 3H), 3.0 (dd, 1H), 3.5 (dd, 1H), 6.3 (dd, 1H), 7.8-8.2 (m, 4H): IR (KBr) 1820, 1810 cm⁻¹.
- Prepared from Cbz-L-threonine methyl ester by the procedure outlined in Miller, M. J.; Biswas, A.; Krook, M. A. Tetrahedron 1983, 39. 2571.
- Floyd, D. M.; Fritz, A. W.; Cimarusti, C. M. J. Org. Chem. 1982, <u>47</u>, 176. Cimarusti, C. M.; Applegate, H. E.; Chang, H. W.; Floyd, D. M.; Koster, W. H.; Slusarchyk, W. A.; Young, M. G. J. Org. Chem. 1982, <u>47</u>, 179. Slusarchyk, W. A.; Dejneka, T.; Gordon, E. M.; Weaver, E. R.; Koster, W. H. <u>Heterocycles</u> 1984, <u>21</u>, 191. Cimarusti, C. M.; Sykes, R. B. <u>Medicinal Research Reviews</u> 1984, <u>4</u>, 1.
- Prepared by reaction of potassium phthalimide with the sulfenyl chloride generated in situ from methyl and t-butyl mercaptoacetate, respectively. The characterization data of 6 prepared in this manner was identical to literature data. See: Kirby, G. W.; Lochead, A. W. J. Chem. Soc., Chem. Comm. 1983, 1325.
- Prepared in the same manner reported for the trifluoroacetyl derivative. See: Harpp, D. N.; Back, T. G. J. Org. Chem. 1971, 36, 3828.
- 10. Brain, E. G.; Broom, N. J. P.; Hickling, R. I. J. Chem. Soc. Perkin I 1981, 892.
- Kalnins, M. V. <u>Can J. Chem</u>. 1966, <u>44</u>, 2111. Harpp, D. N.; Back, T. G. <u>Tetrahedron Lett</u>. 1972, 1481.
- 12. Clauss, K.; Grimm, D.; Prossel, G. Liebigs Ann. Chem. 1974, 539.
- 13. Lang, M.; Prasad, K.; Gosteli, J.; Woodward, R. B. <u>Helv. Chim. Acta</u>. 1980, <u>63</u>, 1093.
- 14. Raban, M.; Kost, D. Tetrahedron. 1984, 40, 3345.

(Received in USA 3 June 1985)