Journal of Molecular Structure 1054-1055 (2013) 76-82

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Molecular structure, vibrational and EPR spectra of Cu(II) chloride complex of 4-amino-1-methylbenzene combined with quantum chemical calculations

T. Bardakçı *, M. Kumru, S. Güner

Department of Physics, Faculty of Arts and Sciences, Fatih University, 34500 Büyükçekmece, İstanbul, Turkey

HIGHLIGHTS

- Frequencies and the geometry parameters of L and [CuCl₂L₂] were
- calculated. • The DFT results were compared with FT-FIR, FT-IR, and dispersive Raman data.
- The normal modes have been assigned on the basis of the PED.
- EPR was performed to investigate the molecular arrangement around the copper atom.

A R T I C L E I N F O

Article history: Received 19 July 2013 Received in revised form 11 September 2013 Accepted 18 September 2013 Available online 25 September 2013

Keywords: IR and Raman spectra EPR DFT 4-Amino-1-methylbenzene Aniline derivatives Cu(II) complex

ABSTRACT

Transition metal complex of $CuCl_2$ with L = 4-amino-1-methylbenzene, i.e., $[CuCl_2L_2]$, has been synthesized and characterized by elemental analyses, FT-IR, dispersive Raman and EPR methods. The geometrical structure and vibrational spectra of L and $[CuCl_2L_2]$ have been investigated in terms of density functional calculations employing the 6-311G+(d,p) basis set. The normal modes have been assigned on the basis of the percent potential energy distribution (PED) of the internal motions in each vibrational modes. The effects of the coordination on vibrational modes have been investigated. The experimental vibrational and EPR spectral studies and theoretical calculations find the title complex as a doublet with one unpaired electron.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Aniline and its derivatives are widely used in electro-optical and microelectronic devices such as diodes and transistors, and as pharmaceuticals [1–5]. The aniline derivative 4-amino-1-meth-ylbenzene ($4-C_7H_9N$), which is abbreviated as L in this study, con-

sists of a methyl group attached to aniline at the para position. It is also known as *p*-toluidine, *p*-methylaniline, 4-methylaniline, *p*aminotoluene and 4-aminotouluene. L and related compounds have wide applications as an intermediate in the production of dyes [6] and as ligands in coordination chemistry [7–16].

Despite extensive studies on vibrational spectra of transition metal complexes of aniline and its derivatives [7-16], to the best of our knowledge, neither complete vibrational or theoretical study has been performed on CuCl₂ complex of L, i.e., on [CuCl₂L₂]. In this

G R A P H I C A L A B S T R A C T

CrossMark

^{*} Corresponding author. Tel.: +90 212 8663300/2059; fax: +90 212 8890832. *E-mail address*: tayyibe.b@gmail.com (T. Bardakçı).

^{0022-2860/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.molstruc.2013.09.025

study, we investigate IR and Raman spectra of L and its $[CuCl_2L_2]$ complex experimentally. To assign the experimental vibrational bands in terms of internal vibrations in the modes, we performed density functional theory (DFT) calculations. We have already shown that the hybrid DFT functional B3LYP is superior to the HF and MP2 methods in investigating vibrational spectra of L [3]. The effects of coordination on the vibrational modes have also been discussed. Moreover, we have investigated the structure of the [CuCl_2L_2] complex based on the experimental vibrational and EPR spectra as well as theoretical DFT studies.

2. Experimental

2.1. Material and synthesis

The ligand, L and CuCl₂ at the reagent grade were purchased from Aldrich Chemical Company Inc., and used without further purification.

 $[CuCl_2L_2]$ was synthesized by adding two moles of L to one mole of CuCl_2 in ethyl alcohol with constant stirring. The precipitated complex was filtered, washed with diethylether and dried in vacuum. All these processes were carried out at room temperature. The experimental C, H, N and Cu contents of the synthesis complex agree very well with the theoretically expected contents of the $[CuCl_2L_2]$ (see Table 1).

2.2. FT-IR measurements

The 3500–500 cm⁻¹ region FT-IR spectra of L and [CuCl₂L₂] were recorded on a Nicolet 6700 Fourier Transform IR (FT-IR) spectrometer with attenuated total reflectance (ATR) sampling technique at room temperature. The far region (650–50 cm⁻¹) FT-IR (FT-FIR) spectra of L and [CuCl₂L₂] were recorded on the same spectrometer but by preparing polyethylene (PE) pellets. PE pellets were prepared as described previously taking the sample/PE ratio as 1/10 [17], i.e., ~8 mg of PE and 0.8 mg of sample were mixed and ground in a mortar. The metalic die was heated to 230 °C, and the temperature of the die surface was expected to be 120-140 °C (since the melting point of PE is 120–130 °C). The mixture of PE and samples were added to the die, and put under 6-ton pressure for 2 min. Then the die was disassembled and the PE pellet was put in the pellet holder of FT-IR spectrometer to record the far IR region of the spectrum. Since the expansion is big for far region, the spectra of the title molecules appear discontinuous.

2.3. Dispersive Raman measurements

The room temperature $3500-50 \text{ cm}^{-1}$ region Raman spectra of L and [CuCl₂L₂] were recorded with Dispersive Raman Microscope (DXR) by using a laser of 532 nm wavelength. At the laser powers that do not burn the present dark-colored complex, a good-resolved dispersive Raman spectrum could not be recorded.

2.4. EPR measurement

A conventional X-Band Bruker EMX model EPR spectrometer employing an AC magneticfield (5 kHz) modulation technique

Table 1

Elemental analysis of the $[CuCl_2L_2]$ as percentage.

Comp.	Found (cal.)%							
	Cu	С	Ν	Н				
[CuCl ₂ L ₂] (Theoretical)	18.49 (18.22)	48.16 (48.21)	7.84 (8.03)	5.17 (5.21)				

was used to record the first-derivative absorption signals at the room temperature. A cylindrical quartz tube was used to place the powder sample in the cavity. Operating conditions were chosen as 0.2 mW microwave power, 1 Oe modulation amplitude, 3300 Oe centerfield, 600 Oe sweep width, 81.92 ms time constant and 83.89 s sweep time with multiple accumulations to enhance the signal-to-noise ratio.

3. Quantum chemical calculations

Quantum chemical calculations were performed with Gaussian 03 software package [18] on a linux server cluster. The structures and normal modes were visualized by Gausview 03 program [19]. The geometry optimizations, vibrational spectra calculations, and percent potential energy distribution (PED) of free L and [CuCl₂L₂] complex in the gas phase were performed by the DFT exchange-correlation functionals BVP86 and B3LYP employing the 6-311G+(d,p) basis set. BVP86 is a combination of Becke's 1988 exchange functional [20], Vosko's correlation functional V for local spin density part [21] and Perdew's 1986 gradient correlation functional [22] while B3LYP consists of Becke's three-parameter exchange and Lee–Yang–Parr's correlation functional [23–25].

4. Results and discussion

4.1. Molecular structure

The optimized molecular structures of free L and $[CuCl_2L_2]$ complex in the gas phase at the room temperature (see Fig. 1 and Table 2) have been obtained in terms of BVP86 and B3LYP density functionals with the 6-311G+(d,p) basis set. The standard error S and the mean absolute error MAE in the bond lengths relative to the previous X-ray data of L [26] are respectively 0.183 and 0.014 with B3LYP, and 0.184 and 0.018 with BVP86. S and MAE for the bond angles are respectively 0.464 and 1.213 with B3LYP, and 0.470 and 1.125 with BVP86. Therefore, B3LYP performs slightly better than BVP86 both for the bond lengths and the bond angles.

DFT calculations predict some changes in the geometry parameters of L with coordination. For instance, C–N bond has been increased from 1.404 Å to 1.439 Å with BVP86, and from 1.401 Å to 1.442 Å with B3LYP. N–H bond has also been increased 0.007 Å with two of the methods. C–C bonds generally remain unchanged; however bonds close to Nitrogen atom i.e. C2–C3 and C3–C4 have been decreased because of coordination.

 $[CuCl_2L_2]$ complex can in principle be found in doublet, quartet and sextet spin states with one, three and five unpaired electrons, respectively. The present DFT calculations exclusively predict doublet ground state with one unpaired electron for the complex at the room temperature (Table 3). The quartet and sextet spin states lie ~80 and ~160 kcal/mol above the ground-state doublet, respectively. Thus these two higher energy spin states are not accessible at the room temperature. DFT calculations predict the Cu–N bonds by 0.17 Å shorter than the Cu–Cl bonds (Table 4).

4.2. Vibrational assignments

All observed IR and Raman normal modes of L and $[CuCl_2L_2]$ (Figs. 2–4) have been assigned with the aid of DFT calculations (Table 5). The DFT calculations overestimate generally the vibrational frequencies due to the neglect of crystal packing effects and anharmonicity as well as the basis set and electronic correlation incompleteness. Therefore, we derived scaling factors on L and applied them to $[CuCl_2L_2]$ to approximately account for the computational errors. For the frequencies above and below 1623 cm⁻¹, the BVP86 scaling factors are 0.974 ($R^2 = 0.79$) and 1.005 ($R^2 = 0.996$) and, the

Fig. 1. The optimized geometries of (a) the ligand L (b) the complex [CuCl₂L₂].

Table 2	
Geometry parameters of free L and [CuCl ₂ L ₂].	

	Experimental ^a	BVP86 – 6-311G	G+(d,p)	B3LYP – 6-311G+(d,p)		
		L	[CuCl ₂ L ₂]	L	[CuCl ₂ L ₂]	
Interatomic distance (Å)						
C1–C2	1.40	1.398	1.397	1.392	1.392	
C2–C3	1.39	1.409	1.403	1.401	1.395	
C3–C4	1.36	1.409	1.403	1.401	1.395	
C4–C5	1.39	1.397	1.397	1.391	1.392	
C5–C6	1.40	1.406	1.407	1.399	1.399	
C6–C1	1.39	1.406	1.407	1.398	1.399	
C—N	1.43	1.404	1.439	1.401	1.442	
C-CH ₃	1.55	1.512	1.511	1.510	1.509	
N—H	1.02	1.018	1.025	1.010	1.017	
C—H (ring)	1.08	1.094	1.092	1.086	1.084	
C—H (methyl)	1.09	1.102	1.101	1.094	1.093	
H···H (amino)		1.683	1.687	1.671	1.665	
H· · ·H (methyl)		1.776	1.776	1.764	1.765	
Angle (Degree)						
C6-C1-C2	121.5	121.8	121.5	121.7	120.6	
C1C2C3	119.2	120.6	119.6	120.6	118.1	
C2-C3-C4	120.3	118.0	119.9	118.1	120.6	
C3–C4–C5	120.5	120.6	119.6	120.6	121.7	
C4–C5–C6	120.5	121.8	121.5	121.7	121.7	
C5-C6-C1	117.8	117.2	117.8	117.2	117.2	
N15-C3-C2 (C4)		120.9	120.0	120.9	120.9	
C11–C6–C1 (C5)		121.4	121.1	121.4	121.4	
H—N—H	113.0	111.6	110.8	111.7	111.7	
C—C—H (methyl)		111.5	111.4	111.4	111.4	
H—C—H (methyl)	109.5	107.2	108.1	107.5	107.5	
H—N—C		115.0	112.0	115.3	115.3	

^a Taken from Ref. [26].

4.2.1. N—H vibrations

B3LYP scaling factors are 0.952 ($R^2 = 0.79$) and 0.976 ($R^2 = 0.996$), respectively. These scaling factors are similar to the previously derived factors for L [3].

Table 3

Computed relative energies (kcal/mol) of different spin states of [CuCl₂L₂].

	Relative energy (kcal/mol)	
	BVP86/6-311G+(d,p)	B3LYP/6-311G+(d,p)
Doublet	0.0	0.0
Quartet	81.7	83.2
Sextet	153.3	167.1

For primary amines, N—H streetching vibrations generally occur at 3500–3300 cm⁻¹ region [27,28]. In this study, the asymmetric and the symmetric N–H vibrations of L are observed at 3418 and 3337 cm⁻¹ in accordance with the literature. They downshift to 3301 and 3234 cm⁻¹, i.e., by 117 and 103 cm⁻¹, upon coordination. The modes at ~1600 and ~1500 cm⁻¹ contain coupled C–C stretching and NH₂ scissoring vibrations. They downshift by ~15 cm⁻¹ upon coordination. The NH₂ rocking vibration appears in the previous studies at 1074 cm⁻¹ for the free L and ~1100 cm⁻¹ for its transition metal complexes [3,7,8,16,29]. Analogously, in this study, DFT calculations show that NH₂ rocking vibration (41%) occurs at

${\sim}1100~\text{cm}^{-1}$ (scaled) for the complex, and at ${\sim}1075~\text{cm}^{-1}$ (scaled) for the free L.

4.2.2. C–N vibrations

Mixing of the several bands makes the identification of C–N vibrations difficult. Silverstein [30] assigned C–N stretching

2.130-2.094

2.082-2.081

Table 4Key geometry parameters of $[CuCl_2L_2]$ complex in the gas phase around the coordination site at different spin states.									
Interatomic distance (Å)	BVP86 6-311G+(d,p)	B3LYP 6-311G+(d,p)						
	Cu–Cl	Cu-N	Cu-Cl						
Doublet	2.261-2.261	2.090-2.090	2.272-2.272						

2.257-2.250

2 265-2 257

Quartet

Sextet

Fig. 2. The experimental mid region FT-IR spectra of L (top) and [CuCl₂L₂] (bottom).

Fig. 3. The experimental far region FT-IR spectra of L (top) and [CuCl₂L₂] (bottom).

vibration in the region 1382–1266 cm⁻¹ for aromatic amines. Correspondingly to this information, in this study C–N stretching vibration (11%) occurs at 1265 cm⁻¹ for the [CuCl₂L₂], and at \sim 1270 for the free L.

4.2.3. C-H vibrations

The aromatic C–H stretching vibrations appear in the region 3100–3000 cm⁻¹ [31–37]. They appear at \sim 3200 cm⁻¹ for L, and \sim 3100 cm⁻¹ for the complex. The asymmetric and symmetric methyl C–H stretchings appear usually in the regions of 2980–2920 cm⁻¹ and 2870–2840 cm⁻¹, respectively [3,7–16,38,39]. Consistent with these literature values, the asymmetric C–H stretchings are at 2913 and 2860 cm⁻¹ for L and at 2915 and 2860 cm⁻¹

2.265-2.262

2.271-2.250

Cu-N 2.089-2.089

2.133-2.084

2.117-2.116

Fig. 4. The experimental dispersive Raman spectra of L (top) and $\left[CuCl_2L_2 \right]$ (bottom).

for the complex. The symmetric C–H stretching appears at 2739 cm^{-1} for L and at 2732 cm^{-1} for the complex.

4.2.4. C-C vibrations

CC stretching modes are observed between the 1600 and 1200 cm^{-1} region both for free L, and complex [CuCl₂L₂], as in line with the previous study [3]. The CH in plane and out of plane bending vibrations usually couple with the C–C stretchings.

4.2.5. Metal-halogen and metal-ligand vibrations

The [ML₂X₂] complexes (M = metal; L = ligand; X = halogen) with one M–L and two M–X stretching IR bands that are mostly found below 600 cm⁻¹ [7,12,40] have molecular point group of C_i and polymeric octahedral geometry around the metal center due to packing in the solid state [41]. In the IR spectrum of the complex, there is only one Cu–N stretching at 155 cm⁻¹ and two Cu–Cl stretchings at 204 and 305 cm⁻¹. The present calculations find the Cu–N and the Cu–Cl bond lengths of the complex different to each other. These suggest distorted polymeric octahedral environment around the Cu(II) ion. It should be mentioned at this point that the calculations are performed in the gas phase, i.e., for single isolated molecules whereas the experiments refer to the solid-state bridged polymerical samples. Therefore, the vibrational calculations are especially useful to examine how the coordination affects the frequencies of the modes qualitatively.

4.3. EPR study

The experimental and simulated EPR spectra of the $[CuCl_2L_2]$ complex recorded for its powder and ethyle alcohol solution forms at the room temperature are shown in Fig. 5. Both spectra have similar line shapes that are characteristic for a polycrystalline sample containing a paramagnetic ion with rhombic field symmetry.

Table 5

Experimental and calculated wavenumbers of free L and [CuCl₂L₂].

Free L – 6-	311G+(d,p)				$[CuCl_2L_2] - 6-311G+(d,p)$					PED (%) assignments		
Experimen	tal	BVP86		B3LYP		Experiment	tal	BVP86		B3LYP		
FT-IR	Disp. Raman	Unscaled	Scaled	Unscaled	Scaled	FT-IR	Disp. Raman	Unscaled	Scaled	Unscaled	Scaled	
3418 s	3419 m, sh	3572	3479	3660	3484	3301 s		3478	3388	3568	3397	100 υNH ₂ (asym.)
3337 s	3336 s	3474	3384	3564	3393	3234 s		3385	3297	3481	3314	100 υNH ₂ (sym.)
3223 m	3225 w	3095	3015	3166	3014	3158 w,		3114	3033	3188	3035	91 υCH ring
3096 w		3092	3012	3163	3011	3118 m		3113	3032	3187	3034	92 υCH ring
3056 w,	3052 s	3076	2996	3148	2997	3061 vw		3092	3012	3165	3013	90 υCH ring
sh												
3010 m	3014 m, sh	3076	2996	3147	2996	3036 m		3092	3012	3164	3012	90 υCH ring
2913 m	2915 s	3033	2954	3093	2945	2915 m		3042	2963	3102	2953	97 υCH ₃ (asym.)
2860 m	2860 m	3004	2926	3066	2919	2860 m, sh		3013	2935	3075	2927	99 υCH ₃ (asym.)
2739 w	2738 w	2948	2871	3014	2869	2732 w		2954	2877	3021	2876	99 υCH ₃ (sym.)
1623 vs	1615 s	1618	1626	1666	1626	1613 w	1607 sh	1602	1610	1653	1613	81 υCC; 14 βNH ₂ (sciss.)
1581 w, sh		1603	1611	1653	1613	1594 w		1581	1589	1638	1599	87 βNH ₂ (sciss.); 13 υCC
		1572	1580	1619	1580	1568 s		1580	1588	1630	1591	68 υCC; 17 βNH ₂ (rock.)
1516 vs	1516 w	1503	1511	1549	1512	1514 vs		1578	1586	1545	1508	61 βCCH; 30 υCC
		1453	1460	1500	1464			1495	1502	1500	1464	62 βCH ₃ (asym.); 30 βCCH
1455 w,		1440	1447	1489	1453	1455 vw	1456 vs	1453	1460	1490	1454	96 βCH ₃ (asym.)
511		1414	1421	1457	1422			1440	1447	1459	1424	55 βCCH; 32 βCH ₃ (asym.); 13 βNH ₂
	1381 m	1363	1370	1415	1381	1379 w		1414	1421	1415	1381	93 βCH ₃ (sym.)
1345 w, sh		1341	1348	1354	1322		1354 s	1363	1370	1363	1330	63 βCCH; 21 βNH ₂ ; 12 υCC
1324 m	1321 w	1298	1304	1331	1299	1327 w		1349	1356	1335	1303	39 βCCH; 23 υCC; 20 βCH₃
1270 s	1275 m	1268	1274	1294	1263		1265 m	1301	1308	1239	1209	48 βCCH; 21 βNH ₂ ; 11 υCC; 11 υCN
	1214 s	1202	1208	1232	1202	1221 m		1214	1220	1231	1201	39 βCCH; 28 βCH ₃ ; 26 υCC
1177 m	1178 w, sh	1167	1173	1204	1175	1181 w		1201	1207	1207	1178	80 βCCH
1124 m	1127 vw	1119	1125	1151	1123	1148 vw		1168	1174	1168	1140	41 βNH ₂ (rock.); 52 βCCH
1074 m	1077 vw	1058	1063	1090	1064	1091 s		1132	1138	1130	1103	50 βCCH; 27 βNH ₂ ; 14 βCH ₃
1044 vw	1031 vw	1020	1025	1061	1036	1044 m, sh		1093	1098	1061	1036	80 τCCC-CH ₃
	1013 vw	998	1003	1030	1005	1022 m, sh	1022 w	1019	1024	1038	1013	50 βCCH; 27 βNH ₂ (rock.); 13 βCCH ₃
954 w		966	971	1000	976			1005	1010	1022	997	64 γNH ₂ (wag.); 33 γCCC
931 vw		914	919	961	938			971	976	1005	981	65 βCH ₃ ; 25 βCH
		895	899	939	916	963 vw		941	946	979	956	83 γCH; 15 γCCC
833 w, sh	840 vs	830	834	850	830	937 w	0.40	933	938	955	932	66 γCH; 13 γCH ₃ ; 10 γNH ₂
815 s		/8/	791	824	804	832 w, sh	843 W	910	915	842	822	63 ring breath.; 18 ν CH ₃ ; 17 ν CN
750 ch	741	784	788	820	800	8135	817 W	822 801	820	840	820	82 γ CH; 12 γ CCC
730 SII 601 m	741 W 712 w	734 602	738 605	750	752	742 m	753 ₩	801 702	805 796	829 740	809 722	48 wCC: 31 wCCH ₂ : 21 wCN
031 111	644 m	638	641	659	643	706 m	755 W	723	730	716	699	41 vCH: 30 vCCC: 20 vCH ₂
	535 vw	576	579	592	578	684 m	672 w	689	692	671	655	50 yNH_2 (wag.): 42 yCCC
501 m		488	490	508	496			648	651	663	647	32 γNH ₂ (wag.); 59 γCCC
	465 m	455	457	469	458	638 m		642	645	645	630	48 γNH ₂ (wag.); 42 γCCC
	410 w	402	404	418	408			621	624	627	612	63 γNH ₂ (wag.); 33 γCCC
	334 s	394	396	410	400	536 m		600	603	532	519	55 γ CCC; 17 γ NH ₂ (wag.); 14 γ CH ₃
		310	312	321	313	513 w, sh		508	511	528	515	56 γCCC; 16 γNH2 (wag.); 14 γCH ₃
174		290	291	299	292	486 w	460	463	465	478	467	42 vCCH ₃ ; 34 vCN; 23 vCC
174 vw		270	271	264	258	473 vw	460 w	457	459	473	462	42 ν CCH ₃ ; 33 ν CN; 23 ν CC
131 W		134 30	132	139 28	130 27	443 M	412 w	399 305	401 307	417	407 300	93 YUU 34 WCH: 33 WNH-: 22 WCH
		20	20	20	21	390 m	712 W	380	382	395	386	эн үсп, ээ үмп ₂ , 2э үсп ₃ 38 вссн• 33 всм• 27 вссч
						330 III		374	376	390	381	39 BCCH: 32 BCN: 29 BCCH
						374 vw		373	375	389	380	34 γCN: 31 γCCH ₂ : 31 γCCC
						305 m		330	332	333	325	41 βCCH ₃ ; 27 βCCC; 16 βCN; 15
						281 m		286	287	297	290	41 βCCH ₃ ; 37 βCN; 21 βCCC
						270 vw		285	286	295	288	38 βCCH ₃ ; 38 βCN; 21 βCCC
						258 w		278	279	288	281	41 τCCCH; 38 τCCC-CH ₃ ; 19 τCCCN
						229 w		272	273	280	273	35 τCCC-CH ₃ ; 36 τCCCH; 23 τCCCN
						204 W		209	210	218	213	35 TLLL-LH ₃ ; 30 TLLLN; 11 ULLL
						155 M		1/1	1/2	180	176	40 TULU-UH3; 25 TULUN; 11 UUUN
						137 w		130	137	145 147	140	44 ICCCN, 20 TCCC-CH3; 22 TCCCH 32 TCCC-CH2: 32 TCCCN: 18 VCUCI
						123 w		129	130	135	135	46 τCCCN· 25 τCCC_CH_· 22 τCCCU
						107 w		114	115	119	116	50 τCCC-CH ₂ : 23 τCCCN· 19 τCCCH
						92 w		105	106	111	108	52 τCCC-CH ₃ ; 25 τCCCN: 22 τCCCH
						76 w		62	62	63	61	30 τCCC-CH ₃ ; 31 τCCCN; 34 τCCCH

Table 5 (continued)

Free L – (Free L – 6-311G+(d,p)		$[CuCl_2L_2] - 6-311G+(d,p)$						PED (%) assignments			
Experimental BV		BVP86	BVP86		B3LYP		Experimental		BVP86			
FT-IR	Disp. Raman	Unscaled	Scaled	Unscaled	Scaled	FT-IR	Disp. Raman	Unscaled	Scaled	Unscaled	Scaled	
								54	54	56	55	48 τCCC-CH3; 27 τCCCN; 10 γCuCl2
								48	48	47	46	50 τCCC-CH ₃ ; 29 τCCCN; 21 τCCCH
								46	46	46	45	43 τCCC-CH ₃ ; 41 τCCCH; 14 τCCCN
								45	45	38	37	84 γCH ₃
								42	42	37	36	78 γCH ₃ ; 19 τCCCH
								30	30	30	29	40 τCCC-CH ₃ ; 28 τCCCH; 15 τCCCN
								20	20	19	19	47 τCCC-CH ₃ ; 21 τCCCN; 27 τCCCH
								12	12	12	12	59 τCCC-CH ₃ ; 18 τCCCN; 18 γCuCl ₂

υ, stretching; τ, torsion; β in plane deformation; γ out of plane deformation.

Fig. 5. The experimental and simulated room temperature X-band EPR spectra of $[CuCl_2L_2]$ as powder and in EtOH solution.

Many Cu(II)-coordinated complexes exhibit hyperfine peaks or quasi-isotropic behavior (almost a single peak) due to solvent effects [42,43]. Although any part of the recorded EPR spectra does not include any hyperfine peak, the solution spectrum has a shoulder at its parallel part and the amplitude of perpendicular part is smaller compared with the powder EPR spectrum. Each part would have 4 peaks due to nuclear spin (I = 3/2) of copper atom. g_x and g_y can be defined as the Lande splitting factors when the externally applied DC field is in perpendicular while g_7 is in parallel alignment, respectively. They follow the trend $g_z > g_y > g_x$ and $g_{ll} > g_{\perp} > g_e$ (g_e is free electron g-value) suggesting Cu complexes have approximate axial symmetry D_{4h} (square planar, or octahedral with tetragonal distortion) with B_{1g} as the ground state of Cu(II) ion [16,44]. The unpaired electron is located mainly on the b_{1g} antibonding molecular orbital, which is the linear combination of $d_x^2 - y^2$ orbital of the copper and \emptyset_L ligand orbital of the adequate symmetry [45–47]. The character of the Cu complexes can be estimated from the g_{ll} (or g_z) values which are sensitive to the bond covalency [45]. The centers giving $g_z \ge 2.3$ are ionic in their nature and $g_z < 2.3$ have the dominant covalent character. Our sample has $g_z \approx 2.18$ values for both powder and solution forms.

The anisotropic spin-Hamiltonian \hat{H}_{aiso} of rhombic symmetry is given by the expression

$$\widehat{H}_{aiso} = \beta_e(g_x B_x \widehat{S}_x + g_y B_y \widehat{S}_y + g_z B_z \widehat{S}_z)$$
(1)

where β_e and *S* denote Bohr magneton and the electronic spin angular momentum of the magnetic ion, respectively.

In a randomly oriented powder system, each paramagnetic center has similar properties as it would have in a large crystal. However, the crystallite symmetry axes of each powder molecule are subjected to every possible direction of any externally applied DC magnetic field. Hence, the overall paramagnetic system exhibits resonances at all fields, B_R varying between perpendicular and parallel aligments. For a general orientation of a single crystallite containing a paramagnetic ion, the resonance field is obtained from Eq. (1) [42,48–51] as

$$B_{R} = hf/g_{eff}\beta_{e}$$

$$= \left[g_{x}^{2} \sin^{2}\theta\cos^{2}\theta + g_{y}^{2} \sin^{2}\theta \sin^{2}\theta + g_{z}^{2} \cos^{2}\theta\right]^{-1/2} hf/\beta_{e}$$
(2)

where the angles θ and \emptyset describe the orientation of the magnetic field H in the *g*-tensor principal axis, *h* and *f* are the Plank's constant and the microwave frequency, respectively. Exact theoretical fit of experimental spectra requires summation from 0 to 90 degrees both for θ and \emptyset .

The probability of each spin center experiencing a resonant field is proportional to $\sin \theta$. The intensities of the absorption resonance peaks can be thus obtained by inserting a weighting factor in Eq. (2) [11,52,53]. As the resonance curves of each individual magnetic center have their own intrinsic line shapes and widths for the powder systems, the line width and line shape characteristics of spectra are analyzed in detail by EPR spectroscopy. These curves reach to their maximum at the resonance field B_R . That is, regardless of how far it is from the exact resonance field, B_R , any center can give absorption at any field even if it becomes undetectable experimentally. The contribution from any center to the whole absorption line at any field depends on the intrinsic line width. Therefore, an angle-dependent equation is used to describe the line width characteristics [42,54].

$$W_{eff}^2 = W_x^2 \sin^2 \theta \cos^2 \emptyset + W_y^2 \sin^2 \theta \sin^2 \emptyset + W_z^2 \cos^2 \theta \qquad (3)$$

To simulate the experimental spectra, we wrote a software in Matlab scientific language. The best fit is obtained by using the Lorentzian line shape function for intrinsic line properties (see Fig. 5). The simulations reveal that the solution and powder spectra have almost the same magnitude of EPR and line width fit parameters (see Table 6) and exhibit all characteristics features of the EPR peaks except the additional weak shoulder due to solvent. Since the environment of paramagnetic ion is not affected much from the solution due to its polymeric nature, the powder and solution EPR spectra are quite similar.

5. Conclusions

The FT-IR (including mid and far regions) and dispersive Raman spectral studies of free L and the synthesized $[CuCl_2L_2]$ complex, where L = 4-amino-1-methylbenzene, have been performed. The

Table 6

Anisotropic EPR and line width simulation parameters of [CuCl₂L₂].

Samples	g _x	g _y	g _z	g ave	<i>W_x</i> (Oe)	W _y (Oe)	W _z (Oe)	
Powder form Solution form	2.008 2.009	2.037 2.038	2.184 2.185	2.076 2.077	10 10	10 10	10 10	

The average *g*-factor is calculated from expression, $g_{ave} = (g_x + g_y + g_z)/3$.

geometry and vibrational spectra of the isolated complex in the gas phase have been calculated with BVP86 and B3LYP density functionals using the 6-311G+(d,p) basis set. The calculated vibrational frequencies of the free and complexed L after a scaling procedure agree reasonably well with the corresponding experimental frequencies. The experimental vibrational and EPR spectra suggest that the [CuCl₂L₂] complex has distorted polymeric octahedral geometry around the Cu(II) center and coordination takes place through nitrogen atom of the free ligand, and the calculations find the title complex as a doublet with one unpaired electron.

Acknowledgement

Authors would like to thank Dr. Ahmet Altun for critically reading the manuscript.

References

- [1] M.E. Vaschetto, B.A. Retamal, A.P. Monkman, J. Mol. Struct. (Theochem) 468 (1999) 209–221.
- [2] J. Whysner, L. Verna, G.M. Williams, Pharmacol. Ther. 71 (1996) 107–126.
- [3] A. Altun, K. Golcuk, M. Kumru, J. Mol. Struct. (Theochem) 637 (2003) 155-169.
- [4] G. Inzelt, V. Kertesz, Electrochim. Acta 42 (1997) 229–235.
- [5] V. Arjunan, S. Mohan, Spectrochim. Acta Part A 72 (2009) 436-444.
- [6] P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, A John Willey & Sons, 2007.
- [7] A. Altun, K. Golcuk, M. Kumru, Vib. Spectrosc. 33 (2003) 63-74.
- [8] K. Golcuk, A. Altun, M. Somer, M. Kumru, Vib. Spectrosc. 39 (2005) 68-73.
- [9] A. Altun, K. Golcuk, M. Kumru, Vib. Spectrosc. 31 (2003) 215–225.
- [10] A. Altun, K. Gölcük, M. Kumru, J. Mol. Struct. (Theochem) 625 (2003) 17–24.
- [11] K. Golcuk, A. Altun, M. Kumru, Spectrochim. Acta 59A (2003) 1841–1847.
- [12] K. Golcuk, A. Altun, M. Kumru, J. Mol. Struct. 657 (2003) 385–393.
- [13] S. Akyuz, T. Bulat, A.E. Ozel, G. Basar, Vib. Spectrosc. 14 (1997) 151–154.
- [14] E. Akalin, S. Akyuz, J. Mol. Struct. 482-483 (1999) 175-181.
- [15] S. Yurdakul, A.I. Sen, Vib. Spectrosc. 20 (1999) 27-33.
- [16] K. Golcuk, A. Altun, S. Guner, M. Kumru, B. Aktas, Spectrochim. Acta Part A 60 (1-2) (2004) 303–309.
- [17] E. Kendix, G. Moscardi, R. Mazzeo, P. Baraldi, S. Prati, E. Joseph, S. Capelli, J. Raman Spectrosc. 39 (2008) 1104–1112.
- [18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,

H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.

- [19] GaussView, Version 4.1, Roy Dennington II, Todd Keith and John Millam, Semichem, Inc., Shawnee Mission, KS, 2007.
- [20] A.D. Becke, Phys. Rev. A 38 (1988) 3098-3100.
- [21] S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200-1211.
- [22] J.P. Perdew, Phys. Rev. B 33 (1986) 8822–8882.
- [23] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [24] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
- [25] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623.
- [26] W. Tzeng, K. Narayanan, J. Mol. Struct. (Theochem) 446 (1998) 93–102.
- [27] G. Varsanyi, Assignments of Vibrational Spectra of 700 Benzene Derivatives, Wiley, New York, 1974.
- [28] A. Ismael, J.A. Paixã, R. Fausto, M.L.S. Cristiano, J. Mol. Struct. 1023 (2012) 128– 142.
- [29] C. Engelter, D.A. Thornton, M.E. Ziman, J. Mol. Struct. 49 (1978) 7–15.
- [30] M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compound, Wiley, New York, 1981.
- [31] M. Kumru, V. Küçük, T. Bardakçı, Spectrochim. Acta Part A 90 (2012) 28–34.
- [32] V. Küçük, A. Altun, M. Kumru, Spectrochim. Acta Part A 85 (2012) 92–98.
- [33] M. Kumru, V. Küçük, M. Kocademir, Spectrochim Acta Part A 96 (2012) 242– 251
- [34] V. Balachandran, S. Lalitha, S. Rajeswari, Spectrochim Acta Part A 97 (2012) 1023-1032.
- [35] M. Karabacak, D. Karagoz, M. Kurt, J. Mol. Struct. 892 (2008) 25-31.
- [36] V. Arjunan, T. Rani, S. Mohan, J. Mol. Struct. 994 (2011) 179–193.
- [37] G.O. Ildiz, S. Akyuz, Vib. Spectrosc. 58 (2012) 12–18.
- [38] S. Ramalingam, S. Periandy, B. Narayanan, S. Mohan, Spectrochim. Acta Part A 76 (2010) 84–92.
- [39] M. Kurt, M. Yurdakul, Ş. Yurdakul, J. Mol. Struct. (Theochem) 711 (2004) 25– 32.
- [40] E. Akalin, S. Akyuz, Vib. Spectrosc. 53 (2010) 140–145.
- [41] R.J.H. Clark, C.S. Williams, Inorg. Chem. 4 (1965) 350-357.
- [42] S. Güner, M.K. Sener, H. Dinçer, Y. Köseoğlu, S. Kazan, M.B. Koçak, J. Magn. Magn. Mater. 300 (2006) e530.
- [43] E. Forizs, L. David, O. Cozar, C. Craciun, M. Venter, M. Kilyen, J. Mol. Struct. 408 (409) (1997) 195.
- [44] R. Kripal, S. Misra, J. Magn. Magn. Mater. 294 (2005) 72.
- [45] M. Labanowska, E. Bidzinska, A. Parab, M. Kurdziela, Carbohydr. Polym. 87 (2012) 2605.
- [46] N.V. Loginova, T.V. Kovalcuk, R.A. Zheldakov, A.A. Chernyavskaya, N.P. Osipovic, G.K. Glushonok, G.I. Polozov, V.N. Povalishev, V.L. Sorokin, O.I. Shadyro, Polyhedron 25 (2006) 3603.
- [47] H.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143.
- [48] A. Kalkan, S. Güner, Z.A. Bayır, Dyes Pigments 74 (2007) 636.
- [49] J.A. DeGray, P.H. Rieger, Bull. Magn. Reson. 8 (1986) 95.
- [50] M. She, X. Chen, X. Yu, Can. J. Chem. 67 (1989) 88.
- [51] J.A. Weil, J.R. Bolton, J.E. Wertz, Electron Paramagnetic Resonance, John Wiley and Sons Inc., 1994.
- [52] Y.D. Kurt, B. Ülküseven, S. Güner, Y. Köseoğlu, Transit. Metal Chem. 32 (2007) 494–500.
- [53] A. Abragam, B. Bleaney, EPR of Transition Ions, Oxford University Press, Oxford, 1970.
- [54] R. Öztürk, S. Güner, B. Aktaş, A. Gül, Supramol. Chem. 17 (2005) 233.