Homolytic Aromatic Substitutions of Pentatomic Heteroaromatics with Electrophilic Carbon Radicals Generated by Alkyl Halides and Triethylborane.

Enrico Baciocchi,* Ester Muraglia

Dipartimento di Chimica Università "La Sapienza" and Centro CNR per lo Studio dei Meccanismi di Reazione, P.le A. Moro 5, 00185 Rome, Italy.

Abstract: An efficient homolytic aromatic substitution of pyrroles, furan and thiophene by \cdot CH₂CO₂Et and \cdot CH(CH₃)CO₂Et has been carried out, the radicals being generated by autoxidation of BEt₃ in the presence of XCH₂CO₂Et and XCH(CH₃)CO₂Et (X=Br, I).

Key Words: Triethylborane autoxidation, Homolytic Aromatic Substitutions, 2-Heteroarylacetic Acids, Electrophilic Carbon Radicals.

In the last two decades, free radical reactions leading to carbon-carbon bond formation have emerged as a very powerful tool for the synthesis of a large variety of organic compounds.¹ Thus, studies concerning the development of methods thereby carbon radicals can be generated and reacted with suitable substrates raise continuous interest.

 $R_3B + O_2 \longrightarrow R_2BO_2^* + R^*$ (1)

The formation of carbon radicals by trialkylborane autoxidation (eq. 1) is long known;² however, only few reports have recently dealt with the possible use of this reaction to generate other carbon radicals by means of the reaction of R, formed in eq. 1, with an alkyl bromide or iodide (eq. 2).

R^{*} + R^{*} + R^{*} + R^{*} (2)

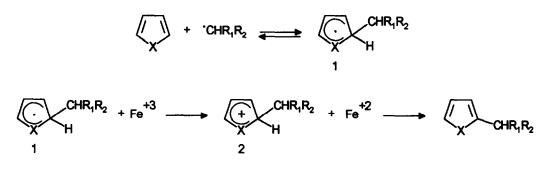
When R'· is sufficiently more stable than R·, equilibrium (2) is driven to the right and reactions promoted by R'· can be accomplished. Thus, the BEt₃/RX system has been employed to obtain the malonyl radical (eq. 2, R=Et, R'=CH(CO₂Me)₂, X=Br) for the malonylation of 2-benzoylpyrrole,³ and to generate a number of alkyl radicals (eq. 2, R=Et, R'=*t*-Bu, *i*-Pr, CH₂I, *n*-C₆H₁₃) which are then reacted with vinyl ketones.⁴

entry	Substrate	Alkyl halide	Product	yield (%) ^b
1	No No	ICH(CH ₃)CO ₂ Et	AH-COLET Me	54
2	N Me	BrCH(CH ₃)CO ₂ Et	√ N CH-∞2Et	39
3		BrCH ₂ CO ₂ Et	Ch Chiroches	47
4	Ne Contraction of the second s	ICH ₂ CO ₂ Et	Ma No chicole	55°
5	H ₉ C	I(CF ₂) ₃ CF ₃	H,C, O, N, CCF ₂) ₃ CF ₃	55
6	$\langle \rangle$	ICH ₂ CO ₂ Et	C CH_COJEt	60 d ,e,f
7	$\langle \mathbf{x} \rangle$	ICH ₂ CO ₂ Et	CH_CH_COLEI	56 ^d
8		BrCH(CH ₃)CO ₂ Et	CH-COLEI	47d

Table. Homolytic Aromatic Substitutions of Pentatomic Heteroaromatics Promoted by BEt₃ and Alkyl Halides In DMSO a

^a A 1.0 M solution of BEt₃ in hexane (1 ml) is added, at room temperature, to an open-air stirred mixture of the substrate (10-30 mmol), the alkyl halide (1.0 mmol) in the appropriate solvent (5 ml) which is either benzene or DMSO for pyrrole and its derivatives and DMSO for furan and thiophene. With the latter two heteroaromatics 1 mmol of $Fe_2(SO_4)_3 H_2O$ was also added. After 45 min additional BEt₃ was added (1 ml). When the halide is bromide, three further additions of BEt₃ were necessary. The mixture was diluted with brine and extracted with diethyl ether. The organic layer was washed with brine, dried over anhydrous Na_2SO_4 and evaporated. The products were then isolated by column chromatography. All products had spectroscopic data in agreement with the corresponding literature data.^{5a,b} The mass balance is good and the unreacted substrate can be recovered (exception is the unsubstituted pyrrole that underwent partial decomposition). ^b Isolated yield, with respect to the alkyl halide.

⁶ No reaction with BrCH₂CO₂Et. ^d 1 equivalent of $Fe_2(SO_4)_3 \cdot H_2O$ was added. ^e The yield is 20% in the absence of $Fe_2(SO_4)_3 \cdot H_2O$.


^f The yield is 19% with ethyl bromoacetate.

We have therefore considered of interest to investigate whether the above approach could represent a viable and general method alternative to that recently developed for the homolytic substitutions of electron-rich aromatic compounds by electrophilic carbon radicals.⁵

The results presented here (Table) show that this is the case and, in particular, that BEt₃, in combination with XCH_2CO_2Et or $XCH(CH_3)CO_2Et$ (X=Br, I) in DMSO provides us with an useful system for the synthesis of the very important 2-heteroarylacetic acids. The procedure is simple and very mild conditions (air is the oxidant!) are used. Even though the yields (not optimized) are slightly lower than those obtained in the previously studied Fe⁺²/H₂O₂ system, ^{5a} the present method has the additional advantage that, in several cases, it works well with the less expensive bromoacetic and 2-bromopropionic acids ethyl esters, as the alkyl halides, in the place of the corresponding iodides.

With pyrrole (or N-methylpyrrole) the reaction takes place also when electron-withdrawing groups are present, as shown by the efficient synthesis of the ethyl ester of Tolmetin (Table, entry 4); moreover, it can also be applied to the synthesis of perfluoroalkylpyrroles (Table, entry 5). With the less reactive furan and thiophene, lower yields are obtained under the same conditions used for pyrrole and its derivatives. However, with these substrates too, an efficient reaction is possible when an equimolar amount (with respect to the alkyl halide) of $Fe_2(SO_4)_3 \cdot H_2O$ is added (Table, entries 6, 7, 8).

Probably, the role of Fe⁺³ is that of easing the oxidation of the intermediate radical σ -complex (Scheme, X=O, S, R₁=CO₂Et, R₂=H, CH₃) to the final substitution product. In the absence of Fe⁺³, 1 can revert back to the reactants. Perhaps, with pyrrole and N-methylpyrrole Fe⁺³ is not necessary, presumably owing to the much higher stability of the cationic σ -complex 2 when X=NH or NCH₃ than when X=O or S. Thus, a reasonable hypothesis is that in the case of pyrrole derivatives oxidation of the σ -radical can be so easy as to be efficiently accomplished by air. The oxidation of the intermediate σ -complex is probably very difficult also in the perfluoroalkylation reaction. Accordingly, using perfluoroalkyl iodide no perfluoroalkylation of furan and thiophene has been possible, even in the presence of Fe₂(SO₄)₃·H₂O.

Scheme

Work is under way to extend the scope of this methodology to the homolytic substitution of homoaromatic systems⁶ as well as to other reactions of carbon radicals.

Acknowledgements. This work was carried out into the framework of the Progetto Finalizzato CNR Chimica Fine.

References and Notes

- Giese, B. Radicals in Organic Synthesis: Formation of the Carbon-Carbon Bond, Pergamon Press, Oxford, 1986; Curran, D. P. Synthesis 1988, 417, 489.
- Brown, H. C.; Midland, M. M. Angew. Chem. Internat. Ed. 1972, 11, 692; Allies, P. G.; Brindley, P. B. J. Chem. Soc. (B) 1969, 1126.
- 3. Artis, D. R.; Cho, I.-S.; Muchowsky, J. Can. J. Chem. 1992, 70, 1838.
- 4. Nozaki, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 403.
- (a) Baciocchi, E.; Muraglia, E.; Sleiter, G. J. Org. Chem. 1992, 57, 6817; Ital. Patent No 001405A/92.
 (b) Baciocchi, E.; Muraglia, E. Tetrahedron Lett., in press. (c) Baciocchi, E.; Ruzziconi, R. in Free Radicals in Synthesis and Biology, F. Minisci Ed. NATO ASI Series, Kenwer Academic Publisher, 1989, Chapter 14. (d) Baciocchi, E.; Dell'Aira, D.; Ruzziconi, R. Tetrahedron Lett. 1986, 2763.
- 6. Preliminary experiments have shown that an efficient reaction takes place with anisole.

(Received in UK 3 June 1993)