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REARRANGEMENT OF N-ALLYL-0,0.-DICHLOROAMIDES, - OR y-
FUNCTIONALIZED, TO SUBSTITUTED ANALOGUES OF THE
vy-AMINOBUTYRIC ACID (GABA)

Franco Bellesia, Luca Forti, Franco Ghelfi,* Gianluca Ghirardini, Emanuela Libertini,
Ugo M. Pagnoni, Adriano Pinetti and Nicola Prochilo
Dipartimento di Chimica dell'Universita, Via Campi 183, I-41100, Modena (ltaly)

Abstract: The rearrangement of y-chloro, P-hydroxy or B-vinyl N-allyl-N-benzyl-o0-
dichlorocarboxyamides to vy-aminobutyric acid analogues is efficiently promoted by
CuCI\N,N,N’ N’-tetramethylethylendiamine. With the B-vinyl functionalization a tandem radical-
radical reaction, yielding 3-aza-2-oxo-bicyclo[3,3,0]octane adducts, is also observed.

y-Aminobutyric acid (GABA) has been implicated in several neurologic and psychiatric
disorders such as epilepsy, Huntigton’s disease and parkinscnism.1 To increase the brain uptake
of GABA the prodrug approach using y-lactam derivatives appears one of the most promising.2

Among the different strategies devised for the synthesis of the y-lactam skeleton,
particularly efficient is the radical cyclization of N-allyl-o,a-halocarboxyamides, which entails
the closure between the C(3) and C(4) ring s.ites.3 The most attractive way to perform this
cyclization is the use of redox-catalysts, since a profitable C-Cl function is preserved i the

product (Scheme 1).3

* To whom correspondence should be addressed.
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We recently showed that CuCIN,N,N’N’tetramethylethyldiammina (TMEDA) is an
excellent catalyst for the rearrangement of scheme 143

The recent report of GABA analogues with a C-3 functionalized substituent” spurred us
to try the rearrangement of y~chloro (C), B-hydroxy (D) or B-vinyl (E) N-allyl-
N-benzyl-o,a~dichlorocarboxyamides. The y-lactams thus obtainable, besides being interesting
GABA analogues,6 are also synthetically appealing adducts that could be used for the

preparation of bioactive molecules, such as potential non peptide substance P (SP) antagonists.7
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a) Fe'/FeCl, DMF. 100°C; b) LiOH, i-C3H,OH/OH, -7°C; ¢) (COCIR/DMF, CH:Cly, 2040°C; d)
Triethylamine, room temperature; ) n-Butyllitium, THF, -78°C; f) RCHO, THF, -78°C; g) Allylbromide,
THE, -78°C: h) CuCVYTMEDA, CHiCN, 60°C.

Scheme 2
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Table. Rearrangement of the N-allyl-N-benzyl-2 2-dichloroamides.”

item  Substrate R, R’ Product conv.  yield o.b Cis ratio
%" (cis:itrans) %
1 C1 -CH,CLH F1 100 96(89:11) 52:48°
of  C1 -CH,CL H F1 93 86(52:48)"
38 C1 -CH.CL; H F1 100 98(67:33)°
4t Ct -CH.CL, H F1 100 98(44:56)°
5 C2 -CH;0C,H;s; H F2 100 95937y  53.47°
6 C2 -CH,OC:Hs; H F2 41 3781:19)°
7 Cc3 -CH,Cl; -CH, F3 100 98(98:2)%  53:47°
8 c4 -(CH,)s0Bzl; H F4 100  98(100:0)°  55:45°
9 D1 -CH, G1 100 76
100 D2 -CH; G2 100 97(95:5°  62:38°
n' D3 -CH; G3 100  98(91:9°  65:35°
A -CH; G4 100 97(84:16)°  51:49°
13t DS -2-furyl G5 90  78(90:10)°  53:47°
14 El H1 100 43"

a) 2:10° mol of substrate, 2-10 mol of CuCl, 4-10"* mol of TMEDA and 4 ml of acetonitrile {AN) were
used; reaction time 20 h, T=60°C. b) yield of isolated material. c) GC value. d) determined by HPLC. e)
determined by H-NMR. f) bipyridine replaces TMEDA. g) T=20°C. h) T=-10°C. i) OH protected as acetate.
1) OH protected as isobutanoate. m) OH protected as benzoate. n) 56% of 3-aza-3-benzyl-7-chloromethyl-1-
methyl-2-oxo-[3,3,0]-bicyclooctane I1 was observed, as mixture of two diastereoisomers (3:1).

By using methodologies developed in our laboratory, we performed the synthesis of the
- or y-finctionalized N-allyl-N-benzyl-o,a-dichlorocarboxyamides with yields ranging from

good to excellent (Scheme 2).4’8 The rearrangement of C, D and E to the respective 2-

pyrrolidnones F, G and H (Scheme 2) was then carried out in acetonitrile (AN) with
CuCINTMEDA at 60 °C, and Table reports the results obtained. Good yields were afforded with
all substrates C. The cyclization is cis-stereoselective,” and the cis:trans ratio is strongly
affected by the reaction temperature (Table: items 1, 3 and 4). This result can be understood by
considering that the C(3) stereogenic centre is configurationally unstable.’ As a result, the
isomer thermodynamically more stable, i.e. the

one with the C(3) and C(4) bulkier appendages trans, is formed, and the higher is the

temperature the faster is the equilibrium reached.
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Besides the marked stereoselectivity, a little but significative diastereoselectivity between
the two cis-adduct F, induced by the y-stereocenter, was also observed. Only few other
examples of stereoselective radical cyclizations which use extra-annular stereocenters are
knowm, given that the use of stereogenic centres mside the cyclizing unit is generally prefen-ed.9
The B-OH in D1, shifting the asymmetric carbon to a position next to the radical centre, should
gtve a higher diastereoseleaivitym The rearrangement (Table: item 9), however, was unclean
and by-products from the nucleophilic attack of the hydroxyl on the near C-Cl groups were also
afforded. We then resorted to protect the OH as acetate (D2), and excellent yields of the
rearranged adduct (G2) were thus obtained (Table: item 10). The cis diastereoisomer was
selectively afforded, as expected, but the cis ratio, even if higher than the one with y-
stereocenters (C), was still unsatisfactory. The selectivity was disappointing notwithstanding the
increase of protective group size for the OH function (Table: tems 11 and 12), and even after
the replacement of the end methyl with 2-furyl (Table: item 13).

The rearrangement of E1 gave H1 with unsatisfactory yields because of a competitive
tandem radical-radical reaction, which includes the 3-aza-3-benzyl-1-chloro-7-chloromethyi-2-
oxo-bicyclo-[3,3,0]-octane I1 as a by-product.11 11 appears rather interesting as prodrug, owing
to the conformational constriction produced by the bridge between the C(3) and C(4) carbon of
the 2-pyrrolidinone ring.12 lts formation is outlined in scheme 3, where it is clear that a basic
requirement for the double cyclization is the cis setting between C(3) allyl and C(4) radical
appendage.”

When we increased the crowding on the carbon which carries out the second cyclization
(Scheme 4: E3), cascade appeared unaffected; on the contrary the build up of the steric bulk on
the endo carbon of the C=C final acceptor (Scheme 4: E2) virtually stopped the sequence at the

first stage, whereas the altemative endo-closure showed to be not competitive. Finally the N-
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allyl-N-benzyl-2,2-dichloro-4-pentinamide rearrangement was attempted, however with very
poor result. The reaction showed a not complete conversion (90%), and was unselective, being
observed numerous products.

EXPERIMENTAL PART

'"H NMR spectra were recorded on a Bruker DPX200 spectrometer. Mass spectra were
obtained on a combined HP 5890 GC - HP 5989A MS Engine. Reagents and solvents were
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standard grade commercial products and used without further purification. The 2-pyrrolidinones
stereochemistry was assigned on rationale reported..®

Procedure for synthesis of D1 or E. To a stirred solution of N-allyl-N-benzyl-trichloroamide
(100 mmol) in 300 ml of anhydrous THF at —78°C under argon, a 1.6 M solution of butyl-
litium in hexane (62.5 ml) was dripped, and after 10 min a solution of acetaldechyde or
allylbromide (106 mmol) in 25 m! of anhydrous THF was added. The mixture was stirred at —
78°C for another hour before to be quenched with saturated aq. NHLCl. The solution was
partitioned between CH,Cl; (3 x 100 ml) and brine; the organic phases were collected, dried
over MgSQO,, filtered and then evaporated. Silica-gel chromatography, using petroleum ether
(b.p. 40-60°C)/diethyl ether (3:1), gave D1 (99%) or E (88-98%).

Procedure for esterification of D1: /) Acetylation. N-allyl-N-benzyl-2,2-dichloro-3-hydroxy-
butanamide D1 (40 mmol), acetic anhydride (80 mmol) and pyridine (84 mmol) were stirred at
room termperature. When conversion was cormpleted, the mixture was acidified with 2.5% HCI
and extracted with ethyl ether (3 x 50 ml). The organic layer was dried over MgSQ, and
evaporated. Silica gel chromatography, using a petroleum ether (b.p. 40-60°C)/diethyl ether
gradient, gave G2 (99%). i) Isobutanoylation and benzoylation. N-allyl-N-benzyl-2,2-
dichloro-3-hydroxy-butanamide D1 (40 mmol), isobutanoic or benzoic anhydride (60 mmol)
and pyridine (64 mmol) were stimed at 120°C till complete conversion. Work-up and
purification were performed as described above. G3 and G4 were afforded in 98% yield.
General procedure for cyclization. CuCl (0.2 mmol) and N-allyl-N-benzyl-2,2-dichloroamide
(C, D or E) 2 mmol) were weighted in a Schienk tube; then AN (4 ml) and TMEDA (0.4
mmol) were added, under argon. The mixture was stirred at 60°C, and after 20 h diluted with
2.5% HCI (20 ml) and extracted with CH,Cl, (2 x 6 ml). The organic layer was dried over
Na,CO; and evaporated.Silica gel chromatography, using a petroleum ether (b.p. 40-
60°C)/diethy! ether gradient, gave the y-lactam (F, G or H), generally as a mixture of

inseparable diastereomers.
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cis-N-bzl-3-chloro-4-chloromethyl-3-(2,3-dichloro-propyl)-pyrrolidin-2-one (F1)

IR (film): v = 1705 (C=0). Oil mix of diastereoisomers. "H NMR (CDCly): cis I, 8=2.56 [1H, dd, ] = 8.6,
15.4 Hz, CHCICH,C(3)}, 3.02 [1H, dd, J =25, 15.4 Hz, CHCICH,C(3)], 3.11 [1H, dd J =86,9.7Hz,
C(5)H], 3.19 [IH, m, C(4)H], 346 [1H, dd, J = 74, 9.7 Hz, C(5)H], 3.60-390 [3H, m, C(4)CH,Cl and
CHCICH,CI}, 4.02 [1H, dd, J = 5.5, 11.0 Hz, C(4)CH,C1], 4.16 [IH, m, CHCICH,C(3)], 436 (1H, d, J =
14.7 Hz, benzyl H), 4.72 (1H, d, J = 14.7 Hz, benzyt H), 7.20-7.40 (SH, m, H Ph). 'H NMR (CDCl,): cis
I1,8=258{1H,dd, J =92, 16.0 Hz, CHCICH,C(3)], 292 [1H, m, C4)H], 299 [1H, dd, ] = 2.5, 16.0
Hz, CHCICH;C(3)], 3.08 [1H, dd, ] = 8.6, 9.7 Hz, C(5)H], 346 [1H, dd, ] = 7.4,9.7 Hz, C(5H], 3.60-
3.90 [4H, m, C(4)YCH,Cl ¢ CHCICH,CY], 4.46 [ 1H, m, CHCICH,C(3)}, 448 (1H, d, J = 14.7 Hz, benzyl
H), 458 (1H, d, J = 14.7 Hz, benzyl H), 7.20-7.40 (SH, m, H Ph). MS (El, 70 eV) m/z: 332 (7%); 298
(2%); 208 (6%). 91 (100%). Found: C, 49.0; H, 4.7; N, 3.7. C;sH7CL,NO required C, 48 81; H, 4.64; N
3.7

cis-N-bzl-3-chloro-4-chloromethyl-3-(2-chloro-3-ethoxy-propyl)-pyrrolidin-2-one (F2)

IR (film): v = 1705 (C=0). "H NMR (CDCL): cis / (oil), 5= 123 [3H, t, CH:CH;0], 2.52 [IH, dd, ] =
94, 15.6 Hz, CHCICH,C(3)], 2.87 {1H, dd, J = 2.2, 15.6 Hz, CHCICH,((3)], 2.98 [1H, m, C(4)H], 3.08
[1H, dd, J =83, 10.0 Hz, C(5)H}, 3.46 [1H, dd, J =74, 10.0 Hz, C(5)H], 3.54-3.71 [SH, m, C(4)CH,Cl ¢
CH;CH,OCH,],4.05 [1H, dd, ] = 4.4, 11.4 Hz, C(4)CH,Cl], 431 {1H, m, CHCICH,C(3)}, 447 (1H,d,J
=14.7 Hz, benzyl H), 4.58 [1H, d, ] = 14.7 Hz, benzyl H), 7.20-7.40 (5H, m, H Ph). 'H NMR (CDCL):
cis I (oil), 8= 1.24 [3H, t, CH;CH,0], 2.49 [1H, dd, J = 8.8, 15.6 Hz, CHCICH,C(3)], 296 [1H,dd, ] =
2.4, 15.6 Hz, CHCICH,C(3)},3.10 [1H, dd, ] =9.0,9.8 Hz, C(5)H], 3.26 [1H,m, C(4)H], 3.44 [IH, dd, J
=6.8, 9.8 Hz, C(5)H], 3.51-3.70 [5H, m, C(4)CH,Cl ¢ CH;CH,OCH,], 3.87 [I1H, dd, J =45, 110 Hz,
C(4)CH,C1), 3.98 [1H, m, CHCICH,C(3)], 434 (1H, d, J= 14.7 Hz, benzyl H),4.73 [1H, d, ) = 147 Hz,
benzyl H), 7.20-7.40 (SH, m, H Ph). MS (EL, 70 V) m/z: 342 (3%); 306 (2%}, 221 (5%); 146 (22%), 91
(100%). Found: C, 54.1; H, 5.9; N, 3.6. C;sHzCLNO; required C, 53.91; H, 5.85; N 3.70.

cis-N-bzd-3-chloro-4-chloromethyl-3-(2,3-dichloro-2-methyl-propyl)-pyrrolidin-2-one (F3)

IR (film): v = 1695 (C=0). Oil mix of diasterecisomers. 'H NMR 8 (CDCL): 1.63 [0.473H, s,
(CH))CCIC@), cis I), 1.80 [0533H, s, (CH;)CCIC@), cis 1], 260 [0471H, d, J = 156 Hz,
C(CHy)CICH,C(3), cis ], 2.78 [0.53-1H, d, J = 15.6 Hz, C(CH3)CICH,C(3), cis 1], 296 [047-1H, d, J =
156 Hz, C(CH:)CICH,C3), cis ], 3.09-3.18 [1H, m, C(5H], 3.18 [0.531H, d, J = 156 Hz,
C(CH,)CICH,C(3), cis 1), 333 [047-1H, m, C()H, cis 1], 3.41 [0.53-1H, m, CAH, cis I}, 3.47-3.57
[1H, m, C(5)H], 3.62-3.84 [4H, m, CICH;C(CH:)Cl e C4)CH,CI], 446 (047-1H, d, ] = 14.6 Hz, benzyl
H, cis I1), 4.51 (0.53-1H, d, J = 14.6 Hz, benzyl H, cis 1), 4.56 (0.53-1H, d, J = 14.6 Hz, benzyl H, cis J),
4.60(0.47-1H, d, J = 14.6 Hz, benzyl H, cis IT), 7.20-7.40 (SH, m, H Ph). MS (EI, 70 eV) m/z: 310 (9%);
274 (3%); 131 (13%); 91 (100%). Found: C, 30.2; H, 5.0; N, 3.8, CysHyCLNO required C, 50.16; H,
5.00; N 3.66.

cis-N-bz}-3-chloro-3-2-chloro-11-benzyloxy-undecyl)-4-chloromethyl-pyrrolidin-2-one (F4)

IR (film): v = 1700 (C=0). 'H NMR (CDCL): cis / (cil), = 1.35-195 [16H, m, CHCKCH;4CH,0},
2.50 [IH, dd, J=9.1, 15.4 Hz, CHCICH,C(3)}, 2.88 [1H, dd, J = 1.8, 15.4 Hz, CHCICH,C(3)}, 3.13 [IH,
dd, J=85,9.0 Hz, C(5H], 3.3 [IH, m, C@)H], 342-3.55 [3H, m, CHCKCH,%CH,0 e C(S)H], 3.70
[1H, dd, J = 96, 11.0 Hz, C4)CH,CI}, 3.82 [1H, m, CHCICH,C(3)}, 391 [1H, dd, J = 43, 11.0 Hz,
C@)YCH,CI], 439 (1H, d, J = 14.7 Hz, PRCHN), 4.54 (2H, s, PhCH;0), 474 (1H, d, J = 14.7 Hz,
PhCH,N), 7.20-745 (10H, m, H Ph). 'H NMR (CDCL): ¢is I (ail), 8 = 135-195 [16H, m,
CHCY(CH,%CH;O], 261 [1H, dd, J = 92, 15.7 Hz, CHCICH,C(3)}, 279 [1H, dd, J = 27, 157 Hz,
CHCICHA()), 3.06 [1H, m, C@H], 3.10 {IH, dd, J = 80, 85 Hz, C(5)H], 3.40357 BH, m,
CHCHCH,%CH,0 ¢ C(5)H], 3.65 [1H, dd, J = 8.7, 11.0 Hz, C@)CH,CI], 4.11 [1H, dd, J = 5.1, 11.0 Hz,
C(@)CH,CT], 422 [1H, m, CHCICH,C(3)), 4.54 (2H, s, benzyl H), 4.55 (2H, m, benzyi H), 7.20-745
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(10H, m, H Ph). MS (EL, 70 eV) mz: 515 (1%); 460 (1%); 409 (4%); 360 (16%); 236 (22%); 91
(100%). Found: C, 65.3; H, 7.3; N, 2.6. C3HyClNO; required C, 65.16; H, 7.29; N 2.53.

cis-N-bzl-3-(1-acetoxy-ethyl)- 3-chloro-4-chioromethyl-pyrrolidin-2-one (G2)

IR (flm): v = 1695 (C=0,actam) 1750 (C=0, ester), Oil mix of diastereoisomers. "H NMR (CDCh): cis
15=143(3H,d J =65, CH:CH), 2.13 [3H, 5, CH(CO)}, 2.96 [1H, m, 1H, m, C(4)H], 3.14 [1H, dd, J
=85, 100 Hz, C(5)H], 351 [1H, dd, J = 72, 10.0 Hz, C(5)H], 367 [IH, dd, J = 105, 112 Hz,
C@CH,CI], 398 [1H, dd, J = 4.2, 11.1 Hz, C@)CH,CI}, 446 (1H, d, J = 14.7 Hz, benzyl H), 461 (1H,
d,J=14.7Hz, benzyl H), 5.57 (1H, q, ] = 6.5 Hz, CH,CH), 7.20-7.45 (SH, m, H Ph). "H NMR (CDCL):
csIl,8=1.54 (3H, d,J = 6.4, CH:CH), 2.05 [3H, s, CHy(C0)}, 3.00 [1H, m, 1H, m, C(4)H], 3.14 [1H,
dd, ] =82, 10.0 Hz, C(5)H], 3.57 {1H, dd, ] = 74, 10.0 Hz, C(5)H}, 3.67 [1H, dd, J = 105, 11.2 Hz,
C@CH)CI), 3.90 [1H, dd, ] =39, 11.2 Hz, C@)CH;Cl], 446 (1H, d, J = 14.7 Hz benzyl H), 461 (1H,
d, 7= 14.7 Hz, benzyl H), 542 (1H, q, ] = 6.4 Hz, CH;CH), 7.20-745 (5H, m, H Ph). MS (EL 70 V)
miz. 307 (3%), 248 (62%); 208 (T%); 200 (%), 91 (100%). Found: C, 56.0; H, 5.7; N, 40.
C1eHyoCLNO; required C, 55.83; H, 5.56; N 4.07.

cis-N-bz-3-[acetoxy-(2-furyl)-methyl}-3-chloro-4-chloromethyl-pyrrolidin-2-one (G5)

"H NMR (CDCl) cis ] (oil), § = 2.2 (3H, s, <CHz); 3.13 (1H, dd, J = 621, 8.82 Hz, -NCH,CH-); 3.16
(1H, m, -NCH,CH-), 339 (1H, dd, J= 643, 882 Hz, -NCH,CH-); 3.71 (1H, dd, J = 106, 10.8 Hz, -
CHC1), 4.06 (1H, dd. J =3.9, 10.8 Hz, -CH,C); 438 [(1H, d, J = 14 Hz, Q-fury)CH,]; 4.53 [(1H, d,J =
14 Hz, -furyl)CH,}; 6.42 (1H, dd, ] = 1.82, 3.3 Hz, 2-Furyl H); 6.55 (1H, d, J = 4.1 Hz, 2-furyl H); 6.56
(1H, s, CHOCOCH,); 7.09-7.32 (SH, m, H Ph); 743 (IH, dd , J = 0.7, 1.8 Hz, 2-firyl H): cis I (oil), 5 =
207 (3H, s, -CH). 3.12-3.67 (5H, m, -NCH,CHCH,C1); 4.44 (1H, d, J = 14.7 Hz, benzyl H); 4.71 (1H,
d,J= 147 Hz, benzyl H); 630 (1H, s, CHOCOCHs); 6.44 (1H, dd, J = 18, 3.3 Hz, 2-Furyl H); 6.58
(14, m, 2-Furyl H), 7.25-744 (SH, m, H Ph); 748 (1H, dd, J=1.8, ]=0.6, 2-Furyl H). MS (EL 70 ¢V)
m'z. 360 (5%); 301 (11%); 208 (31%); 91 (100%). Found: C, 57.8; H, 44; N, 3.7. CsHrCIINO,
required C, 57.88; H, 435, N 3.55.

cis-N-bz}-3-allyl-3-chloro-4-chloromethyl-pyrrolidin-2-one (H1)

IR (film): v = 1705 (C=0lactam) 1750 (C=0, ester). Oil. 'H NMR & (CDCL): 2.82 [1H, m, 1H, m,
C(4)H], 2.95 [2H, m, CH=CHCH,}, 3.09 [1H, dd, ] = 1.1, 10.0 Hz, C(5)H], 3.41 [1H, dd, J = 2.8,10.0
Hz, C(5)H], 3.63 [1H, dd, J = 9.3, 11.2 Hz, C4)CH,Cl], 3.85 [1H, dd, J = 5.1, 11.2 Hz, C4)CHLCI],
444 (1H, d, J = 14.7 Hz, benzyl H), 4.65 (1H, d, ] = 14.7 Hz, benzyl H), 5.2-5.4 2H, m, CH~CH-), 5.7-
6.0 (1H, m, CH=CH-), 7.20-7.45 (5H, m, H Ph). MS (EL, 70 eV) m/z; 297 (2%, 262 (48%); 212 (13%),
91 (100%). Found: C. 60.4; H, 5.8; N, 4.8. C;sHCbNO required C, 60.42; H, 5.75; N 4.70,

3-aza-3-benzy}-1-chloro-7-chloromethyl-2-oxo-bicyclo[3.3 O]octane (I1)

IR (mijol): v = 1700 (C=0Jlactam). "H NMR (CDCly): diasterecisomer I (solid, pf 77-79 °C), § = 1.67
[1H, m, C@)H], 203 [1H, dd, J = 108, 13.1 Hz, C@®)H], 2.10 [IH, m, C(6)H], 2.26 [1H, m,
C(MHCH,CIL 2.81 [1H, dd, J = 6.1, 13.1 Hz, C(8)H], 2.88 {1H, m, C(5)H], 2.89 [IH, dd, J = 1.8, 10.5
Hz, C(4)H}, 3.49 [ 1H, dd, ] = 6.8, 11.0 Hz, C(7)HCH,CI}, 3.58 [1H, &, J = 5.5, 11.0 Hz, C(7)HCH,CI},
3.60 [1H, dd, J = 76, 10.5 Hz, C@H], 447 (1H, d, J = 14.7 Hz, benzyl H), 454 (1H, d, ] = 14.7 Hz,
benzyl H), 7.20-7.40 (SH, m, H Ph), '"H NMR (CDC): diasterevisomer I (ail), 8 = 1.21 [1H, m, C(6)H],
225-3.00 [SH, m, C($)H, C(6)H, C(TH, C(®)H], 2.26 [1H, m, C(NHCH,CI], 2.88 [1H, m, C(4H], 2.95
[1H,dd, T = 17, 103 Hz, C@)H], 3.46 [1H, dd, J = 6.6, 109 Hz, C(T)HCH,CI], 3.56 [1H, dd, I = 70,
103 Hz, C(4)H], 3.57 [1H, dd, J = 5.5, 109 Hz, C(HHCH,CI], 447 (1H, d, ] = 14.7 Hz, benzyl H), 4.56
(1H, d, J = 147 Hz, benzyl H), 7.20-7.45 (SH, m, H Ph). MS (EL 70 eV) m/z: 297 (10%); 262 (42%);
226 (27%); 91 (100%). Found: C, 60.5; H, 5.7; N, 4.7. C;sH;CLNO required C, 60.42; H, 5.75; N 4.70.
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cis-N-bzd-3-allyl-3-chloro-4-(chloro-methyl-ethyl)-pyrrolidin-2-one (H3)

'"HNMR (CDCl;) 8=1.82 (3H, s, -CHs), 1.84 (3H, 5,-CH3); 292 (1H, dd, ] =9.2, 14 Hz, -NCH,CH-);
298 (1H, dd, J =7.25,9.2 Hz, -NCH,CH-); 3.27-3.38 2H, m, CH;=CHCH,), 3.41 (1H, m, -NCH,CH-
); 452 (1H,d, J = 14.7 Hz, benzyl H); 4.63 (1H, d, J = 14.7 Hz, benzyl H), 5.23-5.34 (2H, m, CH,=CH-
), 5.58-5.5.78 (IH, m, CH=CH-); 7.24-744 (5H, m, H Ph). MS (EL 70 eV) m/z: 289 (4%); 212 (8%),
118 (11%); 91 (100%). Found: C, 62.5; H, 6.6; N, 4.4. C;;H, CL,NO required C, 62.58; H, 6.49; N 429,
Oil

3-aza-3-benzyl-1-chlore-7-chloromethyl-6,6-dimethyl-2-0xo-bicycio|3.3.0}octane (I3)

'H NMR (CDCls), main diasterecisomer (vield 31%), 8 = 0.90 (3H, s, -CH3); 1.10 3H, s, -CHy); 1.89
(1H, m, CH,CICH-), 2.23 (1H, dd, J =114, 139 Hz, CH,CICHCH,); 2.57 (1H,dd, J =29,83 Hz, -
CHCH,N-); 298 (1H, dd, J= 6.5, 13.9 Hz, -CH,CICHCH,), 3.11 (1H, dd, J=29, 10.8 Hz, - CHCH,N-
), 341 (1H, dd, J = 8.3, 10.8 Hz, - CHCH,N-);, 3.45 (1H, dd, ] = 8.8,10.9 Hz, CH,Cl-); 3.54 (1H, dd, J
=53, 109 Hz, -CH,Cl);, 4.51 (2H, s, benzyl H), 734 (SH, m, H Ph), MS (FL, 70 eV) m/z: 325 (5%),
290 (36%); 185 (52%); 91 (100%). Found: C, 62.5; H, 6.4, N, 4.3. C;7H»CLNO required C, 62.58; H,
6.49,N 4.29. Qil.

'H NMR (CDCL) 8 =18 (3H, s, -CHs), 2.78 (1H, dd, J = 0.5, 14 Hz, -CH,CH=CH,), 2.82 (1H, m, -
CH,CH=CH,C); 3.09 (1H, dd, ] = 8.9,9.9 Hz, -NCH,CH-), 3.15 (1H, d, ] = 14 Hz, -CH,C=CH,), 3.44
(1H,dd, J=7.2,99 Hz, NCH,CH-); 3.66 (1H, dd, J = 9.2, 11.1 Hz, -CH,(l); 3.82 (1H, dd,J=4.8,11.1
Hz, -CH,CY); 449 (1H, d, J=14.6 Hz, berzyl H); 4.6 (1H, &, J = 14.7 Hz, berzyl H); 4.95-5.03 QH, m,
CH=C-); 7.23-743 (SH,m, HPh). MS (El, 70 eV) m/z: 311 (3%), 276 (48%), 226 (13%)); 91 (100%).
Found: C, 61.4; H,6.1;N, 4.6, C;¢H1sCLNO required C, 61.55; H, 6.13; N 4.49. Oil
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