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Abstract: The use of amino acid based dendrimers as molecular scaffolds for the attachment of catalytically active 

organometallic Ni "pincer" complexes, v/a a urea functionality, is described; the dendrimer catalysts have comparable 

activity to their mononuclear (NCN)NiX analogues. © 1999 Elsevier Science Ltd. All rights reserved. 
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Dendrimer research is currently a blossoming area of macromolecular science. These tree-like molecules 

typically eminate from a central core and are usually produced in a step-wise manner by a repetitive reaction 

sequence. Hence, these materials have a well-defined size, molecular weight, internal connectivity and a specific 

number of end-groups.I We are interested in the use of dendrimers as inert frameworks for the attachment of 

catalytically active transition metal (TM) complexes2, 3 and in the investigation of molecular sensor technology 

(i.e., nanoprobe devices). 4 

In this communication, we disclose our efforts directed towards the synthesis of novel dendrimers which 

contain catalytically active TM fragments on the dendritic exterior. 2 In addition, the active species has been 

designed to be linked to macromolecules or other substrates v/a a urea functionality. This fragment will allow the 

resulting TM complex to be used in a variety of applications which involve H-bonding. 5 These characteristics 

can facilitate the attachment, via H-bonding, of molecules (e.g.,  a catalyst or free ligand) 6 to polar surfaces, 

supports or other functionalized materials. 1,5 An obvious further objective of this work is to evaluate the 

performance of a polar dendrimer in catalysis and to thus compare this activity with our previously investigated 

(comparatively non-polar) carbosilane analogues.2, 3 

The fragment used to coordinate the active metal atom to the dendrimer is the functionalized 1,3- 

bis[(dimethylamino)methyl]benzene or NCN. This unit contains a formal aryl carbanion in addition to two N 

donor atoms. 6 Diamagnetic nickel(H) complexes of the general formula (NCN)NiX (e.g., X = Br; Table 1) are 

highly active catalysts for the addition of polyhalogenated alkanes to olefins (Kharasch addition). 2-3, 6-8 We have 

used the facile formation of a urea functionality as the means to link two pincer ligands. This is accomplished by 
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the condensation of isocyanato derivative 12 with the substituted aniline 29 to give the urea bis-pincer 3, in 

excellent yield (95%; Scheme 1). 10 Insertion of two Ni atoms into the C-Br bonds of 3 is readily accomplished 

by treatment of this amine with two equiv of [Ni(cod)2 ] 

to yield catalyst 4 (91%; Scheme 1). 11 

Having succeeded with forming the model complex 

4, the incorporation of the ligand array into an amino 

acid based dendrimer 12 was carried out via similar 

formation of a urea linkage. The dendrimer precursors 

can be made in high yield 12 and are distinctly different 

from our previously studied examples of dendrimer 

catalysts (i.e., carbosilanes 2,3,7,13). Notably, these 

contrasts include higher polarity of the dendrimer unit 

and the presence of numerous amide bonds within the 

dendritic backbone. Treatment of an MeCN solution of 

the trifluoroacetate salt of  dendrimer [ G 2 - B o e ) 4 ]  

(formed by the deprotect ion of  the amines by 

CF3COOH: Scheme 2) with a three fold excess of 1 

affords the substituted dendrimer [G2-(Br)4] .  14 This 

pincer-appended molecule was then treated with 

[Ni(cod)2]  to form the desired dendrimer catalyst 

[G2-(Ni)4] in 93% yield (Scheme 2). 15 

The final objective is to evaluate this material as a 

Kharasch addition catalyst .  We have previously 

demonstrated that small dendritic molecules, i.e., < 25 ,~ 

in diameter (less than the approximate dimension 

estimated for [ G 2 - ( N i ) 4 ] )  15, can be effectively 

recovered using modern ultrafi l trat ion membrane 

technology. 3,17 The results of the addition of CCI4 to 

methyl methacrylate (MMA) catalyzed by complex 4 or 

dendrimer [ G 2 - ( N i ) 4 ]  are summarized in the Table 1. 

The data obtained earlier with other complexes and 

dendrimer catalysts are also included. These results 

clearly show that complex 4 and [ G 2 - ( N i ) 4 ]  are 
Compound 

effective catalysts for the Kharasch addition and hence 

the presence of polar functional groups does not 4 

adversely influence catalytic performance. Also, the [G~-(Ni)4] 
(NCN)NIBr 

activity per metal site is of the same order of magnitude earbo-ilane Nil 
as the related mononuclear (i.e.,  (NCN)NiBrg,18), earbamate Ni4 
carbos i lane  dendrimer2,3,  7 or polymer supported (NCN)NIBr] PS e 
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Table I a 

~ b  Refereme 

187 This work 
114 This work 
234 2, 18 
118 3 
190 2 
249 19 

complexes (Table 1).7,19 a All data were obtained (GC and/or NMR) from degassed 
This work has shown that novel amino acid based solutions consisting of 12 mL CH2CI2, 2.0 mL dodecane 

(internal standard), 3.0 mL MMA (28 retool), 10.0 mL CCI 4 
d e n d r i m e r s  12 can be used as effective molecular (104 mn~ol)and a concentration of 0.016 mmol of Ni (1.8 
frameworks for the attachment of TM complexes.2,3, 7 mol%), o TN refers to the turnover number per Ni site per h. 

c PS = Polysiloxane Supported. 
The synthesis of "pincer" ligands or organometallic 
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catalysts 6 which contain a urea functionality, will allow these compounds to be evaluated as candidates for the 

self-assembly of new materials v/a H-bonding. 1.5 As is obvious from the depiction of [G2-(Ni)4] in Scheme 

2, this compound (or its metal-free precursor [G2-(Br)4]) could be used as a dendron (i.e., as a dendritic 
"wedge") in the convergent synthesis 1,20 of larger funedonalized macromolecules. We are currently investigating 

these possibilities. 
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