Rearrangement of Cyclic Amines Catalysed by Palladium

By NORIAKI YOSHIMURA, ICHIRO MORITANI, TSUNEO SHIMAMURA, and SHUN-ICHI MURAHASHI* (Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan)

Summary Rearrangement of cyclic amines catalysed by palladium afforded N-substituted cyclic amines (2)—(4), while heterocyclic amines were converted into N-formyl cyclic amines (6)—(7).

ALTHOUGH considerable attention has been paid to dehydrogenation of secondary amines, catalysed by metals, to give Schiff bases,¹ little is known of the reaction between the resulting Schiff base and further amines.² We now report a general rearrangement of cyclic amines catalysed by palladium, and a new formylation of heterocyclic amines.

Suspension of a catalytic amount of palladium in pyrrolidine (1) gave (2)³ (65%) and (3)⁴ (24%) after heating for 10 h at 80°, (3) (85%) after heating for 5 h at 150°, and (4)² (75%) after heating to 200°. These results can be rationalized in terms of either a reductive cleavage or dehydrogenation of intermediate (5). Analogously, piperidine was converted into α, ϵ -dipiperidinylpentane (86%) at 200°.

In contrast, reaction of heterocyclic amines with palladium afforded N-formylamines. Thus, morpholine gave Nformylmorpholine (6)(95%)⁵ and N-methylpiperazine gave (7) (96%).⁵⁺[‡] The oxygen of the formyl group does not come from molecular oxygen. Catalytic oxidation of N-methylpiperidine by palladium has been reported to give N-formylpiperidine.⁶ This formylation can be interpreted

in terms of nucleophilic attack of OH^- from moisture on the intermediate (8), corresponding to (5), to give (9) as a transient intermediate which could then lead to the product

[†] Satisfactory spectroscopic and analytical data have been obtained.

[‡] Yields were calculated stoicheiometrically based on unrecovered amines.

J.C.S. CHEM. COMM., 1973

by cleavage (a) of (9) (Scheme). Alternatively cleavage (b) leads to the starting amine or the intermediate imine. Indeed, in the reaction of N-methylpiperazine, the diamine (10) was obtained as a fragment of cleavage (a) of (8). Wanzlick demonstrated ready reaction of imidazoline with moist solvents or chromatography on moist Al₂O₃.⁷ This new formylation seems to be general for heterocyclic amines. 2-Ethylhexahydropyrimidine was smoothly converted into NN'-diformyl-2-ethylhexahydropyrimidine at 100° for 2 h.

(Received, 6th February 1973; Com. 163.).

¹ A. A. Balandin and N. A. Vasyunia, *Zhur. obshchei Khim.*, 1948, 18, 398; *Chem. Abs.*, 1949, 43, 132; *Doklady Akad. Nauk* S.S.S.R., 1955, 103, 831; *Chem. Abs.*, 1956, 50, 9283. ² K. Kindler and D. Matthies, *Chem. Ber.*, 1963, 96, 924.

- ^a M. S. Bloom, J. Amer. Chem. Der., 1965, 67, 539.
 ^a M. S. Bloom, J. Amer. Chem. Soc., 1945, 67, 539.
 ^a A. Etinne and Y. Correia, Compt. Rend., 1964, 259, 2660.
 ^b B. C. Challis and A. R. Butler, in 'The Chemistry of the Amino Group,' ed. S. Patai, Interscience, New York, 1968, p. 289.
 ^c G. T. Davis and D. H. Rosenblatt, Tetrahedron Letters, 1968, 4085; Chem. Abs., 1970, 72, 43461.
 ^c H. W. Wardlich and H. Abrose, Chem. Par. 1968, 407, 2447.

⁷ H. W. Wanzlick and H. Ahrens, Chem. Ber., 1964, 97, 2447.