4,4-DIMETHYL-4,5-DIHYDRO-1,2-DITHIOLO-[3,4-c]QUINOLINE-1-THIONES IN 1,3-DIPOLAR CYCLOADDITION REACTIONS WITH ACETYLENIC DIPOLAROPHILES

Kh. S. Shikhaliev, S. M. Medvedeva, G. I. Ermolova, and G. V. Shatalov

The behavior of 4,4-dimethyl-4,5-dihydro-1,2-dithiolo[3,4-c]quinoline-1-thiones in the 1,3-dipolar cycloaddition reaction with acetylenic dipolarophiles has been studied. The rate of cycloaddition is reduced along with the decrease of electron-deficiency of the triple bond. Substituted 4-(1',3'-dithiol-2'-ylidene)-1,2-dihydroquinoline-3-thiones were shown to be the reaction products. On using a twofold excess of acetylenedicarboxylic acid dimethyl ester, adducts of composition 1 : 2 were formed which occured to be substituted 1',3'-dithiole-2'-spiro-1-(5,6-dihydrothiino[2,3-c]quinolines).

Simple 1,2-dithiole-2-thiones may act as 1,3-dipoles in 1,3-dipolar cycloaddition reactions, however the authors of [1-3] give inconsistent information on both the structure of the products formed and on the regioselectivity of the process.

We have studied the 1,3-dipolar cycloaddition of acetylenic dipolarophiles to 4,4-dimethyl-4,5-dihydro-1,2-dithiolo[3,4-c]quinoline-1-thiones (Ia-f). Results of thin layer chromatography have shown that acetylenedicarboxylic acid dimethyl ester adds to all dithiolethiones Ia-f in the cold on simply mixing the reactants in benzene, toluene, or chloroform. The time for complete cycloaddition was 20-30 h and depended little on the nature of the substituent in the aromatic ring (\mathbb{R}^1) or on the nitrogen atom of the hydroquinoline fragment (\mathbb{R}^2).

I, II a $R^1 = R^2 = H$; b $R^1 = Me$, $R^2 = H$; c $R^1 = OMe$, $R^2 = H$; d $R^1 = H$, $R^2 = Me$; e $R^1 = H$, $R^2 = COMe$; f $R^1 = H$, $R^2 = COPh$

Voronezh State University, Voronezh 394693, Russia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 656-660, May, 1999. Original article submitted April 7, 1998.

	Chemical shift, δ, ppm						
Com- pound	gem-Me ₂ (6H, s or two s)	R۱	R²	4'(5')-R ³ * ²	H _{arom} , m		
lla	1,45	*	5,62 (1H, s)	3,85 (6H, s)	6,857,75 (4H)		
IIb	1,47	2,32 (3H, s)	5,67 (1H, s)	3,89 (6H, s)	6,737,25 (3H)		
llc	1,46	3,72 (3H, s)	5,65 (1H, s)	3,90 (6H, s)	6,757,47 (3H)		
IId	1,35	*	2,72 (3H, s)	3,88 (6H, s)	6,787,81 (4H)		
Ile	1,45	*	2,05 (3H, s)	3,90 (6H, s)	6,808,05 (4H)		
llf	1,70	*	7,077,40 (5H, m)	3,90 (6H, s)	6,808,00 (4H)		
Illa	1,44 1.52	*	2,70; 2,75 (two s)	-*	6,727,90 (10H)		
IIIb	1,48 1,57	*	5,45; 5,49 (1H, two s)	3,75; 3,79 (3H, two s, COOMe)	6,707,85 (9H)		
IIIc	1,32 1,50	*	5,60; 5,68 (1H, two s)	1,33; 1,39 (3H, two t, OCH ₂ C <u>H</u> ₃) 4,07; 4,17 (2H, two m, OCH ₂)	6,657,21 (9H)		
IIId	1.35 1,54	2,31; 2,39 (3H, two s)	5,62; 5,80 (1H, two s)	1,31; 1,36 (3H, two t, OCH ₂ C <u>H₃)</u> 4,03; 4,12 (2H, two m, OC <u>H₂CH₃)</u>	6,707,05 (8H)		
Ille	1,33 1,52	2,72 (3H, s)	*	*	6,587,23 (14H)		

TABLE 1. ¹H NMR Spectral Characteristics of Substituted 4-(1',3'-Dithiol-2'-ylidene)-1,2-dihydroquinoline-3-thiones (II), (III)

* Signal is within the multiplet signal of the H_{arom} protons. *² For compounds IIa-f 4'-R³ = 5'-R³ = COOMe.

Based on the charge distribution in the 1,3-dipolar fragment of the dithiolethiones Ia-f we assigned the structure of 4',5'-dimethoxycarbonyl-1',3'-dithiol-2'-ylidene-2,2-dimethyl-1,2-dihydroquinoline-3-thiones (IIa-f) to the products of their interaction with acetylenedicarboxylic acid dimethyl ester. This was confirmed by their spectral characteristics (Table 1).

Boiling in benzene for 20-30 h was sufficient to complete the cycloaddition of dithiolethiones Ia-f to alkyl esters of acetylenedicarboxylic and phenylpropiolic acids, but extended boiling in toluene (more than 100 h) was necessary for phenyl- and diphenylacetylene. This is seemingly caused by decrease of electron deficiency on the acetylenic bond on replacing an ester by phenyl group in the series:

The cycloaddition products of unsymmetrical acetylenic dipolarophiles to dithiolethione I are mixtures of two isomers (A and B). We drew this conclusion since all the adducts of this type melt over a wide temperature range (up to 5°C) and there was a double set of signals for all protons in their ¹H NMR spectra. The intensity ratio of the signals was 4:1 to 3:1 (Table 1). It is therefore possible to assign the structure 4'(5')-R-5'(4')-phenyl-1',3'dithiol-2'-ylidene-2,2-methyl-1,2-dihydroquinoline-3-thiones (IIIa-d) to the reaction product of symmetrical acetylenes with dithiolethione I. In accordance with the charge distribution in the dipolarophiles the major product is isomer A and the minor -B.

III a $R^1 = R^3 = H$, $R^2 = Me$; b $R^1 = R^2 = H$, $R^3 = COOMe$; c $R^1 = R^2 = H$, $R^3 = COOEt$; d $R^1 = Me$, $R^2 = H$, $R^3 = COOEt$; e $R^1 = Me$, $R^2 = H$, $R^3 = Ph$

When studying the cycloaddition of acetylenedicarboxylic acid dimethyl ester to dithiolethiones Ia-f we have discovered that using an excess of dipolarophile and heating, a further bright yellow-coloured spot was observed on the thin layer chromatogram, in addition to the cherry-red spot of the desired cycloaddition product. We linked the appearance of this spot with the possible formation of products of diene synthesis at a ratio of 1:2. On the basis of ¹H NMR spectral data (Table 2) we assigned the structure 4',5'-dimethoxycarbonyl-1',3'-dithiole-2'-spiro-1-(5,5-dimethyl-2,3-dimethyloxycarbonyl-5,6-dihydrothiino[2,3-c]quinolines) (IVa-f) to these products. These compounds were synthesized in up to 85% yield on boiling of equimolar quantities of compounds IIa-f and acetylenedicarboxylic acid dimethyl ester in benzene or toluene for 10-15 h. They may also be obtained directly from dithiolethiones Ia-f by heating with a twofold excess of this dipolarophile in toluene. During the reaction the mixture changes from orange (compounds Ia-f) to cherry (compounds IIa-f) and then to bright yellow (compounds IVa-f), thus enabling the reaction to be followed visually.

IV a $R^{1} = R^{2} = H$; b $R^{1} = Me$, $R^{2} = H$; c $R^{1} = OMe$, $R^{2} = H$; d $R^{1} = H$, $R^{2} = Me$; e $R^{1} = H$, $R^{2} = COMe$; f $R^{1} = H$, $R^{2} = COPh$

TABLE 2. ¹H NMR Spectral Characteristics of Substituted 1',3'-Dithiole-2'spiro-1-(5,6-dihydrothiino[2,3-c]quinolines) (IV)

Com- pound	Chemical shift, δ, ppm						
	<i>gem</i> -Me ₂ (6H, s)	R ¹	R ²	COOMe, m (12H)	Harom		
	1.46		6 6 2 (111 a)	267 292	676765(4 Um)		
Iva	1,46) 5,63 (TH, S)	3,073,82	0,707,03 (4H, M)		
IVb	1,48	2,34 (3H, s)	5,66 (1H, s)	3,693,86	6,687,29 (3H, m)		
IVc	1,49	3,69 (3H, s)	5,33 (1H, s)	3,723,86	6,296,46 (3H, m)		
IVd	1,39	*	2,64 (3H, s)	3,623,81	6,687,15 (4H, m)		
IVe	1,53	*	2,3 (3H, s)	3,693,81	6,677,18 (4H, m)		
IVf	1,72	*	6,97,4 (5H, m)	3,713,89	6,736,96 (4H, m)		

* Signal is within the multiplet signal of the H_{arom} protons.

		Found, %				mp, ℃	Yield, %	
Com-	Empirical	Calculated, %						
pouna		С	н	N	S	M*		
IIa	C ₁₈ H ₁₇ NO ₄ S ₃	<u>53,21</u> 53,05	<u>4,18</u> 4,20	<u>3,60</u> 3,44	. <u>23,25</u> 23,60	<u>407</u> 407.53	17 4175	72
IIb	C19H19NO4S3	<u>54,29</u> 54,13	<u>4,70</u> 4,54	<u>3,39</u> 3,32	<u>22.71</u> 22.82	<u>421</u> 421,56	132133	79
llc	C19H19NO5S3	<u>52,23</u> 52,15	<u>4,19</u> 4,38	<u>3,28</u> 3,20	<u>21,75</u> 21,98	<u>437</u> 437,56	166167	71
IId	C19H19NO4S3	<u>54,32</u> 54,13	<u>4,40</u> 4,54	<u>3,44</u> 3,32	<u>22,69</u> 22,82	$\frac{421}{421,56}$	161162	84
lle	C20H19NO5S3	<u>53,55</u> 53,43	<u>4,41</u> 4,26	<u>3,29</u> 3,12	<u>21,55</u> 21,40	<u>449</u> 449,57	192193	86
llf	C ₂₅ H ₂₁ NO ₅ S ₃	<u>58,71</u> 58,69	<u>4,29</u> 4,14	<u>2,79</u> 2,74	<u>19,03</u> 18,80	<u>516</u> 516,64	194195	72
Illa	$C_{20}H_{19}NS_3$	<u>65,18</u> 65,00	<u>5,33</u> 5,18	<u>3,90</u> 3,79	<u>26,17</u> 26,00	<u>369</u> 369,57	8991	25
IIIb	$C_{21}H_{19}NO_2S_3$	<u>60,40</u> 60,69	<u>4,52</u> 4,61	<u>3,24</u> 3,37	<u>23,25</u> 23,14	<u>415</u> 415,60	134136	68
IIIc	$C_{22}H_{21}NO_2S_3$	<u>61,70</u> 61,51	<u>4,80</u> 4,93	<u>3,44</u> 3,26	<u>23,61</u> 22,39	$\frac{429}{429,63}$	179182	72
IIId	C ₂₃ H ₂₃ NO ₂ S ₃	<u>62,43</u> 62,27	<u>5,41</u> 5,22	<u>3,29</u> 3,16	<u>21,30</u> 21,68	<u>443</u> 443,66	160164	65
Ille	C ₂₆ H ₂₃ NS ₃	<u>70,21</u> 70,07	<u>5,07</u> 5,20	<u>3,40</u> 3,14	<u>21,33</u> 21,58	<u>445</u> 445,67	1 97 198	38
IVa	$C_{24}H_{23}NO_8S_3$	<u>52,69</u> 52,45	<u>4,40</u> 4,22	<u>2,71</u> 2,55	<u>17,75</u> 17,50	<u>549</u> 549,65	179180	72
IVb	C25H25NO8S3	<u>53,41</u> 53,27	<u>4,61</u> 4,47	<u>2,19</u> 2,47	<u>16,95</u> 17,06	<u>563</u> 563,68	176177	68
IVc	C25H25NO9S3	<u>51,71</u> 51,80	<u>4,49</u> 4,35	<u>2,58</u> 2,42	<u>16,83</u> 16,60	<u>579</u> 579,68	137138	• 68
IVd	C ₂₅ H ₂₅ NO ₈ S ₃	<u>53,11</u> 53,27	<u>4,70</u> 4,47	<u>2,59</u> 2,47	<u>17,31</u> 17,06	<u>563</u> 563,68	164165	81
IVe	C ₂₆ H ₂₅ NO ₉ S ₃	<u>52,93</u> 52,78	<u>4,41</u> 4,26	<u>2,14</u> 2,37	<u>16,13</u> 16,26	<u>591</u> 591,69	158159	67
IVf	C31H27NO9S3	<u>56,77</u> 56,95	<u>4,33</u> 4,16	<u>2,39</u> 2,14	<u>14,49</u> 14,71	<u>653</u> 653,76	176177	73

TABLE 3. Characteristics of Compounds Synthesized

* M was determined mass spectrometrically.

The characteristics of the synthesized compounds IIa-f, IIIa-e, and IVa-f are given in Table 3.

EXPERIMENTAL

A check on the progress of reactions and the homogeneity of substances obtained was performed by TLC on Silufol UV 254 plates using chloroform as eluent. The ¹H NMR spectra were taken on a Bruker AC-300 instrument (300 MHz) in DMSO-d₆ relative to TMS. Mass spectra were taken on an LKB 9000 instrument, the energy of the ionizing electrons was 70 eV.

The initial dithiolethiones Ia-f were obtained as described previously in [4,5].

4-(4',5'-Dimethoxycarbonyl-1',3'-dithiol-2'-ylidene)-2,2-dimethyl-1,2-dihydroquinoline-3-thiones (IIa-f). Acetylenedicarboxylic acid dimethyl ester (10 mol) was added to solution of dithiolethione Ia-f (10 mol) in chloroform. The reaction mixture was left at room temperature for 20-30 h, the solvent was evaporated under reduced pressure, and the residue crystallized from ethanol.

4-[4'(5')-R-5'(4')-Phenyl-1',3'-dithiol-2'-ylidene]-2,2-dimethyl-1,2-dihydroquinoline-3-thiones (IIIa-d). Equimolar quantities of dithiolethione Ia-f and R³-substituted phenylacetylene were boiled for 20-30 h in benzene (when R³ = COOMe, COOEt) or for 100-120 h in toluene (when R³ = H, Ph). The solvent was evaporated under reduced pressure, and the residue crystallized from ethanol. 4',5'-Dimethyloxycarbonyl-1',3'-dithiole-2'-spiro-1-(5,5-dimethyl-2,3-dimethyloxycarbonyl-5,6-dihydrothiino[2,3-c]quinolines (IVa-f). A. Equimolar quantities of compounds IIa-f and acetylenedicarboxylic acid dimethyl ester were boiled in benzene for 10-15 h until the solution was decolorized. The solvent was distilled off under reduced pressure, and the residue crystallized from ethanol.

B. A mixture of dithiolethione (Ia-f) (10 mol) and acetylenedicarboxylic acid dimethyl ester (20 mol) was boiled and then subsequently treated in the same way.

REFERENCES

- 1. J. M. Buchshriber, D. McKinnon, and M. Ahmed, Can. J. Chem., 48, 1991 (1970).
- 2. D. Easton and I. Leaver, J. Chem. Soc., Chem. Commun., No. 22, 585 (1965).
- 3. H. Davy and I. Vialle, Bull. Soc. Chim. France, No. 5-6, 1435 (1975).
- 4. J. P. Brown, J. Chem. Soc. C, No. 9, 1074 (1968).
- 5. Kh. S. Shikhaliev, Zh. V. Shmyreva, and L. P. Zalukaev, Zh. Org. Khim., 24, 232 (1988).