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The first enantioselective biocatalytic synthesis of (S)-monastrol has been developed via an unexpected
and unusual enzymatic pathway as suitable route. Whereas attempts for a direct hydrolysis of racemic
monastrol were not successful, formation of racemic O-butanoyl monastrol and subsequent enantioselec-
tive hydrolysis furnished O-butanoyl (S)-monastrol with 97% ee. Cleavage of the O-butanoyl moiety then
gave the desired (S)-monastrol with 96% ee.

� 2010 Elsevier Ltd. All rights reserved.
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Monastrol, rac-1, is the first small molecule inhibitor of the mi-
totic motor Eg5 (kinesin spindle protein, KSP), and represents a
promising current lead structure in anticancer research.1,2 Several
KSP inhibitors are currently being studied in clinical trials and pro-
vide new opportunities for the development of novel anticancer
drugs alternative from the available microtubule targeting agents.2

Based on monastrol as a lead structure novel derivatives bearing
the 4-aryl-3,4-dihydropyrimidin-2(1H)-thione scaffold of rac-1
have been identified recently by Giannis and co-workers, and these
compounds turned out to act as very potent cell-permeable inhib-
itors of Eg5.3 While both enantiomers of monastrol abolished basal
Eg5 ATPase activity, the (S)-enantiomer shows a 15 times higher
potency compared with the opposite (R)-enantiomer.1b Thus, syn-
thetic efforts based on different approaches have been made for
the stereoselective preparation of the (S)-enantiomer of monastrol
[(S)-monastrol, (S)-1, Fig. 1]. A route to (S)-1 reported by Dondoni
et al. is based on the formation of diastereomeric N-3-ribofurano-
syl amides from racemic monastrol, separation of both diastereo-
mers and subsequent amide hydrolysis of the desired
diastereomer.4 An enantioselective Biginelli reaction using
10 mol % of a bis-phenyl-substituted H8-binaphthol-based phos-
phoric acid as a chiral organocatalyst, leading to TBS-protected
monastrol with 91% ee, was developed by Gong and co-workers.5

Zhu and co-workers reported an enantioselective Biginelli reaction
in the presence of a chiral metal catalyst synthesized from ytter-
bium triflate and a hexadentate ligand. At a catalyst loading of
ll rights reserved.

en.de (H. Gröger).
10 mol % the (R)-enantiomer of monastrol was obtained in 80%
yield and with excellent 99% ee.6 Surprisingly, however, to the best
of our knowledge enzymatic routes have not been used so far in
spite of the known efficiency of biocatalysis for the synthesis of
chiral compounds, and their wide use in industrial drug synthesis.7

In the following we report the first enantioselective biocatalytic
synthesis of (S)-monastrol, (S)-1.

Since the racemic compound monastrol, rac-1, is easily pre-
pared in the Biginelli reaction8 starting from simple starting mate-
rials it appeared attractive to us to use this racemate as a starting
material for an enzymatic resolution process.

Inspired by numerous successful examples of enzymatic resolu-
tions via hydrolysis of esters with a stereogenic center in b-posi-
tion,9 at the start of our experiments we considered this type of
reaction as most promising and straightforward for synthesizing
the (S)-enantiomer of monastrol (according to the synthetic strat-
egy shown in Scheme 1). To our surprise, however, when screening
a set of commercially available hydrolases such as, for example, li-
pases from Aspergillus niger, Candida antarctica B (CAL-B), Candida
H H
rac-1 (S)-1

Figure 1. Structures of monastrol (rac-1) and (S)-monastrol ((S)-1).
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Scheme 2. Enzymatic hydrolysis of monastrol, rac-1 (organic solvents: methylene
chloride, DMSO, hexane, MTBE, i-PrOH).

Table 1
Enzymatic hydrolysis of O-acetylated monastrol, rac-3a

Entrya Lipase Conv.g (%) ee of (R)-1 (%) ee of (S)-3a (%) Eh

1 C. antarctica Bb 52 71 77 13
2 C. rugosac 33 66 15 6
3 A. nigerd 35 17 5 1
4 P. fluorescense 51 8 8 1
5 B. cepaciaf 9 6 1 1

a For the experimental protocol, see Ref. 12.
b Candida antarctica B (CAL-B), commercial product: lipase Novozym 435.
c Candida rugosa, type VII; commercial product from Sigma.
d Aspergillus niger, commercial product: lipase AS Amano.
e Pseudomonas fluorescens, commercial product: lipase AK Amano 20.
f Burkholderia cepacia, commercial product: lipase PS Amano IM.
g Conversion was determined from the resulting crude product by means of

proton NMR spectroscopy.
h The E value (enantioselectivity) has been calculated by means of the measured

ee values of (R)-1 and (S)-3a.
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Scheme 1. Planned retrosynthetic concept to (S)-1 via enzymatic hydrolysis of rac-1.
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rugosa, Mucor javanicus, and Pseudomonas fluorescens as well as
porcine liver esterase we could not identify a suitable biocatalyst
(Scheme 2). Independent of the type of lipase conversions were be-
low 5% for the studied biocatalysts (data not shown in detail). Due
to the lack of a significant activity of this process, further process
development has not been carried out for this route.

As a second option we then focused on the use of racemic O-
acylated monastrol derivatives of type rac-3 as substrates. The es-
ter group in rac-3, which is obtained through derivatization of the
phenolic moiety in rac-1, appeared to us as an interesting func-
tional group for a hydrolytic biotransformation. The retro-synthe-
sis of such an approach to the O-acylated derivative (S)-3 of
(S)-monastrol, (S)-1, is shown in Scheme 3. At the same time, how-
ever, this synthetic route is challenging since in these substrates of
type rac-3 the stereogenic center and the functional group for the
biotransformation are separated from each other by a planar aro-
matic moiety. So far only a few examples are reported for enzy-
matic resolutions of compounds with such a so-called remote
stereogenic center.10

In our initial screening for a suitable biocatalyst O-acetylated
monastrol, rac-3a,11 served as a substrate. This compound was eas-
ily prepared via acetylation of monastrol, rac-1, using acetic anhy-
dride in the presence of DMAP.11 As a reaction media for the
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Scheme 3. Retrosynthetic route to (S)-3 via enzymatic hydrolysis of rac-3.
enantioselective enzymatic hydrolysis, a two-phase system con-
sisting of water and dichloromethane (80:20 (v/v)) has been used.
When screening12 a set of commercially available lipases we were
pleased to find a promising reaction course in the presence of the
lipase from C. antarctica B (CAL-B). By means of this enzyme a con-
version of 52% was achieved under formation of (R)-1 with 71% ee
(Table 1, entry 1). An enantiomeric excess of 77% ee has been found
for the remaining substrate (S)-3a, which corresponds to an enanti-
oselectivity of E = 13 for this biotransformation. Thus, the desired
(S)-configuration is obtained for the remaining substrate, 3a.
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With other enzymes the resolutions based on hydrolysis of rac-3a
proceeded less successfully (Table 1, entries 2–5). A low conversion
of 9% was obtained when using a lipase from Burkholderia cepacia
(entry 5). The use of a lipase from C. rugosa led to an improved con-
version of 33%, but a non-satisfying enantioselectivity with an E va-
lue of 6 was found in this experiment (entry 2). Good to high
conversions of 35% and 51% were observed with lipases from A. ni-
ger and P. fluorescens, respectively. However, both reactions pro-
ceeded with very low enantioselectivities, which are indicated by
the E value of only 1 for both reactions (entries 3,4).

After having identified a suitable biocatalyst (with CAL-B), we
focused on the study of the impact of the acyl moiety on conver-
sion and enantioselectivity in order to optimize the ‘leaving group’
in the hydrolytic process. When investigating the influence of sev-
eral aliphatic acyl moieties, O-butanoylated monastrol, rac-3b,13

turned out as the most suitable substrate. In the enzymatic hydro-
lysis of this substrate rac-3b an improved enantioselectivity with
an E value of 20 was obtained (Scheme 4). When this resolution
was stopped at a conversion of 59%, subsequent work-up led to
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Scheme 4. Enzymatic hydrolysis of O-butanoyl monastrol, rac-3b.
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the hydrolyzed product (R)-1 in 48% yield and with 66% ee. The
remaining desired (S)-enantiomer, (S)-3b, was isolated after col-
umn chromatography in 31% yield and with a high enantiomeric
excess of 97% ee (Scheme 4).14 When starting from substrates of
type 3 bearing acyl moieties such as propanoyl (R = Et) and hexa-
noyl (R = n-pentyl) reactions also proceeded, but gave less satisfac-
tory results with E values of 8 and 6, respectively.15 The
conversions of these reactions were 30% and 11%. Notably, a dra-
matic drop of reactivity was observed when the substituent at
the acyl moiety was an isopropyl group (R = i-Pr) as a representa-
tive for an a-branched substituent (<5% conversion).15

Based on the encouraging result in the enzymatic resolution of
rac-3b we then focused on the subsequent cleavage of the
O-butanoyl moiety in (S)-3b in order to obtain (S)-monastrol,
(S)-1, as the desired final product. Although for such a non-enan-
tioselective hydrolysis ‘standard’ chemical hydrolytic methods
might be also conceivable, the presence of the second ester moiety
(ethyl ester) in the molecule (S)-3b, which should not undergo
hydrolysis, makes this step challenging. After a preliminary screen-
ing of base-catalyzed methods (using aluminum oxide or NaOH as
a base) was not successful (data not shown) we identified a non-
selective biocatalytic hydrolysis as the method of choice. This
method is based on the use of a lipase from C. rugosa, which
showed a high activity but low enantioselectivity (E value of 7)
for the resolution of rac-3b. At the same time, this enzyme does
not possess a (significant) activity for the hydrolysis of the ethyl es-
ter moiety of rac-1 and rac-3 (data not shown), thus making it
attractive for the desired non-enantioselective but chemoselective
hydrolysis of (S)-3b under formation of (S)-1. We were pleased to
find that, as expected, in the presence of the lipase from C. rugosa
the desired (S)-enantiomer of monastrol, (S)-1, was then formed
with a high conversion of >95%. After subsequent work-up (S)-
monastrol, (S)-1, was obtained in 98% yield and with a high enan-
tiomeric excess of 96% ee (Scheme 5).16
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Scheme 5. Synthesis of (S)-monastrol, (S)-1, via enzymatic hydrolysis of (S)-3b.
In summary, we reported the first enantioselective biocatalytic
synthesis of (S)-monastrol, (S)-1, which has been realized by means
of an unexpected and unusual enzymatic resolution of a substrate
with a remote stereogenic center as the preferred route. Notably,
an easily available commercial biocatalyst can be used for this res-
olution as a key step. Currently extension of this new methodology
towards a technology platform for the enantioselective synthesis of
a broad range of derivatives of (S)-monastrol is in progress. In addi-
tion, based on this methodology enzymatic resolutions of other
types of racemic phenol esters bearing a remote stereogenic center
are also planned.
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