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Abstract: A stereoselective approach towards ethyl-substituted
conjugated dienoic esters and dienones utilising a Suzuki cross-cou-
pling reaction has been achieved. In addition, a method for their
conversion into the corresponding ethyl ketones is presented.
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Conjugated dienoic esters and conjugated dienones 1
(Figure 1) are useful building blocks for organic synthe-
sis, being precursors for prominent structural features of a
number of natural products, including carotenoids.1

Figure 1 Alkyl-substituted dienoic esters (only E,E isomer shown
for simplicity)

The unsubstituted and methyl-substituted compounds
(R2 = H, Me) can be easily prepared by aldol reaction,
though care has to be taken to establish the correct stereo-
chemistry across the double bonds. Other possibilities in-
clude the utilisation of Wittig-type,2 Horner–Wadsworth–
Emmons-type,3 or Julia-type4 olefination strategies for the
formation of the double bonds. However, all these
reactions suffer from a sometimes insufficient degree of
stereocontrol and low reaction yields in the case of bulkier
side chains. To the best of our knowledge, Suzuki cross-
coupling strategies involving vinyl triflates have not been
applied in the synthesis of ethyl-substituted dienoic ester
and dienone derivatives, though there are a number of
examples of other cross-coupling reactions, namely Heck
and Stille reactions, in the synthesis of retinal and ana-
logues.5 In this paper we present a novel stereoselective
approach towards conjugated dienoic esters featuring a
Suzuki cross-coupling reaction.6 In addition, we present a
synthesis of 5-ethyl-7-phenylhepta-4,6-dien-3-one (2) by
cross-coupling of a ketone-derived vinyl triflate and a
versatile synthetic strategy for the conversion of the cor-
responding dienoic ester into the ketone 2. The synthetic
strategy for 2 is summarised in Scheme 1.

Scheme 1 Retrosynthetic analysis of 5-ethyl-7-phenylhepta-4,6-
dien-3-one (2)

Thus, 2 can be formed by reaction of inexpensive com-
mercially available (E)-2-phenylvinylboronic acid (3) and
vinyl triflate precursor 4 or 5. The ester derivative 4 was
first synthesised starting from 3-oxopentanoic acid
methyl ester (6) following a literature precedence on a
very similar system7 using triethylamine and trifluo-
romethanesulfonic anhydride, which provided the product
in a combined yield of 61% in a 5:7 ratio in favour of the
undesired Z isomer (Z)-4 (Scheme 2). The isomers could
be separated by column chromatography. When sodium
hydride and N-phenylbis(trifluoromethanesulfonimide)8

were utilised, the desired E isomer (E)-4 could be ob-
tained exclusively in a yield of 71%.

Unknown ketone derivative 5 was obtained from heptane-
3,5-dione (7) using trifluoromethanesulfonic anhydride
and triethylamine in a combined yield of 90% as a 1:1
mixture of both isomers. The isomers could also be sepa-
rated by column chromatography, but the E isomer (E)-5
decomposed rapidly.
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Scheme 2 Synthesis of vinyl triflates 4 and 5
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As the desired triflate isomer (E)-5 could not be isolated
due to its latent lability, a nonaflate analogue was pre-
pared as these are also known to be potent leaving groups
in cross-coupling reactions.9 Starting from heptane-3,5-
dione (7), the corresponding trimethylsilyl ether 8 was
synthesised using triethylamine und trimethylsilyl chlo-
ride in hexanes.10 Ether 8 was then transformed into nona-
flate 9 by addition of tetrabutylammonium fluoride and
nonaflate fluoride9a yielding the desired product in 54%
yield over both steps as a single stereoisomer (Scheme 3).

Scheme 3 Synthesis of vinyl nonaflate 9

The three triflates (E)-4, (Z)-4 and 5 and nonaflate 9 were
then employed in a Suzuki reaction6 using standard condi-
tions [Pd(PPh3)4, Na2CO3, dioxane–H2O].11 The results
are summarised in Table 1.

The reaction of ester derivatives (E)-4 and (Z)-4 proceed-
ed uneventfully. When the crude mixture of isomers was
subjected to the cross-coupling conditions, the same ratio
of product isomers was obtained in a combined yield of
72%. When the pure isomers, (E)-4 and (Z)-4, were em-
ployed the corresponding esters (E)-10 and (Z)-10 were
formed in 77% and 81% yields, respectively, and no signs
of the other isomer were detected. When ketone derivative
5 was used under the same reaction conditions, dienone 2
was formed in a yield of 64%, but with complete loss of

the stereochemical information across the double bond
conjugated to the ester, possibly due to a pronounced con-
figurational lability of triflate 5 under the reaction condi-
tions. Gratifyingly, the products were again separable by
column chromatography. Nonaflate 9 did not provide any
product.

To explore the scope and limitations of the Suzuki
approach to conjugated dienoic acid esters, a series of
commercially available vinylboronic acid derivates was
employed under the standard conditions. The results are
summarised in Table 2.

When (E)-1-heptenylboronic acid (12a) was subjected to
the standard conditions, the desired product (E)-13a was
obtained in a satisfactory combined yield of 77% along
with approximately 10% of the Z isomer. The reason for
this partial isomerisation could not be resolved; explana-
tions are the possible potential configurational lability of
the vinyl triflate 4 or a base-catalyzed isomerisation of the
reaction product. Steric interactions contribute to these
findings. When (E)-2-cyclohexylvinylboronic acid (12b)
was employed, conjugated dienoic ester 13b could be

Table 1 Results of the Cross-Coupling Reactiona

Reactant Yield E:Z ratio

(E)-4/(Z)-4 (5:7) 72% 5:7

(E)-4 77% pure E

(Z)-4 81% pure Z

(E)-5 64% 1:1

(E)-9 no reaction –

a Reaction conditions: Pd(PPh3)4 (0.04 equiv), Na2CO3 [2 M in H2O; 
1.5 equiv], boronic acid (1.0 equiv), triflate/nonaflate (1.0 equiv), 
dioxane (2 mL/mmol), 80 °C, 18–21 h.
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Table 2 Cross-Coupling of Boronic Acids 12 with Vinyl Triflate 
(E)-4a

R Yield (E + Z) E/Z ratio

12a

77% 9:1

12b

83% 19:1

12c

53% 9:1

12d

71% 19:1

12e

86% 3:1

12f

38% 19:1

a Reaction conditions: Pd(PPh3)4 (0.04 equiv), Na2CO3 [2 M in H2O; 
1.5 equiv], boronic acid (1.0 equiv), triflate (E)-4 (1.0 equiv), dioxane 
(2 mL/mmol), 80 °C, 20 h.
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isolated in a yield of 83% with a E/Z ratio of about 19:1.
Boronic acids 12c and 12d gave similar results, the yield
being 83% for 13c and 71% for 13d, respectively, with
E/Z ratios in the same range as in the first two cases. The
heteroatom-substituted aromatic systems 12e and 12f
proved to be more difficult substrates in this reaction.
When (E)-2-(fluorophenyl)vinylboronic acid (12e) was
used, the desired product 13e could be obtained in a yield
of 86%, but with a moderate E/Z ratio of 3:1. A possible
explanation could be the electron-withdrawing aromatic
fluorine substituent that also requires a lowered electron-
density in the conjugated olefinic bonds, possibly facili-
tating base-catalysed isomerisation of the terminal double
bond. In contrast, when (E)-2-(4-methoxyphenyl)vinyl-
boronic acid (12f) as employed, the reaction showed an
improved E/Z ratio of 19:1 under standard conditions, but
a lower reaction yield of 38%. Substantial amount of
boronic acid 12f could be reisolated from the reaction
mixture, indicating a slower reaction in this special case.
This finding can be attributed to the fact that the Suzuki
reaction requires electrophilic attack on the formed palla-
dium intermediate, which is slower due to the electron-
donating properties of the aromatic methoxy substituent.

With these results in hand, we studied the conversion of
conjugated esters (E)-10 and (Z)-10 into the desired
ketone 2. To achieve the transformation, we relied upon
the two-step strategy which is summarised in Scheme 4.

Scheme 4 Synthesis of (E)-2 and (Z)-11 (shown for E isomer, yields
for Z isomer in parentheses)

The esters were first transformed into the corresponding
Weinreb amides12 in 83% (E isomer) and 75% (Z isomer)
yields with complete retention of the double-bond stereo-
chemistry. The amides were then subjected to a Grignard
reaction using ethylmagnesium bromide13 which provided
the stereoisomeric ketones (E)-214 and (Z)-215 in 71% and
65% yields, respectively. Again, this transformation did
not lead to a substantial degree of isomerisation of the
double-bond geometry.

In conclusion, the Suzuki cross-coupling approach toler-
ates a wide variety of vinylboronic acid derivatives and
provides the desired conjugated dienoic esters in good to
excellent yields and stereoselectivities. Thus, this strategy
provides a novel versatile entry into this class of sub-
stances which is difficult to synthesise by other methods.

In addition, we were able to prepare both stereoisomers of
5-ethyl-7-phenylhepta-4,6-dien-3-one (2) using two dif-
ferent approaches. Direct Suzuki cross-coupling of (E)-
phenylvinylboronic acid 3 with ketone-derived triflate 5
provided a separable 1:1 mixture of isomers in a yield of
64%, thus enabling us to produce (E)-2 and (Z)-2 in a
yield of 32%. Further transformations using conjugated
dienoic ester derivative 10 led to the formation of (Z)-2 in
a yield of 39% over three steps starting from (Z)-4. The
corresponding E isomer could be obtained in a yield of
45%.
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