Synthesis and biological properties of 2-substituted *myo*inositol 1,4,5-trisphosphate analogues directed toward affinity chromatography and photoaffinity labeling

Shoichiro Ozaki ^a, Yutaka Watanabe ^a, Tomio Ogasawara ^a, Masato Hirata ^b and Takashi Kanematsu ^b

^a Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790 (Japan) ^b Department of Biochemistry, Faculty of Dentistry, Kyushu University 61, Fukuoka 812 (Japan)

(Received January 8th, 1992; accepted June 9th, 1992)

ABSTRACT

A series of *myo*-inositol 1,4,5-trisphosphate analogues with the 2-acyl substituents *p*-aminobenzoyl (7), *p*-azidobenzoyl (8), 4-{5-[2-(benzamido)ethyl]-2-hydroxyphenylazo}benzoyl (9), and *cis,trans*-4-aminocyclohexylcarbonyl (10) were synthesised and examined for their effects on the 5-phosphatase, the 3-kinase, the tritiated trisphosphate-binding activity, and the Ca²⁺-releasing activity. Each analogue inhibited the hydrolysis of D-[5-³²P]Ins(1,4,5)P₃ and the phosphorylation of D-[³H]Ins(1,4,5)P₃, catalysed by erythrocyte ghosts and brain cytosol, respectively. The analogues acted as full agonists in releasing Ca²⁺ from permeabilised cells and also inhibited the binding of D-[³H]Ins(1,4,5)P₃ to cerebellum microsomes. The analogues 7 and 10 were utilised for immobilisation of the trisphosphate on SepharoseTM and the subsequent affinity chromatography effected purification of the above proteins. A photoaffinity probe, the appendage of which acted as the photoaffinity probe as well as a non-radioactive molecular marker, was also derived from the analogue 7.

INTRODUCTION

1D-myo-Inositol 1,4,5-trisphosphate [D-Ins(1,4,5)P₃] is an intracellular messenger that mediates the release of Ca²⁺ from non-mitochondrial intracellular stores of calcium in stimulated cells¹. D-Ins(1,4,5)P₃ is metabolised by an ATP-dependent phosphorylation² to give D-Ins(1,3,4,5)P₄ and by a 5-phosphatase-catalysed dephosphorylation³ to give D-Ins(1,4)P₂. In order to elucidate the mechanism of the release of Ca²⁺ and metabolism at the molecular level, it is crucial to investigate

Correspondence to: Professor S. Ozaki, Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan.

how $Ins(1,4,5)P_3$ interacts with the receptor protein and the metabolic enzymes, 5-phosphatase and 3-kinase.

In this context, the 2-azidobenzoyl derivative of $Ins(1,4,5)P_3$ was reported⁴ for photoaffinity labeling and found to cause irreversible inactivation of the receptor protein for the release of Ca²⁺ under photolysis. On the basis of these findings and reports⁵ that the biological activities of $Ins(1,4,5)P_3$ can be attributed to the 4,5-phosphate groups, whereas the 1-phosphate group increases the affinity for its recognition by the receptor site, further chemical modification of $Ins(1,4,5)P_3$ at position 2 has been carried out. We now describe the synthesis and biological properties of some 2-acyl derivatives and their utilisation for photoaffinity labeling and affinity chromatography.

RESULTS AND DISCUSSION

Synthesis of 2-acyl-Ins(1,4,5) P_3 analogues (7–10).—3,6-Di-O-benzyl-myo-inositol 4,5-bis(dibenzyl phosphate) (1a), derived from myo-inositol in 5 steps, is a versatile intermediate for syntheses of myo-inositol polyphosphates such as the 1,2-cyclic-4,5-, and the 2,4,5- and 1,4,5-tris-phosphate⁶. Compound 1a can also be utilised for the preparation of 2-substituted derivatives of $Ins(1,4,5)P_3$. The 4,5-phosphate groups are now introduced preferably by the phosphoramidite method⁷ using the phosphitylating agent 2 to give 1b instead of the method⁸ employing tetrabenzyl pyrophosphate-butyl-lithium for the synthesis of 1a. Compound 1a was triethyl-silylated selectively at HO-1 followed by nitrobenzoylation of HO-2 to afford 4. Desilylation of 4 gave 5, HO-1 of which was phosphorylated by successive treatment with phosphorus trichloride, benzyl alcohol, and *tert*-butyl hydroperoxide⁹ to give the trisphosphate derivative 6. Hydrogenolysis of 6 accompanied by reduction of the nitro group afforded 2-O-(4-aminobenzoyl)-myo-inositol 1,4,5-trisphosphate (7).

Diazotisation of 7 followed by treatment with sodium azide and p-hydroxyphenylethylamine afforded the 4-azidobenzoyl derivative 8 and the diazo coupling product, benzoylation of which gave 9. Furthermore, 7 was transformed into the cyclohexyl derivative 10 by hydrogenation at 80 atm in the presence of ruthenium(IV) oxide.

Naturally occurring $Ins(1,4,5)P_3$ is D, and the L form is believed to have neither physiological activity nor to interfere in the various assay systems. However, modification of the structure of D-Ins(1,4,5)P₃ may change the biological profile; hence, the enantiomers of 7 and 10 were prepared from D-1a and L-1a which were separated by chiral column chromatography using Chiralcel ODTM. The analogues 7-10 of D-Ins(1,4,5)P₃ thus obtained were examined for their effects on the Ins(1,4,5)P₃-phosphatase, Ins(1,4,5)P₃-kinase, D-[³H]Ins(1,4,5)P₃-binding activity, and Ca²⁺-releasing activity.

Effects on D-Ins $(1,4,5)P_3$ -5-phosphatase.—Fig. 1 shows the dose dependence of the D-Ins $(1,4,5)P_3$ analogues in inhibiting the hydrolysis of D- $[5-^{32}P]$ Ins $(1,4,5)P_3$ by the phosphatase of human erythrocyte ghosts. Each of the racemic 2-substituted analogues 7–10 and the positional and cyclic isomers of InsP₃ dose-dependently inhibited the hydrolysis of D- $[5-^{32}P]$ Ins $(1,4,5)P_3$ and was a substrate for the phosphatase, although the extents of the hydrolysis were low compared to that¹⁰ of D-Ins $(1,4,5)P_3$, indicating that the analogues competed with the radioactive substrate for the active site of the phosphatase. The analogues, except for 10, were more potent than D-Ins $(1,4,5)P_3$, thereby indicating that the presence of substituents or a deoxy group increased the affinity for the enzyme. Transformation of the benzene ring of 7 to the cyclohexane ring in 10 decreased the activity.

Fig. 1. Inhibition of D-[5-³²P]Ins(1,4,5)P₃-5-phosphatase activity by InsP₃ analogues. Erythrocyte ghosts were incubated with 10 μ M D-[5-³²P]Ins(1,4,5)P₃ in the presence of each InsP₃ analogue at the concentrations indicated at 37° for 10 min.

In seeking to evaluate the properties of the enantiomers¹¹, it was found (Fig. 2) that L-7 and L-10 inhibited the hydrolysis of D-Ins(1,4,5)P₃ by the ghosts, whereas the D forms were inactive up to 100 μ M. Moreover, L-7 was more potent than L-10 and D-Ins(1,4,5)P₃. Polokoff et al.¹² reported that there was no marked difference between D- and L-Ins(1,4,5)P₃ in inhibiting the phosphatase of aortic smooth muscle cells, i.e., L-Ins(1,4,5)P₃ is recognised by the active site of the phosphatase. Thus, 2-substitution of D-Ins(1,4,5)P₃ markedly reduces the affinity for the active site of the enzyme, which indicates that HO-2 is important in the recognition by the phosphatase. On the other hand, 2-substitution of L-Ins(1,4,5)P₃ increases the affinity, especially for the 4-aminobenzoyl group.

Fig. 2. Inhibition of $D-[5-^{32}P]Ins(1,4,5)P_3-5$ -phosphatase activity by the enantiomers of the InsP₃ analogues 7 and 10. Experimental procedures were as described in Fig. 1.

Fig. 3. Inhibition of $D-[^{3}H]Ins(1,4,5)P_{3}$ -3-kinase activity by InsP₃ analogues. Rat-brain cytosol was incubated with $\mu M D-[^{3}H]Ins(1,4,5)P_{3}$ in the presence of each InsP₃ analogue at the concentrations indicated at 37° for 5 min and at Ca²⁺ concentrations of A, 10 μM ; and B, <0.01 μM .

Effects on D-Ins $(1,4,5)P_3$ -3-kinase.—A rat-brain cytosol fraction was assayed for D-Ins $(1,4,5)P_3$ -3-kinase in the presence of 10 mM pyrophosphate as an inhibitor of D-Ins $(1,4,5)P_3$ -5-phosphatase. As shown in Fig. 3A, DL-2-deoxy-Ins $(1,4,5)P_3$ was equipotent to D-Ins $(1,4,5)P_3$ in inhibiting the 3-kinase in the presence of 10 μ M Ca²⁺. The other compounds, except for DL-Ins $(2,4,5)P_3$, were also inhibitors, although the concentrations required for half-maximal inhibition were 2–30-fold higher. At $[Ca^{2+}] < 0.01 \ \mu$ M, however, the potency of these inhibitors was more striking, whereas those of D-Ins $(1,4,5)P_3$ and its 2-deoxy derivative remained unchanged (Fig. 3B).

The K_m value for D-Ins(1,4,5)P₃ for the 3-kinase was 0.8 μ M, regardless of the concentration of Ca²⁺. The K_i values, as determined by Lineweaver-Burk plots of the inhibition of the phosphorylation of D-[³H]Ins(1,4,5)P₃ by the analogues, are shown in Table 1. Only 10 was a substrate for the kinase¹¹. In contrast to the results with D-Ins(1,4,5)P₃-5-phosphatase, the inhibition of the 3-kinase was specific for the D isomers and the results for D-7 and D-10 are shown in Fig. 4. The

Compound	K _i		
	$< 0.01 \ \mu M \ Ca^{2+}$	$10 \ \mu M \ Ca^{2+}$	
D-Ins(1,4,5)P ₃	1.0	0.99	
2-Deoxy-InsP ₃	1.6	1.9	
9	0.36	2.0	
7	2.4	33.9	

 K_1 values " for InsP₃ analogues in inhibiting the phosphorylation of D-[³H]Ins(1,4,5)P₃

^a The apparent K_i was determined from Lineweaver-Burk plots.

changes in the K_i values depending on $[Ca^{2+}]$ were much the same as seen with the racemates. Thus, HO-2 of D-Ins(1,4,5)P₃ is not essential for recognition by the active site of the 3-kinase and, furthermore, the changes in conformation in or near the active site may be caused by the changes in concentration of Ca^{2+} .

Fig. 4. Inhibition of $D-[^{3}H]lns(1,4,5)P_{3}-3$ -kinase activity by the enantiomers of the InsP₃ analogues 7 and 10. Experimental procedures were as described in Fig. 3.

TABLE I

Fig. 5. Displacement of $D-[{}^{3}H]Ins(1,4,5)P_{3}$ from the cerebellum microsomes by InsP₃ analogues. Rat-cerebellum microsome was incubated with 0.6 nM $D-[{}^{3}H]Ins(1,4,5)P_{3}$ in the presence of various concentrations of each unlabeled InsP₃ analogue at 0° for 15 min.

Effects on D-Ins $(1,4,5)P_3$ binding and Ca^{2+} -releasing activity.—In order to determine the extent of competition with D-Ins $(1,4,5)P_3$ for the receptor site, a rat-cerebellum microsomal fraction was used. As shown in Fig. 5, each of the compounds examined could induce the dose-dependent displacement of D-[³H]Ins $(1,4,5)P_3$ from its binding site, but with a potency less than that of D-Ins $(1,4,5)P_3$. The receptor for D-Ins $(1,4,5)P_3$ also tolerated 2-substituents, i.e., p-aminobenzoyl (as in 7), p-azidobenzoyl (8), or 4-aminocyclohexylcarbonyl (10). These compounds were several times less potent than D-Ins $(1,4,5)P_3$ and the L isomers were inactive. Thus, HO-2 of D-Ins $(1,4,5)P_3$ is not involved in the recognition by the receptor site.

The $Ins(1,4,5)P_3$ analogues 7-10 were examined for the ability to evoke the release of Ca^{2+} from saponin-permeabilised macrophages (Fig. 6). Of the accumulated Ca^{2+} at a free Ca^{2+} concentration of 0.14 μ M, 40-60% was released within

Fig. 6. Release of Ca^{2+} from permeabilised macrophages by $InsP_3$ analogues. Saponin-permeabilised macrophages were allowed to accumulate ${}^{45}Ca^{2+}$ in the presence of 10 mM NaN₃ at 37° for 10 min. After the Ca^{2+} accumulation reached a plateau, each $InsP_3$ analogue was added to evoke the Ca^{2+} release, and the amount of Ca^{2+} released after 1 min relative to that of Ca^{2+} accumulation was plotted against the concentration of the $InsP_3$ analogues.

1 min after adding the maximal dose. Each of the compounds tested was a full agonist and the order of potency was much the same as seen in the binding assay.

Preparation of $InsP_3$ -affinity resins for chromatography and their evaluation¹³.— Affinity chromatography is a useful technique for the purification of bio-molecules. As noted above, 2-substitution of $Ins(1,4,5)P_3$ (to give 7–10) did not affect significantly the biological potency, and the analogues were full agonists. Matrices for affinity chromatography were prepared from the analogues 7 and 10. Thus, the 2-aminocyclohexylcarbonyl derivative 10 was linked to Activated CH-Sepharose $4B^{TM}$. The same gel was treated with tyramine to form the amide linkages and the resulting polymer was reacted with the diazonium salt 11. Although the structures of these functionalised resins were not characterised fully, the analogous reactions in solution and no recovery of each analogue in the immobilisation procedure suggest the structures 12 and 13.

When the $Ins(1,4,5)P_3$ -metabolising enzymes and the receptors present in the soluble and particulate fractions in rat brain were adsorbed onto the above columns and eluted by increasing salt concentrations, increased specific activities were obtained. Furthermore, novel $Ins(1,4,5)P_3$ -binding proteins have been purified¹⁴ from rat brain, using 13. Thus, the $Ins(1,4,5)P_3$ affinity columns, especially 13, are promising tools for purifying $Ins(1,4,5)P_3$ -binding proteins.

Other $Ins(1,4,5)P_3$ -affinity matrices have been reported^{15,16}. Prestwich et al.¹⁶ attached $Ins(1,4,5)P_3$ to Affi-Gel 10TM via the 1-phosphate group, and the resulting affinity resin was effective in the purification of $Ins(1,4,5)P_3$ receptor proteins.

Synthesis and biological properties of a photoaffinity probe¹⁷.—A photoaffinity labeling technique was used to investigate the active site of enzymes. If the photoaffinity probe also has a molecular marker, then detection of the covalently bound protein is facilitated. Hirate et al.⁴, Schäfer et al.¹⁸, and Prestwich et al.¹⁶ have prepared radioactive InsP₃ analogues for photoaffinity labeling, which reacted specifically with the proteins that may be involved in InsP₃-induced Ca²⁺ release. As a non-radioactive marker for safe handling, the Ins(1,4,5)P₃ analogue 15 was selected because it possesses a photo-sensitive azido group, and the biotinyl residue at C-2 serves as a marker based on the strong interaction with avidin and visualisation of the resulting complex¹⁹. Thus, N^{α} -4-azidobenzoyl- N^{ϵ} -biotinyl-Llysine N-2-(4-hydroxyphenyl)ethylamide (14) was linked with the diazonium salt 11 generated in situ from 7 to afford the diazo coupling product 15. Compound 15 was shown to act as a photoaffinity probe by the following experiments. Incubation of 15 with the 5-phosphatase-rich fraction, obtained by passing red-blood-cell ghosts through a column of the $Ins(1,4,5)P_3$ -immobilised gel 13, followed by photolysis resulted in the specific affinity labeling of a 66-kDa protein. Moreover, addition of excess of $Ins(1,4,5)P_3$ to the incubation medium reduced the labeling markedly. These results indicate that 15 was photolysed at the $Ins(1,4,5)P_3$ -recognising domain of the protein and the covalent linkage around the active site was formed. The properties of 15 are being investigated further.

EXPERIMENTAL

General methods.—When D_2O was used as a solvent for ¹H NMR spectroscopy, the signal of HOD (δ 4.64) was utilised as the reference, dioxane (δ 67.4) in a D_2O solution was used as an external reference for the ¹³C NMR spectra, and 85% H_3PO_4 was used as the external reference for the ³¹P NMR spectra (positive chemical shifts are downfield from the reference). The ¹³C and ³¹P NMR spectra were ¹H decoupled. IR spectra were recorded with a Hitachi EPI-G3 spectrometer. TLC was performed on Silica Gel 60 F254 (Merck) and cellulose (SF-2020, Funakoshi). Flash-column chromatography was performed on Wakogel C-300 and column chromatography on microgranular cellulose powder CC-31 (Whatman BioSystems). Extracts obtained after work-up were dried over MgSO₄ or Na₂SO₄. Experimental procedures for the preparation of the affinity resins 12 and 13 and biological experiments were reported in the articles indicated in the text.

 (\pm) -1,4-Di-O-benzyl-2,3-O-cyclohexylidene-myo-inositol 5,6-bis(dibenzyl phos*phate*).—To a solution of (\pm) -1,4-di-O-benzyl-2,3-O-cyclohexylidene-myo-inositol²⁰ (1.86 g, 4.22 mmol) in THF (80 mL) at -78° was added butyl-lithium (5.4 mL of a 3.44 M solution in hexane, 18.57 mmol). The mixture was stirred for an additional 5 min, a solution of tetrabenzyl pyrophosphate (5.0 g, 9.29 mmol) in THF (30 mL) was added at -78° , and the mixture was stirred at 0° for 1.5 h, then filtered, and concentrated. A solution of the oily residue in ether was washed with H_2O_1 , then dried, and the solvent was evaporated. Column chromatography (EtOAc-hexane, 1:3) of the residue on silica gel gave the title compound (3.9 g, 96%), $R_{\rm F}$ 0.7 (EtOAc-hexane, 1:1); ν_{max} 1250, 1000 cm⁻¹. NMR data (CDCl₃): ¹H (270 MHz), δ 1.29-1.80 (c, 10 H), 3.91 (dd, 1 H, J 7.9 and 3.7 Hz), 4.05 (dd, 1 H, J 7.3 and 6.1 Hz), 4.23 (t, 1 H, J 7.3 Hz), 4.33 (dd, 1 H, J 7.3 and 3.7 Hz), 4.62 (ddd, 1 H, J 12.8, 8.6, and 6.1 Hz), 4.67 (s, 2 H), 4.68 and 4.76 (ABq, 2 H, J 11.6 Hz), 4.80-5.10 (c, 9 H), 7.10-7.40 (c, 30 H); ¹³C (67.8 MHz), δ 23.56, 23.88, 24.98, 33.86, 36.10, 69.07 (d, J 6.1 Hz), 69.21 (d, 2 C, J 6.1 Hz), 69.34 (d, J 6.1 Hz), 72.53, 72.60, 72.80 (C-2), 75.04 (C-3), 76.86 (C-1), 78.24 (t, J 6.1 Hz, C-4), 78.60 (C-6), 79.71 (t, J 6.1 Hz, C-5), 110.73, 127.37, 127.51, 127.60, 127.66, 127.73, 127.78, 127.84, 127.99, 128.05, 128.09, 128.16, 128.23, 128.27, 128.37, 135.81, 135.90, 135.94, 137.84.

Anal. Calcd for C₅₄H₅₈O₁₂P₂: C, 67.49; H, 6.08. Found: C, 67.82, H, 6.13.

 (\pm) -1,4-Di-O-benzyl-myo-inositol 5,6-bis(dibenzyl phosphate) (1a).—A solution of the above derivative (1.74 g, 1.81 mmol) in trifluoroacetic acid (20 mL) and

MeOH (19 mL) was stirred at room temperature for 2 h, then diluted with ether (100 mL). The organic solution was washed successively with aq NaHCO₃ (2 × 50 mL), aq KHSO₄ (50 mL), and brine (2 × 50 mL), dried, and concentrated. Recrystallisation of the residue from CHCl₃ and light petroleum (bp 30–70°) gave **1a** (1.29 g, 83%), mp 128°, $R_{\rm F}$ 0.2 (EtOAc-hexane, 1:1); $\nu_{\rm max}$ 3450, 1236, 1120, 980 cm⁻¹. ¹H NMR data (270 MHz, CDCl₃): δ 3.47 (dd, 1 H, J 9.1 and 2.7 Hz), 3.53 (dd, 1 H, J 9.1 and 2.7 Hz), 3.88 (t, 1 H, J 9.1 Hz), 4.08 (t, 1 H, J 2.7 Hz), 4.52 (d, 1 H, J 11.1 Hz), 4.50 (q, 1 H, J 9.1 Hz), 4.61 (d, 1 H, J 11.1 Hz), 4.74 (d, 1 H, J 11.1 Hz), 4.85 (d, 1 H, J 11.1 Hz), 4.71–5.08 (c, 9 H including H-4), 7.03–7.35 (m, 30 H).

Anal. Calcd for C₄₈H₅₀O₁₂P₂: C, 65.44; H, 5.75. Found: C, 65.39; H, 5.73.

Resolution of 1a using chiral column chromatography.—A solution of racemic 1a (200 mg) in hexane and ⁱPrOH (5:1) was divided into six fractions, each of which was added to a column (2 × 25 cm) of Chiralcel OD and eluted with hexane–ⁱPrOH (5:1) at 10 mL/min and 18 atm to give, first, L-1a (74 mg, 37%), $[\alpha]_D^{23} - 21^\circ$ (c 1.10, CHCl₃), and then D-1a (70 mg, 35%), $[\alpha]_D^{23} + 21^\circ$ (c 1.05, CHCl₃). Spectral data and chromatographic properties of each enantiomer were identical with those of the racemic diol.

(±)-1,4-Di-O-benzyl-3-O-triethylsilyl-myo-inositol 5,6-bis(dibenzyl phosphate) (3). —To a solution of 1a (0.50 g, 0.57 mmol) in pyridine (10 mL) at 0° was added chlorotriethylsilane (0.13 g, 0.86 mmol). The mixture was stirred at room temperature for 4 h and then concentrated in vacuo. A solution of the residue in EtOAc was washed successively with H₂O (×3), satd aq KHSO₄ (×2), H₂O, and brine, and concentrated. Column chromatography (EtOAc-hexane, 1:3) of the residue gave 3 (0.54 g, 95%), mp 210° (from CHCl₃-ether), R_F 0.6 (CHCl₃-ether, 1:1); ν_{max} 3400, 1229, 1082 cm⁻¹. ¹H NMR data (270 MHz, CDCl₃): δ 0.46–0.57 (m, 6 H), 0.83 (t, 9 H, J 8.2 Hz), 2.40 (bs, 1 H), 3.42 (dd, 1 H, J 9.1 and 2.7 Hz), 3.53 (dd, 1 H, J 9.1 and 2.7 Hz), 3.70 (t, 1 H, J 2.7 Hz), 3.80 (t, 1 H, J 9.1 Hz), 4.4–5.1 (c, 14 H), 7.0–7.2 (c, 30 H).

Anal. Calcd for $C_{54}H_{64}O_{12}P_2Si: C, 68.51; H, 10.82$. Found: C, 68.17; H, 10.50. (\pm) -1,4-Di-O-benzyl-2-O-p-nitrobenzoyl-3-O-triethylsilyl-myo-inositol 5,6-bis(dibenzyl phosphate) (4).—To a solution of 3 (1.40 g, 1.41 mmol) in pyridine (30 mL) were added p-nitrobenzoyl chloride (5.22 g, 28.13 mmol) and a catalytic amount of 4-dimethylaminopyridine at 0°. The mixture was stirred at room temperature for 15 h, then concentrated in vacuo, EtOAc and H₂O were added to the residue, and the organic solution was washed with H₂O, satd aq KHSO₄, H₂O, satd aq NaHCO₃, and brine, dried, and concentrated. Flash-column chromatography (EtOAc-hexane, 2:3) of the residue gave 4 (1.42 g, 88%), R_F 0.6 (EtOAc-hexane, 1:1); ν_{max}^{Nujol} 1700, 1580, 1360 cm⁻¹. ¹H NMR data (270 MHz, CDCl₃): δ 0.42 (m, 6 H), 0.83 (t, 9 H, J 8.2 Hz), 3.67 (dd, 1 H, J 9.1 and 2.7 Hz), 3.83 (dd, 1 H, J 9.1 and 2.7 Hz), 3.93 (t, 1 H, J 9.1 Hz), 4.5–5.1 (c, 14 H), 5.75 (t, 1 H, J 2.7 Hz), 7.03–7.38 (c, 30 H), 8.10 (d, 2 H, J 8.5 Hz), 8.25 (d, 2 H, J 8.5 Hz).

 (\pm) -1,4-Di-O-benzyl-2-O-p-nitrobenzoyl-myo-inositol 5,6-bis(dibenzyl phosphate)

(5).—To a solution of 4 (1.4 g, 1.22 mmol) in CHCl₃ (3 mL) and aq 80% acetic acid (10 mL) was added *p*-toluenesulfonic acid monohydrate (0.7 g, 3.5 mmol). The solution was stirred at room temperature for 3 h, EtOAc and H₂O were added, and the organic layer was washed with aq NaHCO₃ and H₂O, dried, and concentrated. Column chromatography (EtOAc-hexane, 2:1) of the residue on silica gel gave 5 (1.05 g, 84%), R_F 0.5 (EtOAc-hexane, 2:1); ν_{max}^{Nujol} 3350, 1720, 1590, 1370 cm⁻¹. ¹H NMR data (270 MHz, CDCl₃): δ 3.70 (dd, 1 H, J 9.1 and 2.7 Hz), 3.80 (dd, 1 H, J 9.1 and 2.7 Hz), 3.90 (t, 1 H, J 9.1 Hz), 4.5–5.1 (c, 14 H), 5.75 (t, 1 H, J 2.7 Hz), 7.03–7.38 (c, 30 H), 8.10 (d, 2 H, J 8.5 Hz), 8.25 (d, 2 H, J 8.5 Hz).

(±)-3,6-Di-O-benzyl-2-O-p-nitrobenzoyl-myo-inositol 1,4,5-tris(dibenzyl phosphate) (6).—Phosphorus trichloride (248 mg, 1.8 mmol) was added dropwise to a solution of 5 (930 mg, 0.903 mmol) in THF (10 mL) and pyridine (2.5 mL) at -78° . Benzyl alcohol (584 mg, 5.4 mmol) was then added at the same temperature after 1 h, and, after stirring for 1 h, 70% *tert*-butyl hydroperoxide (464 mg, 3.6 mmol) was added. The cooling bath was removed, the mixture was stirred for 2 h, EtOAc and H₂O were added, and the organic layer was washed with aq KHSO₄, H₂O, aq NaHCO₃, and H₂O, dried, and concentrated. Flash-column chromatography (EtOAc-hexane, 1:1) of the residue gave 6 (978 mg, 83%), R_F 0.5 (EtOAc-hexane, 1:1). ¹H NMR data (270 MHz, CDCI₃): δ 3.70 (dd, 1 H, J 9.8 and 2.4 Hz), 4.12 (t, 1 H, J 9.5 Hz), 4.4–5.3 (c, 19 H), 6.19 (t, 1 H, J 2.4 Hz), 7.0–7.4 (c, 40 H), 8.10 (d, 2 H, J 8.6 Hz), 8.25 (d, 2 H, J 8.6 Hz).

 (\pm) -2-O-p-Aminobenzoyl-myo-inositol 1,4,5-trisphosphate (7).—A mixture of 6 (0.9 g, 0.69 mmol), 5% Pd/C (1.0 g), and aq 20% MeOH (25 mL) was stirred underH₂ at room temperature for 12 h, then filtered, and concentrated. Column chromatography (aq 28% $NH_4OH^{-n}PrOH-H_2O$, 4:5:1), with the application of pressure, gave 7 (0.44 g, presumably the triammonium salt) which was converted into the trisodium salt by passing sequentially through columns of cation-exchange resins (pyridinium form and then the Na⁺ form), mp > 280°, $R_{\rm F}$ 0.35 (aq 28% $NH_4OH^{-n}PrOH^{-}H_2O, 4:5:1$; ν_{max}^{KBr} 3400, 1680, 1280, 1170, 1040 cm⁻¹. NMR data: ¹H (270 MHz, 21 mg in 0.73 mL of D₂O, neutral), δ 3.84 (dd, 1 H, J 9.5 and 2.8 Hz), 3.92 (t, 1 H, J 9.5 Hz), 4.00 (q, 1 H, J 9.5 Hz), 4.08 (dt, 1 H, J 9.5 and 2.8 Hz), 4.29 (q, 1 H, J 9.5 Hz), 5.65 (t, 1 H, J 2.8 Hz), 6.68 (d, 2 H, J 8.5 Hz), 7.75 (d, 2 H, J 8.5 Hz); ¹³C (67.8 MHz, ~70 mg in 0.75 mL of D₂O, neutral), δ 70.61 (s, C-3), 72.54 (m, C-6), 73.35 (s, C-2), 73.39 (d, J 5.5 Hz, C-1), 77.04 (m, C-4), 78.57 (m, C-5), 115.14, 118.23, 132.44, 153.14, 168.28; ³¹P (109 MHz, 21 mg in 2.5 mL of D_2O_2 , pD 6.8), δ 2.11, 2.49, 3.80. FAB-mass spectrum: m/z 606 [M⁺ (trisodium salt) + 1].

Each enantiomer was prepared in a similar manner from the corresponding optically active diol **1a** and showed identical chromatographic and spectroscopic properties: D-7 (ammonium salt), $[\alpha]_D^{23} - 3.6^\circ$ (c 2.2, D₂O, neutral), L-7 (ammonium salt), $[\alpha]_D^{23} + 4.2^\circ$ (c 2.1, D₂O, neutral).

 (\pm) -2-O-p-Azidobenzoyl-myo-inositol 1,4,5-trisphosphate (8).—To a solution of 7 (ammonium salt, 30 mg, 0.051 mmol) in concd. HCl (0.1 mL) and H₂O (3 mL) at 0°

was added a solution of NaNO₂ (10 mg) in H₂O (0.5 mL). The mixture was stirred for 1 h, NaN₃ (7 mg, 0.102 mmol) was added, stirring was continued for 1 h, and the mixture was concentrated under high vacuum. Column chromatography (cellulose, aq 28% NH₄OH⁻ⁱPrOH-H₂O, 4:5:1) of the residue gave **8** (30 mg, 95%, as the triammonium salt), R_F 0.40 (aq 28% NH₄OH⁻ⁱPrOH-H₂O, 4:5:1); ν_{max}^{KBr} 3200, 2100, 1260, 1100 cm⁻¹. NMR data: ¹H (270 MHz, D₂O, 20 mg in 0.76 mL, neutral), δ 3.72 (bdd, 1 H, J 9.1 and ~ 2.5 Hz), 3.82 (c, 2 H), 3.90 (m, 1 H), 4.20 (m, 1 H), 5.60 (bt, 1 H, J ~ 2.5 Hz), 7.00 (d, 2 H, J 8.6 Hz), 7.90 (d, 2 H, J 8.6 Hz); ¹³C (67.8 MHz, 20.6 mg in 0.71 mL of D₂O, pD 6.24), δ 70.80 (s, C-3), 72.77 (m, C-6), 73.76 (d, J 4.9 Hz, C-1), 74.26 (C-2), 77.44 (m, C-4), 78.90 (m, C-5), 119.84, 126.10, 132.56, 146.33, 167.79; ³¹P (109 MHz, 20.6 mg in 2.6 mL of D₂O, pD 6.6), δ 1.76, 2.55, 3.57.

(+)-2-O-(4-{5-[2-(Benzamido)ethyl]-2-hydroxyphenylazo}benzoyl)-myo-inositol 1,4,5-trisphosphate (9).—A solution of the diazonium salt 11, prepared from 7 (30 mg, 0.051 mmol) as described above, was made alkaline to litmus with 0.1 M NaHCO₃ and treated with 2-(4-hydroxyphenyl)ethylammonium chloride (13.2 mg, 0.077 mmol) for 2 h. After extraction of the excess of the starting amine with CHCl₃, the aqueous solution was concentrated under high vacuum, and the residue was passed through a column of cellulose (aq 28% NH₄OH-ⁱPrOH-H₂O, 3:7:1). A solution of the product in H_2O and DMF (~2:1, 2 mL) was then reacted with N-benzoyloxysuccinimide (26 mg, 0.117 mmol) for 2 h at room temperature. Column chromatography (cellulose, aq 28% NH₄OH-ⁱPrOH-H₂O, 1:5:1) of the concentrated mixture gave 9 (7 mg, 16%), $R_{\rm F}$ 0.65 (aq 28%) NH₄OH-ⁱPrOH-H₂O, 1:5:1). ¹H NMR data (270 MHz, 7.0 mg in 0.75 mL of D_2O , neutral): δ 2.79 (bt, 2 H, J unreadable), 3.50 (bt, 2 H, J unreadable), 3.89–4.71 (c, 5 H), 5.78 (bt, J unreadable, 1 H), 6.85 (d, 1 H, J 7.9 Hz), 7.25 (m, 2 H), 7.26 (d, 1 H, J 7.9 Hz), 7.32 (t, 1 H, J 7.3 Hz), 7.44 (d, 2 H, J 7.3 Hz), 7.54 (s, 1 H), 7.71 (d, 2 H, J 8.6 Hz), 8.07 (d, 2 H, J 8.6 Hz).

(±)-2-O-4-Aminocyclohexylcarbonyl-myo-inositol 1,4,5-trisphosphate (10).—A mixture of 7 (ammonium salt, 20 mg, 0.033 mmol), RuO₂ (20 mg), and H₂O (5 mL) was heated at 60° under H₂ (80 atm) for 3 h, then filtered, and concentrated in vacuo. The residue was neutralised by passing through a column of cation-exchange (H⁺) resin, and the eluate was concentrated after the addition of pyridine and passed through a column of Dowex 50W-X2 (Na⁺) resin to afford 10 (18 mg, 90%, as the trisodium salt), $R_{\rm F}$ 0.37 (aq 28% NH₄OH-ⁿPrOH-H₂O, 4:5:1); $\nu_{\rm max}^{\rm KBT}$ 3150, 1710, 1120, 1050 cm⁻¹. NMR data: ¹H (270 NHz, D₂O, 18 mg in 0.73 mL, neutral), δ 1.50 (b, 4 H), 1.78 (b, 2 H), 2.10 (b, 2 H), 2.75 (b, 1 H), 3.10 (b, 1 H), 3.8-4.2 (c, 5 H), 5.54 (t, 1 H, J 2.8 Hz); ¹³C (67.8 MHz, 38.6 mg in 0.73 mL of D₂O, pD 6.1), δ 27.51, 27.64, 29.13, 31.28, 39.13, 49.94, 70.58 (C-3, cis), 71.46 (C-3, trans), 71.59 (C-2, trans), 72.27 (m, C-6, trans), 72.96 (m, C-6, cis), 73.38 (d, J 5.49 Hz, C-1, cis), 73.64 (C-2, cis), 75.38 (d, J 5.49 Hz, C-1, trans), 76.90 (C-4), 78.61 (m, C-5, cis), 78.85 (m, C-5, trans), 176.73 (cis), 185.49 (trans); ³¹P (109 MHz, 38.6 mg

in 2.7 mL of D₂O, pD 6.5), cis derivative; δ 1.22, 2.24, 3.69; trans derivative; δ 1.49, 2.39, 3.37. FAB mass spectrum: m/z 612 [M⁺(trisodium salt) + 1].

Each enantiomer was prepared in a similar manner from the corresponding optically active 7: D-10 (sodium salt) had $[\alpha]_D^{23} - 4.9^\circ$ (c 0.92, H₂O, neutral); L-10 (sodium salt) had $[\alpha]_D^{23} + 5.6^\circ$ (c 0.53, H₂O, neutral).

Synthesis of N^{α}-4-azidobenzoyl-N^{ϵ}-biotinyl-L-lysine N-2-(4-hydroxyphenyl)ethylamide (14).—A mixture of N^{ϵ}-tert-butoxycarbonyl-L-lysine (170 mg, 0.69 mmol) and N-4-azidobenzoyloxysuccinimide (180 mg, 0.69 mmol) in DMF (2 mL) was stirred at room temperature for 6 h and the solvent was removed in vacuo. A solution of the residue in CHCl₃ was treated with aq 10% NaHCO₃, and the aqueous layer was acidified with M HCl and extracted with CHCl₃. The combined CHCl₃ solutions were washed with H₂O, dried, and concentrated. Column chromatography (CH₂Cl₂-MeOH, 10:1) of the residue on silica gel gave the carboxylic acid (250 mg, 93%), R_F 0.3 (CHCl₃-MeOH, 5:1). ¹H NMR data (270 MHz, CDCl₃): δ 1.20–1.62 (c, 4 H), 1.38 (s, 9 H), 1.87 (b, 2 H), 3.08 (b, 2 H), 4.70 (b, 1 H), 6.90 (d, 2 H, J 8.6 Hz), 7.55 (b, 1 H), 7.80 (d, 2 H, J 8.6 Hz), 7.80 (b, 1 H).

A solution of the acid (114 mg, 0.29 mmol) in DMF (2 mL) was treated with N-hydroxysuccinimide (37 mg, 0.32 mmol) and dicyclohexylcarbodiimide (62 mg, 0.30 mmol) at room temperature for 4 h. The usual work-up procedure gave the corresponding succinimido ester (140 mg, 0.29 mmol). A mixture of the ester, 2-(4-hydroxyphenyl)ethylammonium chloride (50 mg, 0.29 mmol), Et₃N (35 mg, 34 mmol), and CH₂Cl₂ (2 mL) was stirred at room temperature for 3 h, then diluted with CH₂Cl₂, washed with H₂O, aq 10% oxalic acid, H₂O, aq 10% NaHCO₃, and H₂O, dried, and concentrated. Column chromatography (acetone-CH₂Cl₂-ether, 1:5:1) of the residue on silica gel afforded the amide (85 mg, 60%) as an amorphous solid, R_F 0.3 (acetone-CH₂Cl₂-ether, 1:5:1); $[\alpha]_D^{20}$ -4.4° (c 1.13, CHCl₃); ν_{max}^{Nujol} 3300, 2100, 1680, 1630 cm⁻¹. NMR data (CDCl₃): ¹H (270 MHz), δ 1.00–1.80 (c, 6 H), 1.36 (s, 9 H), 2.66 (b, 1 H), 2.75 (b, 1 H), 2.95 (b, 2 H), 3.35 (b, 1 H), 3.64 (b, 1 H), 4.53 (td, 1 H, J 7.3 and 6.4 Hz), 6.76 (d, 2 H, J 8.5 Hz), 6.76 (b, 1 H), 6.98 (d, 2 H, J 8.5 Hz), 7.02 (d, 2 H, J 8.5 Hz), 7.32 (d, 1 H, J 7.6 Hz), 7.79 (d, 2 H, J 8.5 Hz); ¹³C (67.9 MHz), δ 22.34, 28.39, 29.82, 32.50, 34.28, 40.27, 40.61, 53.51, 79.64, 115.68, 118.93, 128.98, 129.55, 129.65, 129.96, 143.65, 155.25, 156.53, 166.31, 171.67. DI-mass spectrum: m/z 510 (M⁺).

Anal. Calcd for $C_{26}H_{34}N_6O_5 \cdot 0.33 H_2O$: C, 60.46; H, 6.76; N, 16.26. Found: C, 60.31; H, 6.81; N, 16.30.

A solution of the amide (126 mg, 0.25 mmol) in CH_2Cl_2 (1.5 mL) at 0° was treated with methyl phenyl sulfide (0.5 mL) and a 20% solution (0.3 mL) of trifluoroacetic acid in CH_2Cl_2 . The mixture was stirred at room temperature for 12 h, then concentrated under high vacuum. To a solution of the residue in DMF (2 mL) were added the succinimido ester of biotin (85 mg, 0.25 mmol) and Et_3N (0.3 mL). After 12 h at room temperature, the volatile materials were distilled off in vacuo. The residue was washed successively with $CHCl_3$ and H_2O , and then recrystallised from MeOH and H_2O to give 14 (113 mg, 71%), mp 111–113° (dec),

 $R_{\rm F}$ 0.35 (CHCl₃-MeOH, 7:1), $[\alpha]_{\rm D}^{20}$ + 24° (*c* 1.0, MeOH); $\nu_{\rm max}^{\rm Nujol}$ 3270, 2100, 1680, 1610 cm⁻¹. NMR data (270 MHz): ¹H (CDCl₃), δ 1.25–1.80 (c, 12 H), 2.16 (t, 2 H, *J* 7.2 Hz), 2.69 (c, 3 H), 2.90 (dd, 1 H, *J* 5.2 and 4.6 Hz), 3.16–3.36 (c, 3 H), 4.27 (b, 1 H), 4.44 (c, 2 H), 6.65 (d, 2 H, *J* 8.6 Hz), 7.01 (d, 2 H, *J* 8.6 Hz), 7.15 (d, 2 H, *J* 8.6 Hz), 7.89 (d, 2 H, *J* 8.6 Hz); ¹³C (67.9 MHz), δ 25.03, 27.64, 30.18, 30.51, 30.84, 33.56, 36.36, 37.57, 40.74, 41.83, 42.95, 56.26, 57.76, 62.36, 64.10, 117.04, 120.76, 131.31, 131.61, 131.85, 132.44, 145.84, 157.63, 168.35, 169.94, 175.12, 176.79. FAB-mass spectrum: m/z 637 [M⁺+1].

Anal. Calcd for $C_{31}H_{40}N_8O_5S \cdot 2 H_2O$: C, 55.34; H, 6.59; N, 16.65. Found: C, 55.77; H, 6.39; N, 16.22.

The preparation of 15, by diazocoupling of 14 with 12, and its physical data have been described¹⁷. FAB-mass spectrum (negative): m/z 1253 [(M⁻-1)+2].

Biological assays of $Ins(1,4,5)P_3$ analogues (7-10).—Biological assays of $Ins(1,4,5)P_3$ analogues 7–10 were performed as described previously^{10,11}. Briefly, erythrocyte ghosts were prepared from human blood and assayed for $Ins(1,4,5)P_3$ -5-phosphatase. The enzyme activity was measured, using 50 μ M D-[5-³²P]Ins(1,4,5)P₃ as a substrate, by determining the production of ³²Pi radioactivity in the upper phase following phase separation by adding ammonium molybdate and organic solvent. Rat-brain cytosol fraction was assayed for D-Ins(1,4,5)P₃-kinase in the presence of 10 mM pyrophosphate as an inhibitor of D-Ins(1,4,5)P₃-5-phosphatase. The enzyme activity was determined by measuring the production of D-[³H]Ins(1,3,4,5)P₄ from μ M D-[³H]Ins(1,4,5)P₃, which could be separated from each other by HPLC on a SAX column. Synthetic analogues 7-10 were examined as inhibitors of the kinase activity. D-[³H]Ins(1,4,5)P₃ binding to rat cerebellar microsomes was assayed in the presence or absence of various doses of Ins(1,4,5)P₃ analogues at 0.6 nM D-[³H]Ins(1,4,5)P₃ by the filtration method. The Ins(1,4,5)P₃ analogues 7-10 were also examined for the ability to evoke the release of Ca^{2+} from saponin-permeabilised macrophages. Saponin-permeabilised cells accumulated ${}^{45}Ca^{2+}$ at a free ${}^{45}Ca^{2+}$ concentration of 0.14 μ M. When the ${}^{45}Ca^{2+}$ accumulation reached a plateau level, various doses of the analogues were added to release the ${}^{45}Ca^{2+}$.

Preparation of affinity resins (12, 13) and their evaluation in biological systems.— Affinity resins 12 and 13 were prepared according to the method described ¹³. The rat-brain cytosol or detergent extract of the membrane fraction was applied to the affinity column equilibrated with 0.05 M KCl solution, and the adsorbed proteins were eluted by a stepwise increase in salt concentration (0.2, 0.5, and 2 M KCl). The 3 fractions were assayed for $Ins(1,4,5)P_3$ -5-phosphatase and the 3-kinase in the cytosol fraction or the phosphatase and $Ins(1,4,5)P_3$ -binding in the detergent extract, respectively. For example, $Ins(1,4,5)P_3$ -phosphatase activities in both cytosol and detergent-extract fractions were eluted from the column of 13 by a 0.5 M KCl solution, providing a 3 to 5-fold increase in the specific activity; in the case of the column of 12, the activities were eluted by 0.05 M KCl and did not change before and after the chromatography. $Ins(1,4,5)P_3$ -3-kinase or $Ins(1,4,5)P_3$ -binding activity was eluted from each column by 2 M KCl, giving a 20-fold or 100-fold increased specific activity, respectively.

Photoaffinity labeling with 15.—The protein sample (~ 0.5 mg; a 5phosphatase-rich fraction obtained by affinity chromatography of erythrocyte ghosts, using the column mentioned above) was incubated in 30 μ L of a solution containing 50 mM Tris-HCl buffer (pH 8.3), 30 mM NaCl, mM EDTA, and various concentrations of 15, with or without a 100-fold excess of Ins(1,4,5)P₃, on ice for 5 min, and the mixture was photolysed on ice under a Toshiba FL-20E lamp at a distance of 5 cm for 10 min. Following SDS-polyacrylamide gel electrophoresis and transfer to a nitrocellulose sheet, the sheet was immersed in a solution containing 5% (w/v) of dry milk in Tris-buffered saline (TBS: 0.15 M NaCl and 10 mM Tris-HCl buffer, pH 7.5) for 30 min. After washing twice with TBS, the sheet was incubated for 30 min with the streptavidin-alkaline phosphatase conjugate diluted 3000-fold with TBS. Finally, a mixture of 5-bromo-4-chloro-3-indolyl phosphate *p*-toluidine salt and Nitro Blue Tetrazolium in DMF was added to observe the labeling.

ACKNOWLEDGMENTS

This work was supported financially by The Mochida Memorial Foundation for Medical and Pharmaceutical Research (M.H.) and by a Grant-in-Aid for Scientific Research (S.O., Y.W., and M.H.) from the Ministry of Education, Science and Culture of Japan).

REFERENCES

- M.J. Berridge and R.F. Irvine, Nature (London), 312 (1984) 315-321; M.J. Berridge, Annu. Rev. Biochem., 56 (1987) 159-193; J.R. Williamson, R.H. Cooper, S.K. Joseph, and S.P. Thomas, Am. J. Physiol., 248 (1985) c203-c216.
- 2 R.F. Irvine, A.J. Letcher, J.P. Heslop, and M.J. Berridge, Nature (London), 320 (1986) 631-634.
- 3 P.W. Majerus, T.M. Connolly, V.S. Bansal, R.C. Inhorn, T.S. Ross, and D.L. Lip, J. Biol. Chem., 263 (1988) 3051-3054.
- 4 M. Hirata, T. Sasaguri, T. Hamachi, T. Hashimoto, M. Kukita, and T. Koga, Nature (London), 317 (1985) 723-725.
- 5 R.F. Irvine, R.D. Brown, and M.J. Berridge, *Biochem. J.*, 222 (1984) 269-272; G.M. Burgess, R.F. Irvine, M.J. Berridge, J.S. McKinney, and J.W. Putney, Jr., *ibid.*, 224 (1984) 741-746.
- 6 Y. Watanabe, T. Ogasawara, H. Nakahira, T. Matsuki, and S. Ozaki, *Tetrahedron Lett.*, 29 (1988) 5259-5262.
- 7 Y. Watanabe, Y. Komoda, K. Ebisuya, and S. Ozaki, Tetrahedron Lett., 31 (1990) 255-256.
- 8 Y. Watanabe, H. Nakahira, M. Bunya, and S. Ozaki, Tetrahedron Lett., 28 (1987) 4179-4180.
- 9 Y. Watanabe, T. Ogasawara, N. Shiotani, and S. Ozaki, Tetrahedron Lett., 28 (1987) 2607-2610.
- 10 M. Hirata, Y. Watanabe, T. Ishimatsu, T. Ikebe, Y. Kimura, K. Yamaguchi, S. Ozaki, and T. Koga, J. Biol. Chem., 264 (1989) 20303-20308.
- 11 M. Hirata, F. Yanaga, T. Koga, T. Ogasawara, Y. Watanabe, and S. Ozaki, J. Biol. Chem., 265 (1990) 8404-8407.
- 12 M.A. Polokoff, G.H. Bencen, J.P. Vacca, S.J. deSolms, S.D. Young, and J.R. Huff, J. Biol. Chem., 269 (1989) 11922–11927.
- 13 M. Hirata, Y. Watanabe, T. Ishimatsu, F. Yanaga, T. Koga, and S. Ozaki, *Biochem. Biophys. Res. Commun.*, 168 (1990) 379-386.

- 14 T. Kanematsu, H. Takeya, Y. Watanabe, S. Ozaki, M. Yosida, T. Koga, S. Iwanaga, and M. Hirata, J. Biol. Chem., 267 (1992) 6518-6525.
- 15 A.N. Jina, J. Ralph, and C.E. Ballou, Biochemistry, 29 (1990) 5203-5209.
- 16 G.D. Prestwich, J.F. Marecek, R.J. Mourey, A.B. Theibert, C.D. Ferris, S.K. Danoff, and S.H. Snyder, J. Am. Chem. Soc., 113 (1991) 1822–1825; V.A. Estevez and G.D. Prestwich, Tetrahedron Lett., 32 (1991) 1623–1626; J.F. Marecek and G.D. Prestwich, *ibid.*, 32 (1991) 1863–1866.
- 17 Y. Watanabe, M. Hirata, T. Ogasawara, T. Koga, and S. Ozaki, *Bioorg. Med. Chem. Lett.*, 1 (1991) 399-402.
- 18 R. Schäfer, M. Nehls-Sahabandu, B. Grabowsky, M. Dehlinger-Kremer, I. Schulz, and G.W. Mayr, Biochem. J., 272 (1990) 817-825; G. Reiser, R. Schäfer, F. Donie, E. Hülser, M. Nehls-Sahabandu, and G.W. Mayr, *ibid.*, 280 (1991) 533-539.
- 19 F. Wedekind, K.B.-Pontzen, S.B.-Mohan, D. Choli, H. Zahn, and D. Brandenburg, Biol. Chem. Hoppe-Seyler, 370 (1989) 251-258; F.M. Finn, C.J. Stehle, and K. Hofmann, Biochemistry, 24 (1985) 1960-1965.
- 20 A.I. Lyutik, V.N. Krylova, S.P. Kozlova, B.A. Klyashchitskii, V.I. Shvets, R.P. Evstigneeva, and E.S. Zhdanovich, Zh. Obshch. Khim., 41 (1971) 2747-2753.