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Total Synthesis of dl-Antibiotic 593A 

Sir: 
Antibiotic 593A was isolated from the soil microorganism 

Streptomyces griseoluteus' and has been shown to inhibit 
growth of the L1210 lymphocytic leukemia, Krebs 2 murine 
tumor systems, the rat Walker 256 carcinosarcoma, and sev- 
eral neoplastic cell lines.2 Recent clinical trials have revealed 
that 593A is effective against certain solid tumors and leuke- 
mia.3 An X-ray crystallographic analysis of 593A determined 
the structure 1 including its absolute c~nf igu ra t ion .~  The 
compound is a piperazinedione composed of two identical and 
hitherto unknown amino acids characterized by a unique 3- 
chloropiperidine ring. This communication describes the first 
total synthesis of dl-593A. 
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The success of our synthesis lies in the use of the P-lactam 
to overcome the following difficulties: (1) there are no general 
synthetic methods available to date for controlling the ste- 
reochemistry of a,P-diamino acids; (2) dimerization of amino 
acids or their derivatives generally requires drastic conditions 
where survival of polyfunctionalized molecules could not be 
expected. In fact, attempted dimerization of 2-piperidylglycine 
ethyl ester failed to give the corresponding piperazine- 
d i ~ n e s . ~ , ~  

Addition of azidoacetyl chloride7 to a mixture of triethyl- 
amine and the aldimine 2 formed from p-methoxymethoxy- 
aniline8 and 5,5-diethoxy-2-pentenalg at 0 "C afforded exclu- 
sively cis-P-lactam 3'n.1'  (Scheme I ) :  56%; oil; IR (CH2C12) 
2105,1756~m-~;'HNMR(CDCI3)6 1.11 ( 3 H , t , J = 7 H z ) ,  
1 . I3  (3 H, t ,  J = 7 Hz), 2.43 (2 H, t, J = 6 Hz), 3.37 (3 H ,  s), 
3.50 (4 H, m), 4.47 (1 H,  t , J  = 6 Hz), 4.62 (1 H , d d , J  = 5 ,  
7.5 Hz), 4.77 (1 H , d , J  = 5 Hz), 5.03 (2 H ,  s), 5.57 (1 H ,dd ,  
J = 7.5, 15 Hz), 5.98 (1 H ,  dt, J = 15,6  Hz), 6.90 (2 H ,  d, J 
= 9 Hz), 7.27 (2 H ,  d, J = 9 Hz). Oxidative removal of the 
novel amide protecting group of 3 was achieved in two steps 
[ ( I )  HCI, CH(OMe)3, MeOH, reflux; (2) (NH4)zCe- 

THF-H20 (5:2), 0 OC, worked up with Na2S03- 
Na2C031 to give the deprotected P-lactam 4:In 74% overall; 
mp 63-64 "C; 1R (CH2C12) 3405,2110,1780cm-'; ' H  N M R  

d d , J  = 5,7.5 Hz), 4.40 ( 1  H,  t ,  J = 5.5 Hz), 4.70 (1 H ,  d d , J  
= 1.5,5 Hz), 5.67 (2 H ,  m), 6.85 (1 H, br s). To facilitate the 
P-lactam ring cleavage for dimerization, 4 was activated by 
the introduction of a carbobenzoxy group (PhCH20COC1, 
Et3N, CH2C12, -30 "C) to give the imide 5:Io 93%; oil; 1R 
(CH2C12) 21 10, 1820, 1735 cm-I. Reduction of 5 with zinc 
[Zn, AcOH, Et20-CH2C12 (1:9), room temperature] afforded 
the unstable amine 6. Upon standing a t  room temperature, 6 
dimerized to give a mixture of cis-piperazinedione 71° [mp 
188-189 "C; IR (CH2C12) 1723, 1683 cm-l; 'H N M R  
( M e z S O - d 6 ) 6 2 . 2 5 ( 4 H , t , J =  5 .5Hz) ,3 .17(12H,s) ,4 .00  
(2 H, br d, J = 4 Hz), 4.27 (2 H, t , J  = 5.5 Hz), 4.43 (2 H, m), 
5.52 (4 H ,  m)] and trans-piperazinedione 81° [mp 186-187 

6 2 . 2 3 ( 4 H , t , J = 5 . 5 H z ) , 3 . 1 7 ( 1 2 H , s ) , 3 . 8 8 ( 2 H , b r d , J  
=2 .5Hz) ,4 .28 (2H, t , J=5 .5Hz) ,4 .40 (2H,m) ,5 .47 (4H,  
m)] in 80% yield, 3:2 re~pec t ive ly , '~  which was chromato- 
graphically separated.I4 

Selective catalytic hydrogenation of 7 [H2 (1 atm)-PtOz, 
MeOH, room temperature] afforded the piperazinedione 91° 
(Scheme II) ,  98%, mp 153-155 "C. Facile double cyclization 
of 9 was effected by treatment with camphorsulfonic acid (0.3 
equiv)-quinoline (0.8 equiv) in refluxing toluene-ethylene 

(CDC13) 6 2.42 (2 H, t, J = 5.5 Hz), 3.33 (6 H, s ) ,  4.32 (1 H ,  

"C; 1R (CH2C12) 1722, 1683 cm-'; 'H N M R  (Me2SO-d6) 
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a(,) N,CH,COCI, Et,N, benzene, CH,Cl,, 0 "C. (b) HC1, CH- 

(OMe),, MeOH, reflux. (c) (NH,),Ce(NO,),, THF,  H,O, 0 "C. (d) 
PhCH,OCOCl, Et,N, CH,Cl,, -30 "C. (e) Zn,  AcOH, ether, CH,Cl,, 
room temperature. (f) neat, room temperature. 
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a(,) H, (1 atm), PtO,, MeOH, room temperature. (b) CSA, quino- 
line, CH,CICH,Cl, toluene, reflux. (c) Cl,, EtOH, CH,Cl,, 0 "C. (d) 
BCL,, CH,Cl,, room temperature. (e) NaBH,CN, AcOH, MeOH, 
room temperature. 

chloride (1:l) to give tricyclic compound 10:'O 91%; mp 
267-270 "c dec; 'H NMR (Me2SO-ds) 6 1.50-2.56 (8 H, m), 
3.68 (2 H ,  br d, J = 7 Hz), 4.67-5.27 (4 H ,  m), 6.63 (2 H, d, 
J = 8 Hz)). 

Chlorination of 10 [Clz, EtOH-CH2C12 (2:l) ,  0 "C] af- 
forded a diastereomeric mixture of chlorides 11 which, without 
purification, was treated with boron trichloride a t  room tem- 
perature to give the unstable iminium salts 12. Reduction of 
12 (NaBH3CN, AcOH-MeOH, room temperature) afforded 
dl-593A 1 I n  in 62% overall yield from 10 (1  8% overall yield 
from the P-lactam 3). This stereoselective reduction can be 
explained in terms of preferential formation of the thermo- 
dynamically favorable tetraquasi-equatorial iminium ion 13 

0 1980 American Chemical Society 



Communications t o  the Editor 2123 

under acidic conditions. The synthetic 593A dihydrochloride 
(mp 280-290 OC dec) was identical in T L C  behavior and 
spectral ( ' H  N M R ,  I3C N M R ,  and MS) properties with 
natural 593A dihydroch10ride.I~ 
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Photochemistry and Photocatalytic 
Activity of a Polynuclear Metal Carbonyl Hydride: 
Dodecacarbonyltetrahydridotetraruthenium 

Sir: 
W e  report here our preliminary findings concerning the 

photochemistry and photocatalytic activity of the polynuclear 
hydride H4Ru4(CO) I 2. While mononuclear hydrides and di- 
and trinuclear clusters have received considerable study,' the 
only other tetranuclear carbonyl species that have been the 
object of detailed photochemical studies are [ (q5-C5H5)- 
Fe(CO)]42 and HFeCo3(CO)12.,Ln (L  = PPh3; n = 0, 2)3 
which undergo metal-to-solvent charge-transfer oxidation2 and 
complex, inefficient decl~sterification,~ respectively. Inter- 
esting photoreactions of H 4 0 ~ 4 ( C 0 ) 1 2  and Ir4(C0)12 have 
been r e p ~ r t e d , ~ . ~  but the nature of the primary chemical result 
from irradiation has not been established. The H4Ru4(C0)12 
cluster and its substituted derivatives are known catalyst 
precursors for olefin isomerization and hydrogenation6-8 and 
thus afford us a special opportunity with respect to studying 
light-activated catalysis, since the actual active species may 
be only one step away from the precursor H ~ R U ~ ( C O ) ~ ~ . ~ - ~  

The H4Ru4(CO) 1 2  complex was synthesized according to 
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Figure 1. Infrared spectral changes accompanying near-UV (355 nm) 
irradiation of H4Ru4(C0)12 (-5 X M) i n  the presence of PPh3 
(-IO-' M) i n  n-pentane solution at 25 O C .  Bands at 2081, 2067, 2030, 
2025, and 2008 cm-I are due to H4Rud(C0)12 and those growing with 
irradiation at 2094, 2057, 2027, 2014, and 2008 cm-' are due to H4Ru4- 
(CO), IPPh3. Curves 0, I ,  2, and 3 are after 0-, 20-, 40-, and 75-s irradia- 
tion, respectively. 

the literature p r o c e d ~ r e . ~  The yellow-orange complex exhibits 
an intense, near-UV absorption maximum at 362 nm (6  17 500 
M-' cm-l) with a tail into thevisible in hydrocarbon solvents. 
Near-UV irradiation (355 f 20 nm, 1.2 X einstein/min) 
of the complex alone in deoxygenated isooctane solution a t  25 
O C  and a concentration of -5 X M gives slow decompo- 
sition to unidentified products, but as a function of time the 
decomposition becomes markedly slower when the sample is 
sealed. Irradiation under the same conditions but in the pres- 
ence of L [L = P(OMe)3 or PPh31 results in clean infrared 
spectral changes; data in Figure 1 are representative. The in- 
frared bands in the CO stretching region that are associated 
with the product are identical with those reportedlo for 
H4Ru4(CO) 1 1  L. Continued near-UV irradiation results in 
additional infrared spectral changes consistent with further 
functionalization of the cluster to form H4Ru4(C0)12.,Ln ( n  
= 1, 2, 3 ,4 ) ,  but, as shown in Figure 1 for L = PPh3, mono- 
substituted clusters can be generated essentially quantitatively 
before multiple substitution products appear. The 366- or 
436-nm quantum yield for the photosubstitution (eq 1 )  is 5 f 
1 X for either P(OMe)3 or PPh3 and a concentration of 
L = 0.01 or 0.1 M. 

H4Ru4(C0)12 + L H ~ R U ~ ( C O ) ~ ~ L  + CO (1)  

Dinuclear, metal-metal-bonded, metal carbonyls generally 
undergo very efficient metal-metal bond homolysis subsequent 
to optical excitation,"-I3 while trinuclear complexes undergo 
inefficient decl~sterification.~~~~-~ Presumably, the trinuclear 
complexes may undergo efficient metal-metal bond homolysis, 
but low declusterification yields result from efficient recoupling, 
of the tethered radical centers. In the tetranuclear complexes 
where the lowest excitations involve transitions between or- 
bitals delocalized over four metal atoms and where each metal 
atom is directly bonded to three others, it is less likely that 
complete metal-metal bond scission obtains. Rather, the op- 
tical excitation apparently results in metal-ligand cleavage as 
generally obtains for mononuclear metal carbonyls having 
metal-centered lowest excited states.' At this point we cannot 
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