Total Synthesis of dl-Antibiotic 593A

Sir:

Antibiotic 593A was isolated from the soil microorganism Streptomyces griseoluteus ¹ and has been shown to inhibit growth of the L1210 lymphocytic leukemia, Krebs 2 murine tumor systems, the rat Walker 256 carcinosarcoma, and several neoplastic cell lines. ² Recent clinical trials have revealed that 593A is effective against certain solid tumors and leukemia. ³ An X-ray crystallographic analysis of 593A determined the structure 1 including its absolute configuration. ⁴ The compound is a piperazinedione composed of two identical and hitherto unknown amino acids characterized by a unique 3-chloropiperidine ring. This communication describes the first total synthesis of dl-593A.

The success of our synthesis lies in the use of the β -lactam to overcome the following difficulties: (1) there are no general synthetic methods available to date for controlling the stereochemistry of α,β -diamino acids; (2) dimerization of amino acids or their derivatives generally requires drastic conditions where survival of polyfunctionalized molecules could not be expected. In fact, attempted dimerization of 2-piperidylglycine ethyl ester failed to give the corresponding piperazine-diones. $^{5.6}$

Addition of azidoacetyl chloride⁷ to a mixture of triethylamine and the aldimine 2 formed from p-methoxymethoxyaniline⁸ and 5,5-diethoxy-2-pentenal⁹ at 0 °C afforded exclusively cis- β -lactam $3^{10,11}$ (Scheme I): 56%; oil; IR (CH₂Cl₂) 2105, 1756 cm⁻¹; ¹H NMR (CDCl₃) δ 1.11 (3 H, t, J = 7 Hz), 1.13 (3 H, t, J = 7 Hz), 2.43 (2 H, t, J = 6 Hz), 3.37 (3 H, s),3.50 (4 H, m), 4.47 (1 H, t, J = 6 Hz), 4.62 (1 H, dd, J = 5,7.5 Hz), 4.77 (1 H, d, J = 5 Hz), 5.03 (2 H, s), 5.57 (1 H, dd, J)J = 7.5, 15 Hz), 5.98 (1 H, dt, J = 15, 6 Hz), 6.90 (2 H, d, J= 9 Hz), 7.27 (2 H, d, J = 9 Hz). Oxidative removal of the novel amide protecting group of 3 was achieved in two steps [(1) HCl, CH(OMe)₃, MeOH, reflux; (2) (NH₄)₂Ce-(NO₃)₆,¹² THF-H₂O (5:2), 0 °C, worked up with Na₂SO₃-Na₂CO₃] to give the deprotected β -lactam 4:10 74% overall; mp 63-64 °C; IR (CH₂Cl₂) 3405, 2110, 1780 cm⁻¹; ¹H NMR $(CDCl_3) \delta 2.42 (2 H, t, J = 5.5 Hz), 3.33 (6 H, s), 4.32 (1 H, t)$ dd, J = 5, 7.5 Hz), 4.40 (1 H, t, <math>J = 5.5 Hz), 4.70 (1 H, dd, J)= 1.5, 5 Hz), 5.67 (2 H, m), 6.85 (1 H, br s). To facilitate the β -lactam ring cleavage for dimerization, 4 was activated by the introduction of a carbobenzoxy group (PhCH2OCOCI, Et₃N, CH₂Cl₂, -30 °C) to give the imide 5:10 93%; oil; IR (CH₂Cl₂) 2110, 1820, 1735 cm⁻¹. Reduction of 5 with zinc [Zn, AcOH, Et₂O-CH₂Cl₂ (1:9), room temperature] afforded the unstable amine 6. Upon standing at room temperature, 6 dimerized to give a mixture of cis-piperazinedione 7¹⁰ [mp 188-189 °C; IR (CH₂Cl₂) 1723, 1683 cm⁻¹; ¹H NMR $(\text{Me}_2\text{SO-}d_6)\ \delta\ 2.25\ (4\ \text{H},\ \text{t},\ J=5.5\ \text{Hz}),\ 3.17\ (12\ \text{H},\ \text{s}),\ 4.00$ (2 H, br d, J = 4 Hz), 4.27 (2 H, t, J = 5.5 Hz), 4.43 (2 H, m),5.52 (4 H, m)] and trans-piperazinedione 8¹⁰ [mp 186-187 °C; IR (CH₂Cl₂) 1722, 1683 cm⁻¹; ¹H NMR (Me₂SO-d₆) δ 2.23 (4 H, t, J = 5.5 Hz), 3.17 (12 H, s), 3.88 (2 H, br d, J= 2.5 Hz), 4.28 (2 H, t, J = 5.5 Hz), 4.40 (2 H, m), 5.47 (4 H, m)m)] in 80% yield, 3:2 respectively, 13 which was chromatographically separated.14

Selective catalytic hydrogenation of 7 [H₂ (1 atm)-PtO₂, MeOH, room temperature] afforded the piperazinedione 9¹⁰ (Scheme II), 98%, mp 153-155 °C. Facile double cyclization of 9 was effected by treatment with camphorsulfonic acid (0.3 equiv)-quinoline (0.8 equiv) in refluxing toluene-ethylene

Scheme Ia

 a (a) N₃CH₂COCl, Et₃N, benzene, CH₂Cl₂, 0 °C. (b) HCl, CH-(OMe)₃, MeOH, reflux. (c) (NH₄)₂Ce(NO₃)₆, THF, H₂O, 0 °C. (d) PhCH₂OCOCl, Et₃N, CH₂Cl₂, -30 °C. (e) Zn, AcOH, ether, CH₂Cl₂, room temperature. (f) neat, room temperature.

Scheme IIa

 a (a) H₂ (1 atm), PtO₂, MeOH, room temperature. (b) CSA, quinoline, CH₂ClCH₂Cl, toluene, reflux. (c) Cl₂, EtOH, CH₂Cl₂, 0 °C. (d) BCl₃, CH₂Cl₂, room temperature. (e) NaBH₃CN, AcOH, MeOH, room temperature.

chloride (1:1) to give tricyclic compound $10^{:10}$ 91%; mp 267-270 °C dec; ¹H NMR (Me₂SO- d_6) δ 1.50-2.56 (8 H, m), 3.68 (2 H, br d, J = 7 Hz), 4.67-5.27 (4 H, m), 6.63 (2 H, d, J = 8 Hz)).

Chlorination of 10 [Cl₂, EtOH-CH₂Cl₂ (2:1), 0 °C] afforded a diastereomeric mixture of chlorides 11 which, without purification, was treated with boron trichloride at room temperature to give the unstable iminium salts 12. Reduction of 12 (NaBH₃CN, AcOH-MeOH, room temperature) afforded dl-593A 1¹⁰ in 62% overall yield from 10 (18% overall yield from the β -lactam 3). This stereoselective reduction can be explained in terms of preferential formation of the thermodynamically favorable tetraquasi-equatorial iminium ion 13

under acidic conditions. The synthetic 593A dihydrochloride (mp 280-290 °C dec) was identical in TLC behavior and spectral (1H NMR, 13C NMR, and MS) properties with natural 593A dihydrochloride.15

Acknowledgment. We thank the Robert A. Welch Foundation and Rice University for support of this work.

References and Notes

- (1) Gitterman, C. O.; Rickes, E. L.; Wolf, D. E.; Madas, J.; Zimmerman, S. B.;
- Stoudt, T. H.; Demny, T. C. J. Antibiot. 1970, 23, 305.
 (a) Tarnowski, G. S.; Schmid, F. A.; Hutchison, D. J.; Stock, C. C. Cancer Chemother. Rep. 1973, 57, 21. (b) Folk, R. M.; Peters, A. C.; Pavkov, K. L.; Swenberg, J. A. Cancer Chemother. Rep., Part 3 1974, 5, 37.
- (3) Benjamin, R. S.; Keating, M. J.; Valdivieso, M.; McCredie, K. B.; Livingston, R. A.; Burgess, M. A.; Rodriguez, V.; Bodey, G. P.; Gottlieb, J. A. Cancer
- Treat. Rep. 1979, 63, 939, and references cited therein.
 (4) Pettit, G. R.; Von Dreele, R. B.; Herald, D. L.; Edgar, M. T.; Wood, H. B., Jr. J. Am. Chem. Soc. 1976, 98, 6742.
- (5) Private communication from Professor R. J. Parry, Rice University
- In an attempt to synthesize 593A, G. R. Pettit and his co-workers tried the dimerization of L-(5-chloro-2-pyridyl)glycine unsuccessfully: Edgar, M. T.; Pettit, G. R.; Krupa, T. S. J. Org. Chem. 1979, 44, 396
- Bose, A. K.; Manhas, M. S.; Anjaneyulu, B.; Bhattacharya, S. K. Tetrahedron 1967, 23, 4769
- (8) Prepared from p-nitrophenol in two steps [(1) P₂O₅, CH₂(OMe)₂, CH₂CI₂, room temperature; (2) H₂-Pd/C, MeOH] in 89 % overall yield, bp 108-110
- (9) Prepared from 3,3-diethoxypropanal in four steps [(1) CH₂=CHCH₂MgBr, THF, reflux; (2) MsCl, Et₃N, CH₂Cl₂, 0 °C; (3) O₃, MeOH-CH₂Cl₂ (1:9), −78 C; (4) MeOH-CH₂Cl₂ (1:9), room temperature] in 50% overall yield, bp 68–70 °C (0.6 mm).
- (10) Satisfactory spectroscopic data were obtained for this substance.
- (11) Use of saturated aldehyde failed to give β -lactam under the same reaction conditions. On the other hand, α,β -acetylenic aldehyde gave a mixture of cis- and trans-β-lactams in the ratio of 3:2, respectively
- (12) Jacob, P., III; Callery, P. S.; Shulgin, A. T.; Castagnoli, N., Jr. J. Org. Chem. 1976, 41, 3627
- (13) To obtain the desired cis-piperazinedione 7 as the sole product, it is necessary to resolve the racemic intermediates before dimerization. We are currently investigating the possibility of resolution
- (14) Stereochemistry of the piperazinediones was tentatively assigned based on their TLC behavior and was later confirmed by the fact that 593A was synthesized from 7. For TLC comparison of cis- and trans-piperazinediones see: Nitecki, D. E.; Halpern, B.; Westley, J. W. J. Org. Chem. 1968, 33,
- (15) We are indebted to Professor R. J. Parry, Rice University, for a sample of natural 593A dihydrochloride

Tohru Fukuyama,* R. Keith Frank, Charles F. Jewell, Jr.

Department of Chemistry, Rice University Houston, Texas 77001 Received October 22, 1979

Photochemistry and Photocatalytic Activity of a Polynuclear Metal Carbonyl Hydride: Dodecacarbonyltetrahydridotetraruthenium

Sir:

We report here our preliminary findings concerning the photochemistry and photocatalytic activity of the polynuclear hydride H₄Ru₄(CO)₁₂. While mononuclear hydrides and diand trinuclear clusters have received considerable study, the only other tetranuclear carbonyl species that have been the object of detailed photochemical studies are $[(\eta^5-C_5H_5) Fe(CO)_{4}^{2}$ and $HFeCo_{3}(CO)_{12-n}L_{n}$ (L = PPh₃; $n = 0, 2)^{3}$ which undergo metal-to-solvent charge-transfer oxidation² and complex, inefficient declusterification,³ respectively. Interesting photoreactions of H₄Os₄(CO)₁₂ and Ir₄(CO)₁₂ have been reported, 4,5 but the nature of the primary chemical result from irradiation has not been established. The H₄Ru₄(CO)₁₂ cluster and its substituted derivatives are known catalyst precursors for olefin isomerization and hydrogenation⁶⁻⁸ and thus afford us a special opportunity with respect to studying light-activated catalysis, since the actual active species may be only one step away from the precursor $H_4Ru_4(CO)_{12}$.

The $H_4Ru_4(CO)_{12}$ complex was synthesized according to

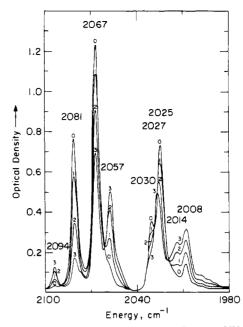


Figure 1. Infrared spectral changes accompanying near-UV (355 nm) irradiation of H₄Ru₄(CO)₁₂ (~5 × 10⁻⁴ M) in the presence of PPh₃ $(\sim 10^{-1} \text{ M})$ in *n*-pentane solution at 25 °C. Bands at 2081, 2067, 2030, 2025, and 2008 cm⁻¹ are due to H₄Ru₄(CO)₁₂ and those growing with irradiation at 2094, 2057, 2027, 2014, and 2008 cm⁻¹ are due to H₄Ru₄-(CO)11PPh3. Curves 0, 1, 2, and 3 are after 0-, 20-, 40-, and 75-s irradiation, respectively.

the literature procedure. The yellow-orange complex exhibits an intense, near-UV absorption maximum at 362 nm (ϵ 17 500 M^{-1} cm⁻¹) with a tail into the visible in hydrocarbon solvents. Near-UV irradiation (355 \pm 20 nm, 1.2 \times 10⁻⁶ einstein/min) of the complex alone in deoxygenated isooctane solution at 25 °C and a concentration of $\sim 5 \times 10^{-4}$ M gives slow decomposition to unidentified products, but as a function of time the decomposition becomes markedly slower when the sample is sealed. Irradiation under the same conditions but in the presence of L $[L = P(OMe)_3]$ or PPh_3 results in clean infrared spectral changes; data in Figure 1 are representative. The infrared bands in the CO stretching region that are associated with the product are identical with those reported¹⁰ for H₄Ru₄(CO)₁₁L. Continued near-UV irradiation results in additional infrared spectral changes consistent with further functionalization of the cluster to form $H_4Ru_4(CO)_{12-n}L_n$ (n = 1, 2, 3, 4), but, as shown in Figure 1 for $L = PPh_3$, monosubstituted clusters can be generated essentially quantitatively before multiple substitution products appear. The 366- or 436-nm quantum yield for the photosubstitution (eq 1) is $5 \pm$ 1×10^{-3} for either P(OMe)₃ or PPh₃ and a concentration of L = 0.01 or 0.1 M.

$$H_4Ru_4(CO)_{12} + L \xrightarrow{h\nu} H_4Ru_4(CO)_{11}L + CO$$
 (1)

Dinuclear, metal-metal-bonded, metal carbonyls generally undergo very efficient metal-metal bond homolysis subsequent to optical excitation, ¹¹⁻¹³ while trinuclear complexes undergo inefficient declusterification. ^{3,14-16} Presumably, the trinuclear complexes may undergo efficient metal-metal bond homolysis, but low declusterification yields result from efficient recoupling of the tethered radical centers. In the tetranuclear complexes where the lowest excitations involve transitions between orbitals delocalized over four metal atoms and where each metal atom is directly bonded to three others, it is less likely that complete metal-metal bond scission obtains. Rather, the optical excitation apparently results in metal-ligand cleavage as generally obtains for mononuclear metal carbonyls having metal-centered lowest excited states.1 At this point we cannot