Journal für praktische Chemie Chemiker-Zeitung © Johann Ambrosius Barth 1992

1,3-Acylumlagerungen bei der Cyclisierung von Thioharnstoffen mit Imidoylchloriden der Oxalsäure – Ein Zugang zu interessanten Thiocarbonylsystemen

R. Beckert

Jena, Institut für Organische Chemie und Makromolekulare Chemie der Friedrich-Schiller-Universität

M. Gruner

Dresden, Institut für Analytische Chemie und Spektroskopie der Technischen Universität

Bei der Redaktion eingegangen am 26. Juni bzw. 4. Dezember 1991

Herrn Prof. Dr. habil. R. Mayer zum 65. Geburtstag gewidmet

1,3-Acylrearrangements by Cyclisation of Thioureas with Imidochlorides of Oxalic Acid – **An Approach to interesting Thiocarbonylic Systems**

Abstract. By cycloacylation of various substituted thioureas with bis-imidochlorides of oxalic acid the new thiazolidines 3, 4 and isomeric imidazolidines 5, 6 are obtained. Especially when triethylamine is used as a base the main products are the deeply coloured 4-arylimino-5-thioxo-imidazolidines which can be re-

garded as s-cis-configurated 1,4-dihetero-1,3-dienes. Some thiazolidines can be rearranged by means of anhydrous organic acids to parabanic acid derivatives; whereas the 5-thioxo-imidazolidines result from an intramolecular 1,3-acyl rearrangement during the reaction.

Einleitung

Thioharnstoffe reagieren mit Oxalylchlorid primär zu 4,5-Dioxo-2-imino-thiazolidinen, die bei thermischer Belastung und Anwesenheit von Säuren im Sinne einer Dimroth-Umlagerung 4,5-Dioxo-2-thioxo-imidazolidine (Thioparabansäuren) ergeben [1, 2], vgl. auch [3]. Der Ersatz von Oxalylchlorid durch die entsprechenden Imidoylchloride 1 sollte zu neuartigen, mehrere Iminogruppen enthaltende Heterocyclen führen. Im folgenden werden Cyclisierungsreaktionen von unterschiedlich substituierten Thioharnstoffen 2 mit den Bis(imidoylchloriden) der Oxalsäure 1 beschrieben und deren Strukturen mittels spektroskopischer Methoden und chemischen Abbaus diskutiert.

Ergebnisse und Diskussion

1-Phenylthioharnstoff **2a** setzt sich in Abhängigkeit von der zur HCl-Abspaltung verwendeten Hilfsbase mit **1a** zu sich stark unterscheidenden Produktgemischen um. Bei Anwendung von 1,4-Diazabicyclo[2,2,2]octan (DABCO) entsteht als Hauptprodukt ein oranger kristalliner Feststoff, der negativen Feigl-Test [4] sowie im ¹³C-NMR-Spektrum oberhalb 160 ppm kein Signal aufweist. Durch den unsymmetrischen Aufbau von **2a** bedingt, sind zwei isomere Heterocyclen **3** und **4** mit Thiazolidinstruktur denkbar. Das ¹³C-NMR-Spektrum in der unentkoppelten Form (gated decoupling-Spektrum) liefert durch ein Signal bei 136,5 ppm mit Triplettstruktur den Beweis für Verbindung **3a** [4].

Beim längeren Erhitzen von **3a** in Eisessig oder besser Trifluoressigsäure entsteht via Dimroth-Umlagerung eine neue Substanz, die sich durch ihr ¹³C-NMR-Spektrum ($\delta_{C=S}$: 197,5 ppm) als ein Thioparabansäurederivat **7a** ausweist.

Die sauer induzierte Hydrolyse von sowohl **3a** als auch **7a** liefert unter Abspaltung von zwei Phenyliminogruppen eine gelbe Substanz mit der Bruttozusammensetzung $C_9H_6N_2O_2S$, die sich nach Vergleich mit authentischem Material als 1-Phenylthioparabansäure **8a** erwies.

Durch Säulen-Flash-Chromatographie konnten aus den Mutterlaugen neben dem Hauptprodukt 3a zwei weitere Verbindungen 5a und 6a isoliert werden. Diese beiden Substanzen ließen sich ebenfalls bei der weniger komplexen Reaktion zwischen 1a und 2a in Gegenwart von Triethylamin isolieren (Variante B). Die dabei als Hauptprodukt anfallende Verbindung 5a, eine orange Substanz mit rotbrauner Lösungsfarbe, weist die gleiche Bruttozusammensetzung wie 3a und 7a auf, jedoch zeigen UV- und vor allem ¹³C-NMR-Spektren deutliche Unterschiede. Während **3a** einen λ_{max} -Wert von 365 nm (lg $\varepsilon = 4,21$) ergibt, absorbiert diese Substanz im wesentlich längerwelligem Bereich, nämlich bei 553 nm (lg ε = 2,25). Im ¹³C-NMR-Spektrum deutet ein relativ breites Signal bei 186 ppm auf eine Thiocarbonylgruppe (Feigl-Test positiv). Eine vergleichbar langwellige Absorption wird bei 6a beobachtet, allerdings mit einem um ca. eine Größenordnung höherem molaren Extinktionskoeffizienten. Bei ebenfalls positiven Feigl-Test und einem Tieffeld-Signal im ¹³C-Spektrum muß auch dieser Substanz ein C = S-Fragment zugeordnet werden.

Sämtliche spektroskopischen Daten sprechen für das Vorliegen von in Konjugation befindlichen Thiocarbonylgruppen. **5a** liegt als ein s-cis-konfiguriertes 1,4-Dihetero-1,3-dien vor, wogegen im Falle des Regioisomeren **6a** die Präferenz des Tautomeren mit einem π -valenten Ringstickstoff (vergleichbar **6a**) durch die ¹³C-NMR-Daten als erwiesen scheint. Derartige Strukturen könnten aus **3a** durch eine Dimroth-Umlagerung entstehen, jedoch sprechen experimentelle Befunde eher für eine acyclische Struktur als Schlüsselintermediat, vgl. [5].

Ausgehend von Struktur 6a sollte die Einführung von auxochromen Gruppen in die Arylreste zu Verbindungen mit Farbstoffcharakter führen. Um gleichzeitig den Einfluß elektronenspendender Substituenten auf den Ablauf derartiger Cycloacylierungen zu studieren, wurde in weiteren Experimenten 1-(4-Dimethylaminophenyl)thioharnstoff 2b mit 1a in Gegenwart von Triethylamin umgesetzt. Die dünnschichtchromatographische Auswertung ergab, daß sich in diesem Fall sogar 3 Produkte (4a, 5b, 6b) in annähernd gleichen Mengen bilden, die nach Trennung mittels Säulen-Flash-Chromatographie in kristalliner Form erhalten wurden. Die Elementaranalyse ergab für alle drei Verbindungen eine Bruttozusammensetzung von C₂₃H₂₁N₅S und belegt damit eine 1:1-Stöchiometrie bezüglich 2b und 1a. Eine Auswertung der ¹³C-NMR-Spektren ergab, daß 5b und 6b jeweils eine Thiocarbonylgruppe enthalten, während sich in 4a ein endocyclisches Schwefelatom befindet. Nach erfolgter Zuordnung von Signalgruppen werden für diese drei isomeren Cyclisierungsprodukte die folgenden Strukturen vorgeschlagen.

Tabelle 1¹³C-NMR-Verschiebungen (in ppm) der C-Ato-
me in den isomeren Verbindungen 4a, 5b und 6b sowie de-
ren Multiplizitäten im gated-decoupling-Spektrum (Beziffe-
rung der C-Atome in den entsprechenden Formeln).

C-Atom-Nr.	4 a	5 b	6 b
1	158,16s	150,64	154,25 s
2	159,44 s	186,27 ^{a)}	182,23 d
3	162,20 s	140,57 ^{a)}	156,63 s
4	139,43 t	134,64 ^{a)}	135,43 t
5	120,07 dt	128,88 ^{a)}	128,81
6	124,89 dq	130,21 ^{a)}	128,67
7	148,34 t	146,32 ^{a)}	137,45 t
8	121,46 dt	120,08 ^{a)}	119,56 dt
9	127,14 dq	122,94 dt	124,83
10	137,32t	120,04 ^{a)}	135,74 t
11	122,58 dd	128,01 ^{a)}	127,90 dd
12	112,85 dd	112,56 d ^{a)}	112,37 dd
13	148,54 m	154,84 ^{a)}	149,25 m
m-C-Atome	129,46; 129,31	130,21; 129,34	129,46; 127,96
CH ₃	40,69	40,29	40,57

a) breite Signale

6b, welches in Form grünglänzender Kristalle mit blauvioletter Lösungsfarbe anfällt, stellt ein neuartiges Merocyanin mit Oxalylsubstruktur dar ($\lambda_{max} =$ 570 nm, lg $\varepsilon = 4,26$).

Verbindung **5b** zeigt zwar ein vergleichbares UV-Absorptionsmaximum, jedoch kann sich durch die endocyclische Plazierung der 4-Dimethylaminophenylgruppe keine Merocyaninstruktur ausbilden, der Extinktionswert ist deshalb um zwei Größenordnungen niedriger.

Ein weiterer Unterschied zwischen **5b** und **6b** offenbart sich in der Form des Thiocarbonylsignals. Während **6b** ein scharfes Signal bei 182,2 ppm zeigt, ist im Spektrum von **5b** nur andeutungsweise ein breites Signal bei etwa 186,5 ppm vorhanden. Ein weiteres Charakteristikum von **5b** besteht in einer Anzahl relativ breiter Signale, vor allem im Bereich der Ringkohlenstoffe, aber auch bei Aromaten-C-Atomen. Wahrscheinlich sind diese Verbreiterungen auf dynamische Prozesse, wie z. B. eine E/Z-Isomerie bezüglich des exocyclischen 1,4-Dihetero-1,3-diens in **5b** zurückzuführen (vgl. [4] und die dort beschriebenen analogen Verbindungen).

1,3-disubstituierte Thioharnstoffe vom Typ 2c - jzeigen ebenfalls in Abhängigkeit von der Hilfsbase Unterschiede bei der Cycloacylierung mit den Imidoylchloriden 1. So ergeben die symmetrischen Vertreter 2c - i in Gegenwart von DABCO mit 1a fast ausschließlich Tris(Imino)thiazolidine 3b - i, deren Struktur durch die ¹³C-NMR-Daten sowie negativen Feigl-Test gestützt wird.

Hydrolyse in Ethanol/Salzsäure führt in allen Fällen zu 1,3-disubstituierten Thioparabansäurederivaten vom Typ 8, die von uns zum Teil schon auf anderem Wege synthetisiert wurden [3, 6]. Der dabei stattfindende Platzwechsel der Heteroatome ist deutlicher Ausdruck einer sauer induzierten Dimroth-Umlage-

rung. Die gleiche Umlagerung, allerdings ohne Austritt der Aryliminoreste in 4- und 5-Position wird z. B. im Fall von **3b** durch kurzzeitiges Erhitzen in Essigoder Trifluoressigsäure zu 1,3-Diphenyl-4,5-bis(phenyl-imino)-2-thioxo-imidazolidin **7b** beobachtet.

In Gegenwart von Triethylamin als Hilfsbase entstehen auch aus symmetrischen Thioharnstoffen Produktgemische. 1,3-Diphenylthioharnstoff 2c reagiert mit 1a zu zwei unterschiedlich gefärbten Substanzen gleicher elementarer Zusammensetzung. Nach Spektrenvergleich erwies sich die eine Verbindung als identisch mit 3b, der zweiten wird Struktur 5c zugeschrieben. Auch in diesem Fall sind die langwellige UV-Absorption sowie breite Linien im ¹³C-NMR-Spektrum charakteristisch für diese Thiocarbonylsysteme. Analog reagiert 1,3-Dicyclohexylthioharnstoff 2h zu einem Gemisch von 3g und 5d.

1-Phenyl-3-(pyrid-2-yl)-thioharnstoff 2k ergibt mit 1a eine Produktpalette, aus der zwei Hauptprodukte isoliert und spektroskopisch charakterisiert werden konnten. Die bei der Aufarbeitung als schwerlösliche Substanz anfallende Verbindung erwies sich als Thiazolidinderivat **3i**, wobei im ¹³C-NMR-Spektrum die Signale bei 137,0 und 128,4 ppm (Schlüssel-Signale für einen Phenylrest in 3-Position des Thiazolidinringes) ein Strukturfragment mit am exocyclischen Stickstoffatom gebundenen Pyridylrest anzeigen. Das durch mehrfache Flash-Chromatographie gereinigte zweite Produkt erwies sich als das Imidazolidinderivat 5e. Die Form des Thiocarbonylsignals deutet auch in dieser Verbindung auf das Vorliegen von E- und Z-Isomeren. Bemerkenswert an 5e ist im Gegensatz zu 3j dessen leichte Alkylierbarkeit am Pyridin-N-Atom. Die erhaltenen Quarternisierungsprodukte 9a - dzeichnen sich durch ihre gute Kristallisationstendenz aus.

Schließlich war es von Interesse, cyclische Vertreter der Thioharnstoffe wie Imidazolidin-2-thion 2k, dessen Benzoderivat 21 sowie das leicht aus 1,8-Naphthalendiamin zugängliche Perimidin-2-thion 2m [7] als Bausteine für neuartige Heterocyclen einzusetzen.

Bei der cyclisierenden Acylierung von 2k mit 1a wurde als Hauptprodukt 3k erhalten, weitere Nebenprodukte zersetzten sich bei der Isolierung unter Verharzung.

21 reagiert mit den Imidoylchloriden 1a und 1c zu den erwarteten Hauptprodukten, den 1H-Benzimidazolo[2,1-b]thiazolidindiiminen 31 und 3m, deren Struktur durch die ¹³C-NMR-Spektren, Elementaranalysen sowie negativen Feigl-Test ausgewiesen wird. Neben 31 entsteht zu etwa 10% das isomere Thioxoderivat 5f, bei Verwendung von 1c entsteht die entsprechende Thioxo-Verbindung nur in sehr geringen Mengen als braunes Öl.

Analog ist aus 2m und 1a das orange 1H-Perimido[2,1-b]-thiazolidin 3n isolierbar. Ein in geringen Mengen auftretendes Nebenprodukt konnte nur durch aufwendige fraktionierte Kristallisation erhalten werden. Dieses in Form eines blauschwarzen Pulvers auftretende Isomer deutet durch seine langwellige UV-Absorption bei 532 nm sowie durch seinen mittels hochauflösender Massenspektroskopie bestimmten Molpeak bei 404,1904 (C₂₅H₁₆N₄S) auf eine Struktur gemäß 5g.

Beschreibung der Versuche

Die Schmelzpunkte wurden auf einem Mikroheiztisch nach Kofler bestimmt und sind unkorrigiert.

Die Aufnahme der UV-Spektren erfolgte an einem UV-VIS-Specord Spektrometer der Firma Carl Zeiss Jena. Sämtliche Elementaranalysen wurden mittels eines CHN-Automaten angefertigt; Schwefelbestimmungen erfolgten nach Aufschluß der Substanzen durch Titration mit Bariumchlorid.

Zur Aufnahme der hochaufgelösten Massenspektren diente das Gerät JMS-D 100 der Firma Jeol.

Die ¹-H-NMR-Spektren wurden an einem FT-NMR-Spektrometer des Typs WH-90 der Firma Bruker gemessen.

¹³C-NMR-Spektren: FT-NMR-Spektrometer MSL-300 oder WH-90 der Firma Bruker, CDCl₃ (wenn nicht anders angegeben) als Lösungsmittel (δ (¹³C) = 77,07 ppm gegen TMS). Die Aufnahme der ¹³C-NMR-Spektren bei 75,475 MHz bzw. 22,63 MHz erfolgte entweder mit Protonenrauschentkopplung oder in ¹H-"gated-decoupling"-Technik, um protonengekoppelte Spektren zu erhalten. Die digitale Auflösung betrug 0,01 ppm (bei 22,63 MHz-Meßfrequenz 0,04 ppm).

Umsetzung von 1-Phenylthioharnstoff 2a mit dem Bis-Imidchlorid 1a zu 3a, 5a und 6a

Methode A. 20 mmol (3,04 g) 1-Phenylthioharnstoff **2a** werden in ca. 150 ml trockenem Acetonitril unter Zugabe von 40 mmol (4,48 g) Diazabicyclo(2,2,2)octan (DABCO) gelöst und nach Zugabe von 20 mmol (5,54 g) Oxalsäure-bis-(phenylimidoylchlorid) **1a** zwei Stunden unter Rühren und Rückflußkochen erhitzt. Anschließend wird im Vakuum auf die Hälfte des Volumens eingeengt, vom ausgefallenen Aminhydrochlorid abgetrennt und nach Entfernen des restlichen Lösungsmittels in wenig Ethanol aufgenommen und in den Kühlschrank gestellt. Die gebildete Kristallmasse wird abgesaugt, mit wenig Ethanol gewaschen und aus Aceton umkristallisiert. Man erhält 2-*Imino-3-phenyl-4,5-bis* (phenylimino)-thiazolidin **3a** in 68 % Ausbeute d. Th. in Form oranger Nadeln, F. 251–253 °C.

UV (Acetonitril): $\lambda_{max}(\lg \varepsilon)$: 229 (4,28); 365 nm (4,21).

¹³C-NMR (22,63 MHz/CDCl₃): $\delta = 156,2$ breit (C = N); 151,3 breit (C = N); 149,1 breit; 147,7 breit; 146,1 breit; 136,5 (ipso-C-N); 129,6; 128,6; 128,5; 128,3; 127,9; 125,9; 124,5; 120,6 ppm.

Nach Abtrennen von **3a** wurde die Mutterlauge eingeengt und durch Säulen-Flashchromatographie (Säulenlänge 20 cm, Durchmesser 6 cm) an Kieselgel 60 (Merck, Korngröße 0,04 mm – 0,063 mm, Eluens: Toluol/Aceton 50:1) weiter aufgearbeitet. Nach geringen Mengen anderer, nicht identifizierter Substanzen wurden die Verbindungen **5a** (Ausbeute ca. 10 % d. Th.) und **6a** (ca. 15 % d. Th.) isoliert (Beschreibung unter Methode B).

Methode B. Analog Methode A aber unter Zusatz von 40 mmol (4,04g) Triethylamin anstatt DABCO. Nach Einengen der Reaktionslösung und Abtrennen des Triethylaminhydrochlorids wird der Rückstand in wenig Methanol aufgenommen und zur Kristallisation belassen. Die gebildeten Kristalle werden scharf abgesaugt und aus Methanol umkristallisiert. Man erhält 1,3-Diphenyl-2-imino-4-phenylimino-5-thioxo-imidazolidin (5a) in Form leuchtend oranger Kristalle mit rotbrauner Lösungsfarbe, F. 181 – 182 °C; Ausbeute 5,4g = 76 % d. Th.

UV (CHCl₃): $\lambda_{max}(lg \epsilon)$: 327 (4,14); 402s (3,49); 553 nm (2,25).

¹H-NMR (90 MHz/CDCl₃): $\delta = 10,86$ (1 H, s, NH); 8,00 - 6,36 ppm (15 H, m, arom. Protonen). ¹³C-NMR (75,5 MHz/CDCl₃): $\delta = 185,7$ (C = S); 153,8 (C = NH); 145,9 (ipso-C-N =); 140,1 (C = N-Phenyl); 133,8 (ipso-C-N); 132,8 (ipso-C-N); 129,8; 129,3; 128,8; 128,1; 123,3; 120,0 ppm.

Beim Einengen der Mutterlauge erhält man neben 5a ein oranges Öl, welches nach Versetzen mit Diethylether kristallisiert.

4-Anilino-1-phenyl-2-phenylimino-5-thioxo- Δ^3 -imidazolin (6 a), orange Kristalle, F. 149 – 151 °C, Ausbeute 1,4 g = 20 % d. Th.

UV (CHCl₃): $\lambda_{max}(\lg \epsilon)$: 337 s (4,06); 413 (4,2); 484 nm, s (3,38).

¹³C-NMR (75,5 MHz/CDCl₃): $\delta = 184,7$ (C=S); 157,8 (C=N-Phenyl); 157,1 (=C-NH Phenyl); 146,6 (ipso-C-N=); 136,8 (ipso-C-NH-); 134,9 (ipso-C-N); 129,4; 129,0; 128,9; 128,6; 127,7; 125,4; 125,3; 124,7; 119,8 ppm.

Umsetzung von 1-(4-Dimethylaminophenyl)-thioharnstoff 2b mit 1 a zu 4 a, 5 b, 6 b

20 mmol (3,90 g) 1-(4-Dimethylaminophenyl)-thioharnstoff 2b werden zusammen mit 20 mmol (5,54 g) 1a und 40 mmol (4,04 g) Triethylamin in 150 ml trockenem Acetonitril 1 Stunde unter Rühren und unter Rückfluß erhitzt. Nach Abtrennen des Aminhydrochlorids wird der Rückstand durch Säulen-Flashchromatographie (Eluens: Toluol 6b, 4a; Toluol/Aceton 20:1 5b) aufgetrennt. Die drei isomeren Heterocyclen fallen in der oben angegebenen Reihenfolge an. ¹³C-NMR-Werte siehe Tab. 1.

4-Anilino-2-(4-dimethylaminophenyl)imino-1-phenyl-5thioxo- Δ^3 -imidazolin (6 b)

Dunkelblaue Kristalle mit grünem Oberflächenglanz, F. 193 - 195 °C (Aceton) Ausbeute ca. 30 % d. Th.

UV (CHCl₃): $\lambda_{max}(\lg \epsilon)$: 342 (4,11); 407 (3,82); 425 s (3,78); 570 nm (4,26).

4-Anilino-2-(4-dimethylaminophenyl)imino-5-phenylimino- Δ^3 -thiazolin (4 a)

Rotbraune Kristalle, F. $164 - 166 \degree C$ (Methanol), Ausbeute ca. 30 % d. Th.

UV (CHCl₃): $\lambda_{max}(\lg \epsilon)$: 288 (4,24); 340 (4,21); 485 nm (3,86).

3-(4-Dimethylaminophenyl)-2-imino-1-phenyl-4-phenylimino-5-thioxo-imidazolidin (5 b)

Braune Kristalle, F. 156 - 159 °C (Methanol) Ausbeute ca. 35 % d. Th.

UV (CHCl₃): $\lambda_{max}(\lg \epsilon)$: 275 (4,37); 317 (4,18); 407 s (3,37); 575 nm, s (2,24).

Umsetzung der disubstituierten Thioharnstoffe 2c - m mit den Bis-Imidchloriden vom Typ 1 zu 3c - n bzw. 5c - g

Analog Methode A (2c - j) bzw. Methode B (2k - m). Aufarbeitung nach Abfiltrieren vom Amin-Hydrochlorid mittels Umkristallisation bzw. Säulen-Flashchromatographie.

¹³C-NMR (75,5 MHz/CDCl₃): **3b**: $\delta = 154,0$ sehr breit (C = N); 150,2 breit (C = N); 148,6 (ipso-C-N =); 145,7 sehr breit (ipso-C-N =); 142,3 sehr breit (C = N); 136,4 (ipso-C-N $\langle \rangle$); 129,3; 129,1; 128,9; 128,5; 128,1; 126,6; 124,6; 122,5; 121,1; 119,8; 119,4 ppm.

¹³C-NMR (75,5 MHz/CDCl₃): $3g: \delta = 149,8$ (ipso-C-N =); 149,4 (ipso-C-N =); 148,0 (C = N); 145,0; 143,1 (2 × C = N); 129,2; 128,3; 126,0; 121,9; 119,8; 119,5; 62,9; 56,6 (2× ipso-C-Cyclohexyl); 34,0; 28,0; 26,5; 25,8; 25,6; 24,2 ppm.

¹³C-NMR (75,5 MHz/CDCl₃): **3j**: $\delta = 158,0$ (ipso-C-Pyrid-2-yl); 152,1 (C = N-Pyridyl); 149,8 sehr breit; 149,0 sehr breit (2× ipso-C-N=); 147,2 (C-Pyrid-6-yl); 144,8 sehr breit; 141,9 sehr breit (2× C=N); 138,0 (C-Pyrid-4-yl); 137,0 breit (ipso-C-N); 129,3; 129,1; 129,0; 128,4; 128,2; 126,3; 122,6; 121,0; 120,0; 119,5 ppm.

2,3-Bis(Phenylimino)-5,6-dihydro-imidazo[2,1-b]thiazolidin (3 k)

Aus Imidazolidin-2-thion **2k** und **1a**; Reinigung durch Säulen-Flashchromatographie (Laufmittel: Toluol/Aceton 20:1) liefert ein gelbes Öl, welches in wenig Ether aufgenommen wird und nach längerem Stehen im Kühlschrank Kristalle abscheidet.

Hellgelbe Kristalle, F. 103 – 105 °C (Aceton/Ether).

¹H-NMR (90 MHz/CDCl₃): $\delta = 7,62-6,58$ (10 H, m, arom. Protonen); 4,05 (2 H, t, CH₂); 3,18 ppm (2 H, t, CH₂).

 $^{13}C-NMR$ (75,5 MHz/CDCl₃): $\delta = 157,5$ (C-1 = N); 156,7 (C-3 = N); 149,7; 147,4 (2× ipso-C = N); 141,3 (C-2 = N);

129,4; 128,0; 126,4; 123,6; 121,3; 119,5; 59,5 (CH₂); 46,3 ppm (CH₂).

2,3-Bis(Phenylimino)-benzimidazo[2,1-b]thiazolidin (31)

Aus 2-Mercaptobenzimidazol 21 und 1a, glänzende gelbe Kristalle, F. $147 - 148 \degree C$ (Acetonitril).

¹³C-NMR (75,5 MHz/CDCl₃): $\delta = 151,2$ (C = N); 147,5; 147,0; 146,9 (2× ipso-C-N=); 146,4 (C = N); 136,9 (C = N); 131,1; 129,6; 128,7; 127,7; 125,2; 124,4; 124,0; 120,3; 119,5; 119,4; 113,0 ppm.

Neben 31 lassen sich aus den Mutterlaugen noch kleine Mengen (Ausbeute etwa 10 % d. Th.) des Thioxo-Derivates 5f isolieren.

2,3-Bis(4-carbethoxyphenylimino)-benz[4,5]imidazo[2,1b]thiazolidin (**3 m**)

Gef.

Aus **21** und **1c**, dottergelbe, verfilzte Nadeln, F. 194 – 196 °C (Acetonitril). $C_{27}H_{22}N_4O_4S$ Ber. C 65,06 H 4,42 N 11,24 S 6,43

C 65,10 H 4,51 N 11,28

S 6,61

Tabelle 23-Aryl(alkyl)-2-aryl(alkyl)imino-4,5-bis(arylimino)thiazolidine (3 a - n, 4 a)

Nr.	\mathbf{R}^1	R ²	R ³	Ausb.	F. (°C)	Summenformel	Analyse: Ber./Gef.			
				(% d. Th.)	Habitus	(Molmasse)	С	Н	N	S
3 a	Ph	Ph	Н	68	251 – 253 orange Nadeln	$C_{21}H_{16}N_4S$ (356,4)	70,79 70,65	4,49 4,5	15,73 515,70	8,99 8,58
3 b	Ph	Ph	Ph	86	195 – 197 gelbe Krist.	C ₂₇ H ₂₀ N ₄ S (432,5)	74,91 74,83	4,62 4,59	12,95 12,88	7,40 7,51
3 c	Ph	4-MeO-Ph	4-MeO-Ph	82	202 – 205 orange Krist.	C ₂₉ H ₂₄ N ₄ O ₂ S (492,6)	70,65 70,75	4,87 4,95	11,37 11,42	6,50 6,41
3 d	Ph	4-Br-Ph	4-Br-Ph	67	207 – 209 gelbe Krist.	$C_{27}H_{18}Br_2N_4S$ (590,3)	54,89 54,82	3,05 2,98	9,49 9,56	5,42 5,53
3 e	Ph	4-F-Ph	4-F-Ph	72	183 – 186 gelbe Krist.	$C_{27}H_{18}F_2N_4S$ (468,5)	69,16 69,21	3,84 3,90	11,95 11,89	6,83 6,72
3 f	Ph	4-EtO-Ph	4-EtO-Ph	91	166 – 168 gelbe Krist.	$C_{31}H_{28}N_4O_2S$ (520,6)	71,46 71,52	5,38 5,44	10,76 10,82	6,15 6,09
3 g	Ph	Cyclohexyl	Cyclohexyl	78	159 hellgelbe Krist.	C ₂₇ H ₃₂ N ₄ S (444,6)	72,87 72,92	7,20 7,30	12,60 12,51	7,20 7,09
3 h	Ph	Benzyl	Benzyl	80	gelbes Öl	C ₂₉ H ₂₄ N ₄ S (460,6)	75,55 75,43	5,21 5,07	12,16 12,36	6,95 7,16
3 i	4-MeO-Ph	4-MeO-Ph	4-MeO-Ph	88	212 – 214 orange Krist.	C ₃₁ H ₂₈ N ₄ O ₄ S (552,5)	67,32 67,25	5,07 4,98	10,13 10,12	5,80 5,62
3 j	Ph	Ph	2-Pyridyl	68	232 rote Krist.	C ₂₆ H ₁₉ N ₅ S (433,5)	71,97 71,86	4,38 4,41	16,15 16,09	7,38 7,45
3 k	Ph	1,2-]	Ethylen	75	103 – 105 hellgelbe Krist.	C ₁₇ H ₁₄ N ₄ S (306,4)	66,58 66,52	4,57 4,50	18,28 18,32	10,44 10,51
31	Ph	1,2-	Phenylen	82	147 – 148 gelbe Krist.	C ₂₁ H ₁₄ N ₄ S (354,4)	71,19 71,02	3,95 4,02	15,81 15,83	9,04 9,23
3 m	4-EtOOC-H	Ph 1,2-1	Phenylen	84	194 – 196 gelbe Nadeln	C ₂₇ H ₂₂ N ₄ O ₄ S (498,6)	65,06 65,10	4,42 4,51	11,24 11,28	6,43 6,61
3 n	Ph	1,8-1	Naphthalen	87	180 – 182 orange Nadeln	C ₂₅ H ₁₆ N ₄ S (404,5)	74,26 74,17	3,96 3,90	13,86 13,90	7,92 7,80
4 a	Ph	4-Me ₂ N-Ph	Н	30	164 – 165 rotbraune Krist	C ₂₃ H ₂₁ N ₅ S . (399,5)	69,14 69,10	5,30 5,32	17,52 17,55	8,01 8,12

(498, 6)

2,3-Bis(phenylimino)-1H-perimido[2,1-b]thiazolidin (3 n) Aus 2m und 1a, orange Nadeln, F. 180–183 °C (Acetonitril).

UV (CHCl₃): $\lambda_{max}(lg \epsilon)$: 310 (3,88); 321 (3,80); 438 nm (4,14).

1,3-Diphenyl-2,4-bis(phenylimino)-5-thioxo-imidazolidin (5 c)

Aus 2c und 1a gemäß der allgemeinen Vorschrift. Nach der üblichen Aufarbeitung erhält man ein 1:1 Gemisch von 3b und 5c, welches durch fraktionierte Kristallisation aus Acetonitril bzw. Säulen-Flashchromatographie getrennt werden kann. Im Fall einer Umkristallisation fällt 5c stets als zweite, leichterlösliche Fraktion an. Man erhält 5c in Form oranger Kristalle mit rotbrauner Lösungsfarbe, F. 206 – 208 °C.

 $\begin{array}{cccc} C_{27}H_{20}N_4S & \text{Ber.} & C~74,91 & H~4,62 & N~12,95 & S~7,40 \\ (432,5) & \text{Gef.} & C~74,80 & H~4,53 & N~12,89 & S~7,62. \\ UV (CHCl_3): \lambda_{max}(\lg \epsilon): 327 \text{ nm } (4,15); 434 \text{ s } (3,51); 574 \text{ nm} \\ (2,20). \end{array}$

¹³C-NMR (75,5 MHz/CDCl₃): $\delta = 179,8$ sehr breit (C = S); 147,0; 144,7; 141,6 (C = N-); 141,0 (C = N-); 135,1; 134,2; 129,3; 129,1; 128,9; 128,6; 128,5; 128,3; 128,0; 127,9; 123,1; 122,5; 120,9 ppm.;

3-Cyclohexyl-2-cyclohexylimino-1-phenyl-4-phenylimino-5thioxoimidazolidin (5 d)

Analog **5c** aus **2h** und **1a**, schwarze Kristalle mit rotbrauner Lösungsfarbe, F. $184 - 185 \degree$ C (Methanol) sintert ab $172\degree$ C, Ausbeute ca. 30 % d. Th.

¹³C-NMR (75,5 MHz/CDCl₃): $\delta = 181,6$ (C = S); 148,9 (ipso-C = N-); 140,8 (C = N-Cyclohexyl); 137,9 (C = N-Phe-nyl); 136,0 (ipso-C-N); 129,7; 129,6; 128,7; 128,3; 122,4; 119,9; 54,1 (ipso-C-Cyclohexyl); 53,6 (ipso-C-Cyclohexyl); 34,7; 28,5; 26,4; 26,0; 24,1 ppm.

1,3-Diphenyl-4-phenylimino-2-(pyrid-2-yl)imino-5-thioxoimidazolidin (5 e)

Analog **5c** aus **2j** und **1a**. Eine Auftrennung des Produktgemisches mittels Säulen-Flashchromatographie (Laufmittel: Toluol/Aceton 20:1) lieferte neben **3j** und anderen, nicht identifizierten Substanzen Verbindung **5e** in Form eines braunen Öles (Ausbeute ca. 60 % d. Th.). Nach längerem Stehen in Ether scheiden sich daraus braune Kristalle ab, F. 160 - 163 °C (Aceton/Ether).

¹³C-NMR (75,5 MHz/CDCl₃): $\delta = 186,9$ sehr breit (C = S); 157,2 (ipso-C-Pyrid-2-yl); 147,8 (C-Pyrid-6-yl); 146,7 (ipso-C = N); 143,4 (C = N-); 141,0 (C = N-); 136,5 (C-Py-rid-3-yl); 134,7; 133,8 (2 × ipso-C-N); 129,1; 129,0; 128,7; 128,4; 128,2; 128,0; 123,1; 119,5; 117,9; 116,8 ppm.

1-Phenyl-3-phenylimino-2-thioxo-2,3-dihydro-1H-imidazo[*1,2-a*]-*benzimidazo*] (5 f)

Braune Kristalle, F. 235 – 239 °C (Acetonitril).

¹³C-NMR (75,5 MHz/CDCl₃): $\delta = 186,5$ (C = S); 156,2 (C = N); 148,0; 146,0 (ipso-C-N =); 136,3 (C = N); 133,5

(ipso-C-N (); 129,9; 129,3; 126,7; 125,6; 125,5; 125,0; 123,7; 120,7; 120,3; 114,3 ppm.

1-Phenyl-3-phenylimino-2-thioxo-1H-perimido[2,1-b] imidazolidin (5g)

Kann in sehr geringen Mengen aus den Mutterlaugen neben 3n isoliert werden. Schwarze Kristalle mit violetter Lösungsfarbe, F. 265 °C (Toluol).

UV (CHCl₃/qualitativ): $\lambda_{max} = 532 \text{ nm}$.

MS (75 eV/190 °C): $m/e = 404,1904 M^+ (C_{25}H_{16}N_4S)$.

Quarternierung von 5 e zu 9 a - d

1,0g **5e** werden in ca. 80 ml trockenem Acetonitril mit einem geringen Überschuß des entsprechenden Alkylierungsmittels eine halbe Stunde unter Rückfluß erhitzt. Nach Abkühlen, Einengen und mehrstündigem Stehen im Kühlschrank fallen die Verbindungen 9a - d kristallin aus. Umkristallisation aus Acetonitril/Ether liefert analysenreine Proben.

1,3-Diphenyl-2-(N-methyl-2-pyridinium)imino-4-phenylimino-5-thioxo-imidazolidin-iodid (9 a)

Orange Kristalle mit grüner Lösungsfarbe, F. 276 – 277 °C.

 $\begin{array}{cccc} C_{27}H_{22}IN_5S & Ber. & C \ 56,31 & H \ 3,82 & N \ 12,16 & S \ 5,56 \\ (575,4) & Gef. & C \ 56,20 & H \ 3,67 & N \ 12,00 & S \ 5,67 \\ UV \ (Ethanol): \ \lambda_{max}(lg \ \epsilon): \ 338 \ (4,25); \ 600 \ nm \ (2,36). \end{array}$

¹³C-NMR (75,5 MHz/CDCl₃/DMSO-d₆): $\delta = 184,6$ sehr breit (C = S); 151,0 (ipso-C-Pyrid-2-yl); 146,7 (ipso-C-N =); 144,5 (C = N); 141,0; 140,5 (C-4-Pyrid-6-yl); 138,5 (C = N); 132,1; 131,2 (2×ipso-C-N); 127,9; 127,6; 127,3; 126,7; 126,6; 121,8; 119,2; 117,5; 117,4; 41,3 ppm (CH₃).

1,3-Diphenyl-2-(N-benzyl-2-pyridinium)imino-4-phenylimino-5-thioxo-imidazolidin-bromid (9 b)

Grüne Kristalle, F. 219 – 221 °C.

 $C_{33}H_{26}BrN_5S$ Ber.C 65,43H 4,30N 11,57S 5,29(605,2)Gef.C 65,24H 4,19N 11,46S 5,41UV (Ethanol): $\lambda_{max}(\lg \varepsilon)$: 340 (4,22); 610 nm (2,33).

1,3-Diphenyl-2-(N-4-nitrobenzyl-2-pyridinium)imino-4phenylimino-5-thioxo-imidazolidin-bromid (9 c)

Orange Kristalle, F. 206 – 208 °C.

1,3-Diphenyl-2-(N-carbethoxymethylen-2-pyridinium) – imino-4-phenylimino-5-thioxo-imidazolidin-bromid (9 d)

Orange Kristalle mit tiefgrüner Lösungsfarbe, F. 185–188 °C.

 $C_{30}H_{26}BrN_5O_2S \quad Ber. \quad C \ 59,95 \quad H \ 4,33 \quad N \ 11,66 \quad S \ 5,33 \\ (600,5) \qquad \qquad Gef. \quad C \ 59,77 \quad H \ 4,19 \quad N \ 11,52 \quad S \ 5,47 \\$

Umlagerung der Heterocyclen 3 zu den Parabansäurederivaten 7 und 8

1-Phenyl-4,5-bis(phenylimino)-2-thioxo-imidazolidin (7 a)

1 mmol (0,36 g) **3a** werden 15 Minuten in ca. 10 ml Trifluoressigsäure unter Rückfluß erhitzt, anschließend wird im Vakuum zur Trockne eingeengt. Man erhält in quantitativer Ausbeute **7a** in Form tieforanger Nadeln, F. 251 °C (Acetonitril). Ein Vergleich mit einer schon früher hergestellten Probe [3] ergab Identität.

Nr.	F. (°C)	Summenformel (Molmasse)	Analyse: Ber./Gef.			
	Habitús		C	Н	Ν	S
8 a	183	C ₉ H ₆ N ₂ O ₂ S	52,43	2,91	13,59	15,53
	gelbe Krist.	(206,2)	52,37	2,86	13,65	15,81
8 b ^{a)}	236 [6]	$C_{15}H_{10}N_2O_2S$	63,74	3,54	9,92	11,33
	hellgelbe Nadeln	(282,4)	63,59	3,61	9,87	11,21
8 c ^{a)}	208 [6]	C ₁₇ H ₁₄ N ₂ O ₄ S	59,58	4,09	8,18	9,35
	gelbe Nadeln	(342,4)	59,42	4,15	8,07	9,61
8 d	311 (subl.)	$C_{15}H_8Br_2N_2O_2S$	40,90	1,82	6,36	7,27
	gelbe Krist.	(440,1)	40,81	1,90	6,22	7,19
8 e	258	$C_{15}H_8F_2N_2O_2S$	56,55	2,51	8,80	10,05
	gelbe Nadeln	(318,3)	56,43	2,42	8,70	9,92
8 f	268 – 270	C ₁₉ H ₁₈ N ₂ O ₄ S	61,56	4,86	7,56	8,64
	gelbe Nadeln	(370,4)	61,45	4,77	7,43	8,60
8 g	238 (subl.)	C ₁₅ H ₂₂ N ₂ O ₂ S	61,14	7,47	9,51	10,87
	gelbe Nadeln	(294,4)	61,08	7,52	9,41	10,68
8 h	131 – 133	C ₁₇ H ₁₄ N ₂ O ₂ S	65,72	4,51	9,02	10,31
	gelbe Krist.	(310,4)	65,61	4,39	8,89	10,11

Tabelle 3 1,3-disubstituierte 4,5-Dioxo-2-thioxo-imidazolidine 8 a – h

^{a)} durch Mischschmelzpunkt und Vergleich der ¹³C-NMR-Spektren mit früher hergestellten Proben Identität gesichert

1,3-Diphenyl-4,5-bis(phenylimino)-2-thioxo-imidazolidin (7 b)

Analog 7a aus 1 mmol (0,45 g) 3b, Ausbeute nahezu quantitativ, orange Kristalle, F. $201-202 \,^{\circ}\text{C}$ (Aceton). Mischschmelzpunkt und Vergleich der ¹³C-NMR-Spektren mit einer schon früher hergestellten Probe [3, 6] sicherte die Identität der Produkte.

1,3-disubstituierte 4,5-Dioxo-2-thioxo-imidazolidine (8 a - h)

5 mmol des entsprechenden Thiazolidinderivates 3a - i werden in ca. 50 ml Ethanol in der Siedehitze gelöst bzw. suspendiert und mit ca. 5 ml Salzsäure (30 %) versetzt. Nach dem Abkühlen fallen die Produkte 8a - h nach Zugabe von Wasser aus und werden aus Ethanol/Wasser oder Acetonitril umkristallisiert (Tabelle 3).

Literaturverzeichnis

- [1] P.J. Stoffel, J. Org. Chem. 29 (1964) 2794
- [2] H. Ulrich, A.A.R. Sayigh, J. Org. Chem. 30 (1965) 2781
- [3] R. Beckert, M. Gruner, J. Prakt. Chem. 332 (1990) 65
- [4] R. Beckert, M. Gruner, I. Seidel, R.-J. Kuban, Monatsh. Chem. 120 (1989) 1125
- [5] W. Walter, C.R. Saha, Phosphorus Sulfur 25 (1985) 63
- [6] R. Beckert, R. Mayer, J. Prakt. Chem. 324 (1982) 227
- [7] F. Sachs, Liebigs Ann. Chem. 365 (1909) 141

Korrespondenzanschrift:

Dr. rer. nat. habil. R. Beckert Institut für Organische und Makromolekulare Chemie der Friedrich-Schiller-Universität Humboldtstr. 10 O-6900 Jena, Deutschland