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An Efficient Synthesis of Functionalized Dihydro-1H-indol-4(SH)-ones via

One-Pot Three-Component Reaction under Catalyst-Free Conditions
Hui-Yan Wang"?, Da-Qing Shi"*
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ABSTRACT: A facile and efficient one-pot procedure for the preparation of
functionalized dihydro-1H-indol-4(5H)-ones by a catalyst-free, three-component
reaction of 1,3-dicarbonyl compounds, arylglyoxal monohydrate and enaminones
under mild conditions in excellent yield is reported. This synthesis was confirmed to
follow the group-assisted-purification (GAP) chemistry process, which can avoid

traditional purifications, chromatography and recrystllization.

KEYWORDS: functionalized dihydro-1H-indol-4(5H)-ones, multi-component

reactions, group-assisted-purification (GAP) chemistry process.

Introduction

Multi-component reactions (MCRs) are chemical transformations in which three
or more different starting materials combine together via a one-pot procedure to give
a final complex product. Such reactions have emerged as powerful and bond-forming
efficient tools in organic, combinatorial and medicinal chemistry for their facileness
and efficiency as well as their economy and ecology in organic synthesis.' In the past
decade, there have been tremendous developments in three- and four-component
reaction and significant efforts continue to be made to develop new MCRs.”

The indole nucleus is probably the most well-known heterocyclic compound, a
common and important feature of a variety of natural products and medicinal agents.’

Compounds carrying the indole moiety exhibit antibacterial and antifungal activities.”
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It is used as an important skeleton in organic synthesis® and is also utilized in other
important fields, such as medicinal chemistry.® As a consequence, a number of
methods have been reported for the construction of indoles.” Recently, some
functionalized indoles have been synthesized by using different starting materials.®
4-Hydroxycoumarins are a very important class of biologically active substances
in nature and in medicine. They exhibit mainly anticoagulant activity and there are
some drugs which are widely used as anticoagulants.” They exhibit cytotoxic'’ and
antioxidant activities'' as well as activity against HIV.'> However, to the best of our
knowledge, there have been few reports about the synthesis of coumarin-fused indole
derivatives by multi-component reactions. Our interest in the synthesis of indole
derivatives'’ guided by the observation that the presences of two or more different
heterocyclic moieties in a single molecule often enhances remarkably the biological
activity, we herein described a facile synthesis of 3-(4-hydroxycoumarin-3-yl)-
dihydro-1H-indol-4(5H)-ones derivatives by a three-component reaction of
4-hydroxycoumarin, arylglyoxal monohydrates and enaminones in ethanol without

any catalyst.

Results and discussion

We initially evaluated the three-component reaction of the 4-hydroxycoumarin
1{/}, phenylglyoxal monohydrate 2{/}, and enaminone 3{/}(Scheme 1). The
reaction mixture, which was composed of a 1:1:1 mixture of 1{/}, 2{/} and 3{3},
was tested under a variety of different conditions. The effects of solvent and
temperature were evaluated for this reaction, and the results are summarized in Table
1. It was found that when the reaction was carried out in water without any catalyst
the yield of product was very low (Table 1, Entry 1). Chloroform and ethanol
provided higher yields than those using other organic solvents (Table 1, Entry 5-6 vs
Entries 2-4). Considering the volatility and toxicity of the chloroform, ethanol was
chosen as the solvent for all further reactions. To identify the optimum reaction
temperature, the reaction was carried out at r.t., 40°C, 60°C and reflux temperature,

providing the product 4{/,/,7} in yields of 34%, 52%, 80% and 94% (Table 1, Entries
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7-9 and 6), respectively. The use of additives, such as L-proline, resulted in no
significant improvement of the yield (Table 1, Entry 10). Thus, the optimum
conditions tested were refluxing ethanol without any catalyst.

Scheme 1 . Model Reaction

H o]
OH
o OH

o

1{1} 2{1} 3{1} 4{1,1,1}

Table 1. Optimizing the Reaction Conditions for the Synthesis of 4{/,/,/}

Entry Solvent Temperature (°C) Time (h) Yield * (%)
1 H,O 80 1.0 34
2 DMF 80 1.0 69
3 Acetone reflux 1.0 78
4 CH;CN reflux 1.0 80
5 CHCl; reflux 1.0 92
6 EtOH reflux 1.0 94
7 EtOH r. t. 1.0 34
8 EtOH 40 1.0 52
9 EtOH 60 1.0 80

EtOH+L-proline
10 reflux 1.0 90
(10 mol %)

* Yield was determined by HPLC-MS, if the precipitated solids were occurred during the

reaction, acetonitrile should be added to dissolve the solids before determining the yield.

The optimized reaction conditions were then tested for library construction with
eight 1,3-dicarbonyl compounds 1{/-8}, five phenylglyoxal monohydrates 2{/-5},
and sixteen enaminones 3{/-16} (Figure 1). The corresponding functionalized indole
derivatives 4 were obtained in good yields in catalyst free, refluxing ethanol. The
results are summarized in Table 2. This protocol was efficient with 1,3-dicarbonyl
compounds with either 1,3-diketones or f-keto esters. It was also found that n-butyl
and phenyl groups, bearing either electron-withdrawing or electron-donating groups
on the enaminone ring, were tolerated under the reaction conditions, leading to the
final products in satisfactory yields (up to 94%). Moreover, this synthesis followed

the GAP chemistry (group-assisted-purification chemistry)'* process, which can avoid
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traditional chromatography and recrystallization purifications. Pure products can be
obtained by washing the solid, crude products with cold ethanol.

The structures of all products 4 were characterized by IR, 'H NMR, Be NMR, and
HRMS analysis. The structure of compound 4{/,7,1} was further confirmed by X-ray
diffraction analysis. The molecular structure of compound 4{/,/,/} is shown in

Figure 2.

1,3-Dicarbonyl compounds 1:
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Figure 1. Diversity of reagents.
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Table 2 . Synthesis of functionalized dihydro-1H-indol-4(5H)-one derivatives 4

OH o
(0] OH ethanol
g e,
. Y A’ OH R' g;‘

reflux !

1{1-8} 2{1-5} 3{1-16} 4{1{1-8},2{1-5},3{1-16}}

Entry Products Time (h) Isolated Yield (%) M.P. (°C)
1 4{1,1,1} 1.0 89 162-163
2 4{1,1,2} 1.0 91 308-310
3 4{1,1,3} 2.0 88 170-172
4 4{1,14} 1.5 90 176-178
5 4{1,1,5} 4.0 77 185-186
6 4{1,1,6} 0.7 90 270-271
7 4{1,1,7} 1.0 94 152-154
8 4{1,1,8} 1.0 87 294-295
9 4{1,1,9} 1.0 88 268-269
10 4{1,1,10} 1.5 82 278-280
11 4{1,1,12} 1.0 81 114-116
12 4{1,1,13} 1.0 87 282-284
13 4{1,1,14} 1.5 90 172-174
14 4{1,1,15} 1.0 94 278-279
15 4{1,1,16} 5.0 72 167-170
16 4{1,2,3} 1.5 83 250-251
17 4{1,2,11} 1.0 90 172-174
18 4{1,3,1} 1.5 85 264-265
19 4{1,3,3} 1.5 92 172-173
20 4{1,4,1} 1.5 89 >300
21 4{1,4,3} 1.5 94 >300
22 4{1,5,3} 1.5 92 >300
23 4{1,5,11} 1.0 93 >300
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24 4{2,1,1} 1.0 81 268-270
25 4{2,1,3} 3.0 88 282-283
26 4{2,1,6} 0.7 85 142-144
27 4{2,1,12} 1.0 80 279-281
28 4{3,1,1} 1.0 80 196-198
29 4{3,1,6} 0.7 82 183-184
30 444,1,1} 1.0 75 174-175
31 4{5,1,1} 1.0 77 137-138
32 4{5,1,3} 1.5 88 154-156
33 446,1,1} 1.0 84 293-295
34 4{6,1,3} 1.5 89 290-292
35 4{7,1,1} 1.0 76 142-144
36 4(8,1,1} 1.5 82 239-240
37 4(8,1,3} 1.0 85 224-226

c29 628

Figure 2 . Crystal structure of compound 4{/,/,/}

Although the detailed mechanism of this reaction remains to be fully clarified, the
formation of compound 4 could be explained by the reaction sequence in Scheme 2.
First, a Knoevenagel condensation of 1,3-dicarbonyl compounds 1 with
phenylglyoxal 2 is proposed to give intermediate A. Michael addition of enaminone 3
to intermediate A then occurs to provide intermediate B, which undergoes

intramolecular cyclization and dehydration to form the desired product 4.
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Scheme 2 . Proposed Mechanism for the synthesis of 4

Conclusion

The new GAP synthesis of functionalized dihydro-1H-indol-4(5H)-one
derivatives has been achieved by three-component reaction of 1,3-dicarbonyl
compounds, arylglyoxal monohydrates and enaminones under mild conditions
without any catalyst. Good chemical yields have been achieved without the use of the

traditional purifications, chromatography and recrystallization.

Experimental Section

Melting points are uncorrected. IR spectra were recorded on Varian F-1000
spectrometer in KBr with absorptions in cm”. '"H NMR and *C NMR were
determined on Varian Invoa-400 MHz or Invoa-300 MHz spectrometer in DMSO-dg
solution. J values are in Hz. Chemical shifts are expressed in ppm downfield from
internal standard TMS. HRMS analyses were carried out using Bruker micrOTOF-Q
instrument or TOF-MS instrument.

General Procedure for the Synthesis of 4. A dry 25 mL flask was charged with
1,3-dicarbonyl compounds 1 (1 mmol), phenylglyoxal monohydrate 2 (1 mmol),
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enaminones 3 (I mmol) and ethanol (5 mL). The mixture was stirred at refluxing
temperature for 0.7-5 h. After completion of the reaction (confirmed by TLC), the
reaction mixture was cooled to room temperature. The crystalline solids were
collected and washed with little cold ethanol to give the pure products 4.

Compound 4{/,/,/}: White powder; IR (KBr, v, cm'l): 3430, 3280, 3058, 2956,
2869, 1729, 1694, 1665, 1624, 1515, 1492, 1451, 1408, 1366, 1270, 1194, 1103, 1044,
1020, 961, 897, 837, 757, 699; '"H NMR (DMSO-d;, 400 MHz) & (ppm): 10.81 (s, 1H,
OH), 7.77 (d, J = 8.0 Hz, 1H, ArH), 7.54 (t, J = 7.6 Hz, 1H, ArH), 7.31-7.24 (m, 2H,
ArH), 7.19 (d, J = 7.6 Hz, 2H, ArH), 7.09-6.99 (m, 7H, ArH), 2.56 (d, J = 16.4 Hz,
1H, CH,), 2.47-2.45 (m, 1H, CHy), 2.30-2.26 (m, 4H, CH,+CH3), 2.16 (d, /= 15.6 Hz,
1H, CH,), 1.04 (s, 3H, CH3), 1.01 (s, 3H, CH;); >C NMR (DMSO-d;, 75 MHz) ¢
(ppm): 192.80, 162.17, 161.17, 152.78, 144.37, 138.06, 135.37, 134.90, 132.36,
131.41, 130.19, 130.02, 129.77, 128.26, 127.96, 127.65, 124.25, 123.86, 118.27,
116.45, 109.36, 100.34, 52.62, 36.85, 35.38, 28.91, 28.38, 21.07; HRMS calcd for
C3,H,;NNaO, [M+Na]': 512.1838, found: 512.1842.

Compound 4{2,/,7}: Light red powder; IR (KBr, v, cm'l): 3427, 3063, 3035, 2938,
2867, 2735, 2691, 1662, 1637, 1576, 1515, 1492, 1447, 1404, 1367, 1279, 1233, 1209,
1107, 1125, 1081, 1050, 1000, 934, 923, 828, 804, 766, 726, 699, 650; 'H NMR
(DMSO-ds, 400 MHz) 6 (ppm): 10.64 (s, 1H, OH), 7.17-6.97 (m, 9H, ArH), 5.91 (s,
1H, =CH), 2.50-2.45 (m, 2H, CH,), 2.25-2.18 (m, 5H, CH»+CH3), 2.10 (s, 3H, CH3),
1.00 (s, 6H, 2xCH3); °C NMR (DMSO-ds, 75 MHz) 6 (ppm): 192.46, 166.34, 164.14,
160.89, 143.64, 137.88, 134.96, 134.27, 131.88, 130.18, 129.67, 128.19, 127.91,
127.33, 118.14, 110.74, 100.51, 97.07, 52.75, 36.89, 35.19, 28.67, 28.59, 21.05, 19.75;
HRMS calced forCyoH»7NO4 [M]+: 453.1940, found: 453.1929.

Compound 4{3,/,6}: White powder ; IR (KBr, v, cm'l): 3588, 3425, 3056, 3030,
2957, 2892, 2644, 1670, 1585, 1562, 1513, 1486, 1451, 1367, 1299, 1257, 1211, 1166,
1148, 1046, 1028, 1013, 921, 845, 807, 775, 718, 702; '"H NMR (DMSO-ds, 400 MHz)
o (ppm): 9.63 (s, 1H, OH), 7.08-7.03 (m, 5H, ArH), 6.92-6.89 (m, 4H, ArH), 3.71 (s,
3H, OCH3), 2.46-1.96 (m, 8H, 4xCH,), 1.09-0.87 (m, 12H, 4xCH;); “C NMR
(DMSO-ds, 75 MHz) 6 (ppm): 196.51, 192.26, 170.40, 158.83, 143.57, 133.94,
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132.17, 130.50, 129.71, 129.32, 127.92, 126.99, 118.32, 114.69, 112.19, 109.66,
56.49, 55.72, 52.88, 36.93, 35.17, 32.06, 28.77, 28.29, 19.02; HRMS calcd
forC;;H33NO,4 [M]': 483.2410, found: 483.2398.

Compound 4{4,/,/}: White powder ; IR (KBr, v, cm'l): 3431, 3059, 3033, 2952,
2875, 2620, 1664, 1578, 1515, 1491, 1448, 1422, 1381, 1334, 1280, 1209, 1183, 1160,
1117, 1071, 1049, 985, 923, 833, 811, 769, 730, 697, 649; 'H NMR (DMSO-d;, 400
MHz) J (ppm): 9.76 (s, 1H, OH), 7.15-6.90 (m, 9H, ArH), 2.47-1.70 (m, 13H,
CH;+5xCHb,), 0.98 (s, 6H, 2xCH3); >C NMR (DMSO-ds, 75 MHz) 6 (ppm): 192.36,
143.35, 137.63, 135.27, 133.55, 132.12, 130.10, 129.61, 129.53, 128.07, 127.95,
127.89, 126.92, 118.40, 112.67, 110.82, 52.88, 36.98, 36.95, 35.16, 28.67, 21.04,
20.91, 19.01; HRMS calcd forCyoHsNO; [M-H]': 438.2069, found: 438.2073.
Compound 4{5,/,3}: White powder; IR (KBr, v, cm'l): 3432, 3089, 3028, 2955, 2892,
1049, 1620, 1578, 1448, 1417, 1383, 1363, 1244, 1116, 1091, 1069, 1050, 1014, 923,
888, 843, 760, 724, 649; "H NMR (DMSO-ds, 400 MHz) ¢ (ppm): 10.04 (s, 1H, OH),
7.04-6.93 (m, 14H, ArH), 3.35-3.10 (m, 1H, CH), 2.61-2.19 (m, 8H, 4xCH,), 0.99 (s,
6H, 2xCHs); *C NMR (DMSO-ds, 75 MHz) d (ppm): 192.57, 192.44, 144.09, 143.95,
143.47, 143.42, 136.71, 133.81, 133.56, 132.83, 131.86, 131.74, 130.00, 129.70,
129.65, 129.02, 128.96, 128.22, 128.19, 127.33, 127.15, 118.59, 112.84, 112.79,
110.51, 110.42, 52.90, 52.84, 38.87, 38.53, 36.86, 35.22; 31.14, 28.67; HRMS calcd
forC34H30CINO; [M]": 535.1914, found: 535.1907.

Compound 4{6,/,7}: White powder; IR (KBr, v, cm'l): 3427, 3031, 2955, 2932, 2869,
2590, 1665, 1576, 1515, 1487, 1410, 1313, 1208, 1116, 1045, 1018, 924, 840, 802,
771, 721, 699, 665, 649; 'TH NMR (DMSO-ds, 400 MHz) 6 (ppm): 11.36 (s, 1H, OH),
7.15-6.95 (m, 9H, ArH), 2.47-1.93 (m, 11H, CH3+4xCH,), 0.97 (s, 6H, 2xCHj3); "°C
NMR (DMSO-ds, 75 MHz) 6 (ppm): 192.42, 143.61, 137.88, 135.07, 134.15, 133.95,
132.03, 131.87, 130.21, 129.73, 128.08, 127.92, 127.18, 118.32, 112.52, 110.16,
52.88,36.95, 36.87, 35.12, 28.66, 28.58, 21.06; HRMS  calcd forCosHysNO; [M-H] "
424.1913, found: 424.1940.

Compound 4{7,1,1}: Grey powder; IR (KBr, v, cm'l): 3427, 3001, 2958, 2869, 1755,
1663, 1578, 1515, 1490, 1423, 1281, 1117, 1045, 1014, 924, 831, 768, 728, 698, 649;
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'H NMR (DMSO-ds, 400 MHz) & (ppm): 11.82 (s, 1H, OH), 7.14-7.03 (m, 9H, ArH),
4.57-4.00 (m, 2H, CH,), 2.49-2.23 (m, 7H, CH3+2xCH,), 0.98 (s, 6H, 2xCH3); °C
NMR (DMSO-ds, 75 MHz) 6 (ppm): 192.58, 174.58, 173.84, 143.84, 138.07, 134.88,
134.81, 131.43, 130.25, 129.89, 128.25, 127.92, 127.52, 118.34, 107.80, 95.79, 67.08,
52.73, 36.86, 35.17, 28.63, 28.41, 21.05; HRMS calcd forCy;H,NO, [M-H]™:
426.1705, found: 426.1714.

Compound 4{8,/,7}: Yellow powder; IR (KBr, v, cm'l): 3433, 3001, 2955, 2869,
1751, 1651, 1516, 1490, 1465, 1445, 1417, 1367, 1321, 1246, 1206, 1154, 1114, 1040,
1014, 924, 886, 843, 778, 764, 746, 701, 649; '"H NMR (DMSO-ds, 400 MHz) §
(ppm): 7.88 (s, 4H, ArH), 7.20-7.15 (m, 7H, ArH), 7.07 (d, J = 7.6 Hz, 2H, ArH), 4.45
(s, 1H, CH), 2.47 (s, 2H, CH,), 2.25 (s, 3H, CH3), 2.05 (s, 2H, CH,), 0.90 (s, 6H,
2xCH3); C NMR (DMSO-ds, 75 MHz) & (ppm): 198.95, 193.07, 144.01, 142.27,
138.21, 137.54, 135.54, 134.56, 130.50, 130.27, 129.98, 128.83, 128.26, 127.87,
122.98, 116.47, 110.78, 53.86, 51.35, 36.46, 35.53, 28.47, 21.04; HRMS calcd
forC3,HaNOs [M-H]": 472.1913, found: 472.1923.
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