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Abstract: A short synthesis of 2-(2-quinoxalino)-3,5-diarylfurans, allowing the 
stepwise introduction of the aromatic rings, is designed and implemented utilizing the 
DDQ promoted cyclization of 4-(2-quinoxalino)-l,3-diarylbutanones as the key 
transformation. © 1998 Elsevier Science Ltd. All rights reserved. 
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The furan ring system is found in many natural products and pharmaceutical agents either unsaturated or in a 

partly or fully reduced state. Many simple furan derivatives may be prepared from commercially available 

furans such as furfural (furan-2-carboxaldehyde) however for more complex substitution patterns acyclic 

precursors are usually involved. 1 Classical furan syntheses include the acid-catalyzed cyclization of 1,4- 

dicarbonyl compounds (the Paal-Knorr synthesis 2) or the cyclo-condensation of an ct-haloketone with a 1,3- 

dicarbonyl compound (the Feist-Benary synthesis. 3) Other methods include oxidative cyclization of cis-l ,4- 

butenediols 4 or 1,3-dipolar-cycloadditon reactions of carbonyl ylides. 5 While these methods have many 

successful examples they mostly suffer from the harsh conditions involved and the lack of appropriately 

functionalized, commercially available precursors. In this letter we disclose the synthesis of triaryl-substituted 

furans by the oxidative cyclization of triarylbutanones under mild conditions. Of most importance is the ability 

to install all three aryl rings of the triarylbutanone precursors independently in a step-wise fashion resulting in 

increased ease of diversity introduction. This approach lends itself well to the rapid, parallel production of 

arrays of diversely-substituted furans. 

The strategy for the present synthesis is outlined in Scheme 1. It was anticipated that an appropriate ~t- 

methyl nitrogen heterocycle 1 would condense with an aryl aldehyde and the resulting styrene derivative 2 

would act as a Michael acceptor for arylmethylketones affording the triarylbutanones 3. It was then hoped that 

the triarylbutanones would cyclize under oxidative conditions to afford the triarylfuran targets 4. Initially, 3- 

methylquinoxaline-2-ones were chosen as representative s-methyl nitrogen heterocycles since their 
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condensation with aryl aldehydes has been studied. 6 3-Methyl-6,7-dichloroquinoxalin-2-one 6 was prepared 

(Scheme 2) from the requisite phenylenediamine 5 in 96% yield and its condensation with benzaldehyde 

examined. Under standard conditions (piperidine, acetic acid, toluene, reflux, removal of water) only starting 

material was recovered most likely due to the low solubility of 6 in non-polar solvents. However, by using 

dimethylformamide (DMF) as solvent and Nail as base, the desired condensation product 7 could be obtained in 

49% yield and could be carried out on a large scale (>10 g). Base-catalyzed addition of acetophenone and 4- 

acetylpyridine then provides ketones 8a (55%) and 8b (83%) respectively. Treatment of 8a with two equivalents 

of DDQ in refluxing 1,2-dichloroethane resulted in complete conversion to a new compound (33% isolated yield 

after chromatography). Mass spectral and combustion analysis suggested the formula C24H14CI2N202 for the 
product and that a double oxidation had occurred which is consistent with the need for two equivalents of DDQ. 

This information in conjunction with nmr data infers that the desired furan 9a had been produced. Similarly 

triarylbutanone 8b afforded furan 9b in 26% isolated yield. 7 It is important to note that the lactam functionality 

of the quinoxaline ring gives rise to another position for the potential introduction of diversity. 8 
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Scheme 2: i. ethyl pyruvate, MeOH, r.t.; ii. PhCHO, NaI-I, DMF ,r.t.; iii. ArC(O)CH3, Nal-I, DMF, r.t.; iv. DDQ, 1,2-DCE, reflux 

In a similar fashion 1,3-dimethylquinoxalin-2-one 11 was prepared (Scheme 3) by the condensation of N- 

methyl-l,2-pbenylenediamine 10 with ethyl pyruvate and was further condensed with benzaldehyde to give the 

styrylquinoxaline 12. Michael addition of various arylmethylketones was catalyzed by sodium hydride to afford 

the desired triarylbutanones 13 in good yield in all but one example. 9 Treatment of triarylbutanones 13a-e with 

2.5 equivalents DDQ indeed resulted in conversion to the furans 14; [14a (26%10),14b (40%), 14e (5%)]. 
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Scheme 3: i. ethyl pyruvate, MeOH, r.t.; ii. PhCHO, piperidine, AcOH, toluene, reflux; iii. R-(C6H,)C(O)CH v Nail, THF, r.t.; iv. 
DDQ, benzene, reflux. 

At this point our assignment of the oxidized products as triarylfurans was confirmed by X-ray analysis of a 

single crystal of 14a (Figure 1) which clearly showed the triarylfuran compound with each of the aryl rings 

rotated out of the plane of the furan ring. l! The p-bromophenyl ring adopts the more coplanar orientation. 

Relevant torsion angles are: O1-C2-C6-C7, 40.1(7)°; O1-C5-C21-C22, 6.6(10)°; and C2-C3-C15-C16, 39.6(9) °. 
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Figure 1: ORTEP representation of furan 14a. Anisotropic displacement ellipsoids for non-hydrogen atoms are shown at the 50% 
probability level. Hydrogen atoms are displayed with an arbitrarily small radius. 

In summary, a novel, short synthesis of triarylfurans under mild conditions has been developed. An 

important feature of this synthesis is the ability to install all three aryl rings independently in a step-wise fashion 

resulting in increased ease of diversity introduction. Application of this methodology towards the parallel 

synthesis of an array of triarylfurans, the substitution of alternative aromatic and heteroaromatic rings for 

quinoxaline and investigations into the mechanism of the cyclization reported in this letter are underway and 

will be reported in due course. 
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