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Total Synthesis of Schilancitrilactones B and C**
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Abstract: The first total syntheses of schilancitrilactones B and
C have been accomplished in 17 steps (longest linear sequence)
from commercially available materials. Key steps include an
intramolecular radical cyclization to provide the seven-mem-
bered ring, late-stage iodination, and an intermolecular radical
addition reaction to complete the total synthesis.

Schilancitrilactones B and C (1 and 2 ; Figure 1)[1] were
isolated in 2012 by Sun and co-workers from the stems of
Schisandra Lancifolia, which have been used in traditional
Chinese medicine for the treatment of neurasthenia and
related diseases.[2] Preliminary biological assays indicated that

schilancitrilactone C showed biological activities for inhibit-
ing HIV-1 while schilancitrilactone B was not bioactive. The
structures of these compounds were striking in that they
contain a 5/7/5/5/5-fused pentacyclic ring system bearing nine
stereogenic centers. In addition, the three cis-fused five-
membered rings (rings C–E), all with the envelope confor-
mations, and seven contiguous chiral centers (including two
quaternary centers) form a structurally rigid tricyclic ring
system. Construction of these highly oxygenated unique
motifs remains challenging. Herein, we present the first
total synthesis of schilancitrilactones B and C. The key steps
include the successful implementation of an intramolecular
radical cyclization to prepare a seven-member ring, late-stage
iodination, and an intermolecular radical C�C bond forma-
tion.

Recently, the total synthesis of Schisandraceae triterpe-
noids has been of great interest to synthetic organic chemists
because of the intriguing structures and diverse biological
activities.[3] In 2011, Yang and co-workers reported the first
total synthesis of schindilactone A.[4] Recently, the group of Li
disclosed the first asymmetric total synthesis of rubriflordi-
lactone A.[5] Herein we report our efforts on developing a new
strategy to solve the chemical synthesis of 1 and 2, and
a pathway for the synthesis of their analogues and derivatives
for medicinal studies. Our retrosynthetic analysis is shown in
Scheme 1. It was hypothesized that 1 and 2 might be

accessible by an intermolecular radical addition reaction
between the alkyl iodide 3 and vinyl stannane 4. The alkyl
iodide 3 was expected to arise by late-stage iodination at C20
from the compound 5, which in turn could be prepared from
the compound 6 by a series of steps including an intra-
molecular radical cyclization at the C7�C8 bond to prepare
the seven-membered ring.[6] The compound 6 was further
deconstructed at the C10�C19 bond into the two simple
building blocks 7 and 8, which could be put together by an
aldol reaction. The building blocks 4, 7, and 8 could be
prepared from the commercially available compounds citra-
conic anhydride (16), l-carvone (9), and 1,3-cyclohexadiene
(19), respectively.

Our work began with the synthesis of the alkyl iodide 7
(Scheme 2). Following the procedure by Fukuyama and co-
workers,[7]

l-carvone (9) was converted into the correspond-

Figure 1. Schilancitrilactones B and C.

Scheme 1. Retrosynthetic analysis of schilancitrilactones B and C.
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ing aldehyde 13 in a four-step sequence involving epoxidation,
epoxide hydrolysis, oxidative cleavage of diols, and iodolac-
tonization in 51% overall yield (4 steps). The aldehyde 13 was
selectively reduced with NaBH4 to provide the alcohol 14 in
85% yield. The deiodination of 14 with AIBN and Bu3SnH
afforded the compound 15, which was converted into the
corresponding 7 with I2 in the presence of Ph3P and imidazole
in 84% yield.[8]

Depicted in Scheme 3 is the construction of the vinyl
stannane compound 4. The vinyl bromide 18 was prepared

from the commercially available compound citraconic anhy-
dride (16) in a reported four-step process in a 41% overall
yield.[9] Stannylation of 18 was achieved and afforded 4 with
[{Pd(allyl)Cl}2] and (Bu3Sn)2 in 49% yield.[10] It is noteworthy
that 4 is not stable during purification, thus resulting in a low
yield.

We then moved on to construct the aldehyde compound 8
(Scheme 4). By using the reaction conditions developed by

Trost and co-workers,[11] the lactone 23 was obtained in
a reported three-step process from the commercially available
1,3-cyclohexadiene (19). The steps included asymmetric
palladium-catalyzed allylic alkylation. Methylation of 23
with NaH and CH3I provided the compound 24 in 90%
yield with 4:1 diastereoselectivity at C13, and was then
subjected to decarboxylation mediated by NaBr to produce
a 1:1 mixture of the lactone 25 in 88% yield. Alkylation of 25
with tert-butyl bromoacetate gave the single diastereomer 26.
Deprotection of 26 was achieved using trifluoroacetic acid
and gave the acid 27 in 93% yield (two steps). Addition of
ethyl magnesium bromide followed by acidic workup gave
rise to the tricycle 28, having an ethyl group installed
stereoselectively onto the tricyclic framework.[12] The abso-
lute configuration of 28 was determined by X-ray crystallo-
graphic analysis. The cyclohexene ring in 28 was oxidatively
cleaved by ozonolysis and the resulting dialdehyde 29 was
directly subjected to intramolecular aldol condensation, thus
yielding the ring-closed unsaturated aldehyde 8 (80 % yield
for two steps).[13]

Scheme 2. Reagents and conditions: a) 30% H2O2, NaOH (aq),
MeOH, 0 8C; b) H2SO4, THF/H2O (5:1), reflux; c) NaIO4, iPrOH/H2O
(1:1), 0 8C to RT; d) I2, KI, NaHCO3, CH2Cl2/H2O (1:3), 0 8C, 51% for 4
steps; e) NaBH4, MeOH, 0 8C, 85%; f) AIBN, Bu3SnH, toluene, 100 8C,
90%; g) PPh3, I2, imidazole, 0 8C to RT, THF, 84%. AIBN =
2,2’-azobis(2-methylpropionitrile), THF = tetrahydrofuran.

Scheme 3. Reagents and conditions: a) PPh3CHCO2tBu, toluene, RT,
54%; b) TFA, CH2Cl2, 0 8C; c) Br2, TFA, CDCl3/CCl4 (1:1), RT; (d) Et3N,
DMF, 0 8C to RT, 76% for 3 steps; (e) [{Pd(allyl)Cl}2] (5 mol%),
(Bu3Sn)2, LiCl, 1,4-dioxane, RT, 49%. DMF=N,N-dimethylformamide,
TFA = trifluoromethanesulfonyl.

Scheme 4. Reagents and conditions: a) TPP, O2, hu, CCl4, �10 8C then
thiourea, MeOH; b) BzCl, Et3N, DMAP, CH2Cl2, RT, 73 % for 2 steps;
c) [{Pd(allyl)Cl}2] (3 mol%), ligand A, 22, K2CO3, MeOH, THF, 0 8C;
then DIPEA, 55 8C; 70%; d) NaH, CH3I, DMF, 0 8C, 90%, d.r. (at
C13)= 4:1; e) NaBr, DMF, 180 8C, 88%, d.r. (at C13)= 1:1; f) LDA,
BrCH2CO2tBu, THF, �78 8C; g) TFA, CH2Cl2, 0 8C to RT, 93% for 2
steps; h) EtMgBr, THF/Et2O (1:1), �78 8C to RT, 80%; i) O3, CH2Cl2/
MeOH (1:1), �78 8C, then Me2S, �78 8C to RT; j) (Bn2NH2)(OCOCF3),
toluene, 63 8C, 80% for 2 steps. Bz = benzoyl, DIPEA= diisopropyl-
ethylamine, DMAP= 4-(N,N-dimethylamino)pyridine, LDA = lithium-
diisopropyl amide, TPP = 5,10,15,20-tetraphenyl-21H,23H-porphine.
Thermal ellipsoids are shown at 50 % probability.[21]
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With the key intermediates 4, 7, and 8 in hand, we finished
the total synthesis of schilancitrilactones B and C as shown in
Scheme 5. The iodo compound 7 was converted into the
lithium enolate with LDA at �78 8C and then reacted with 8
to give the aldol adduct 30 in 86% yield (d.r. = 17:1 at C19).
Dehydration of 30 with 2 equivalents of EDC and a catalytic
amount of CuCl2 provided a 2:1 mixture of the inseparable
diene lactone 6 in 83 % yield.[14] The structure of the E isomer
was confirmed by X-ray crystallographic analysis. Then we
investigated the intramolecular radical cyclization to form the
seven-membered ring. Initially, the conventional radical
conditions (AIBN, Bu3SnH) led to rapid decomposition of 6
and trace amounts of cyclization product was observed.
Photoredox catalysis[15] was also evaluated and no desired
product was found. By using the method (CuI, Zn under
ultrasound) for conjugate additions in aqueous media dis-
covered by Luche et al.,[16] we were pleased to observe the
cyclization product 31 in 55 % yield, together with the isomer
31’ in 4% yield. The structure of 31’ was confirmed by X-ray
crystallographic analysis. We reasoned that the conformation
of 6 was suited for cyclization to give the seven-membered
ring over the five-membered ring.[17] Epoxidation of 31 with
mCPBA provided the epoxide 32 in 51% yield, and under-
went ring opening with NaOMe/NiCl2·6 H2O/NaBH4 to give
the alcohol 5 in 73%.[18] During this transformation, the
epoxide 32 was converted into the intermediate 33 with
NaOMe and then further reduced to give the desired product
5 with NiCl2·6 H2O and NaBH4. Finally, we investigated the
late-stage iodination and intermolecular radical addition
reaction. It was found that treatment of 5 with ICl delivered

the iodo compound 3 as a mixture of diastereomers (d.r. =

1.5:1 at C20) in 63 % yield,[18] and when 3 was heated with the
vinyl stannane 4, AIBN, and Bu3SnH provided the schilanci-
trilactones B (1, 9%) and C (2, 36 %) in 45 % total yield.
Around 25 % yield of other isomers were observed based on
the1H NMR analysis of the crude reaction mixture.[20] The
characterization data obtained for synthetic 1 and 2 were in
accord with the reported data for the natural products.

In summary, the first total synthesis of schilancitrilacto-
nes B and C has been accomplished by employing an intra-
molecular radical cyclization, late-stage iodination, and
intermolecular radical addition as key steps in the 17 step
synthesis (longest linear sequence) from commercially avail-
able materials. This strategy opens a pathway for the
syntheses of other compounds related to schilancitrilacto-
nes B and C, as well as their derivatives and analogues.

Keywords: cyclizations · natural products · radical chemistry ·
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In step : The first total syntheses of
schilancitrilactones B and C have been
accomplished by using an intramolecular
radical cyclization to provide the seven-
membered ring, late-stage iodination,
and an intermolecular radical addition
reaction as key steps. The approach
provides a sequence for the syntheses of
compounds related to the schilancitrilac-
tones, as well as their derivatives and
analogues.
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