SIMPLE METHOD FOR THE CONVERSION OF TERMINAL OLEFINS TO CARBOXYLIC ACIDS WITH THE SAME CARBON SKELETON

Nguen Kong Hao, M. V. Mavrov, and É. P. Serebryakov UDC 542.91:547.29:542.943:547.313

The oxidation of terminal olefins to give carboxylic acids usually proceeds either with cleavage of a double bond and the formation of noracids or with formation of α -hydroxy-acids with the initial carbon skeleton [1]. We propose a new simple method for the conversion of terminal olefins to carboxylic acids with an unchanged carbon skeleton based on the hydroborylation of alkenes and oxidation of the trialkylboranes formed by the action of CrO₃ or KMnO₄. The conversion is carried out in a single operation.

The oxidation of organoboranes to aldehydes and ketones by Cr(VI) and Mn(VII) compounds has been reported by Mikhailov [2] and Brown [3], but information on the direct conversion of organoboranes to acids is not available.

Typical Procedure for the Conversion of $RCH=CH_2$ to RCH_2CO_2H . A sample of 0.01 mole terminal olefin is converted to a trialkylborane by the action of a solution of B_2H_6 prepared from BF₃ etherate and NaBH₄ in THF at 0-10°C for 1 h and then a solution of 0.012-0.015 mole H₂CrO₄ was added to the reaction mixture over 5 h or 0.025-0.035 mole aqueous KMnO₄ with added H₂SO₄ or KOH was added to the reaction mixture at about 20°C over 8 h. RCH₂CO₂H was isolated from the acid fraction, while RCOCH₃ and other neutral products were isolated from the neutral fraction. The total yield of these products did not exceed 5-10%. The acid yields are given in Table 1.

TABLE 1

Olefin	Oxidizing agent	Acid	Yield, %
1-Dec e ne	$KMnO_4/H_2SO_4$	Decanoic	69
Styrene	KMn04/KOH	Phenylacetic	70
Ethyl ester of 10- undecenoic acid	H2CrO4	Monoethyl ester of un- decanedioic acid	71
β-pinene	H2CrO4	cis-Myrtanic acid	72

LITERATURE CITED

- 1. W. S. Trahanovsky, Oxidation in Organic Chemistry, Part D, Academic Press, New York (1982).
- 2. B. M. Mikhailov and Yu. N. Bubnov, Organoboron Compounds in Organic Synthesis, Amsterdam (1984), pp. 221-253.
- 3. H. C. Brown, S. U. Kulkarni, and C. G. Rao, Synthesis, 151 (1980).

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 251-252, January, 1986. Original article submitted September 3, 1985.