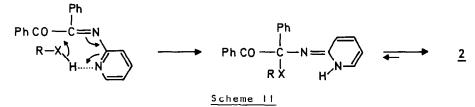
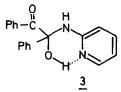

UNCATALYZED ADDITION OF ALCOHOLS AND AMINES TO THE C=N BOND OF THE MONOIMINE FROM BENZIL AND 2-AMINOPYRIDINE

Benito Alcaide, Rafael Pérez-Ossorio^{*}, Joaquin Plumet and Miguel A. Sierra

Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria, Madrid-3, Spain

<u>Summary</u>: The monoimine easily formed by direct condensation between benzil and 2-aminopyridine adds alcohols and amines to the imine bond without catalysis. A concerted mechanism is proposed.


Although base-catalyzed additions of alcohols to the imine C=N bond have been studied in some detail,¹ very few examples have been reported of the related uncatalyzed addition.² We have found that the monoimine obtained by direct condensation between benzil and 2-aminopyridine,³ <u>1</u>, undergoes uncatalyzed addition of alcohols and amines. Quantitative yields of addition products, <u>2</u>, were obtained (Scheme I; table). Electronic withdrawing by the pyridine ring is not the main


Scheme I

reason for the addition since, in the same reaction conditions, the monoimine obtained from benzil and p-nitroaniline gave no reaction.

We propose the reaction course shown in Scheme II which involves a three electron pairs concerted displacement, favoured by the molecular association of the alcohol or amine to the pyridine nitrogen atom.

The easy reaction between benzil and 2-aminopyridine is noteworthy, as compared with its 3- and 4-homologues which failed to react even in stronger conditions. It is considered that stabilization of the intermediate carbinolamine,

 $\underline{3}$, through intramolecular hydrogen bonding would favour the addition process;⁴ this, of course, is not possible for the 3- and 4-aminopyridines.

Spectral data of addition compound $\underline{2d}$ (see table) show a similar association.⁵

Ado	lition	Compounds of	Alcohols a	nd Amines to t	he Monoimine of Benzil	and 2-Amin	opyridine
Ph-CO-CPh-NH-O							
<u>Comp</u> .	<u>_X</u>	<u>R</u>		i.r. ^a	¹ H n.m.r. ^b	Analys _Calc	Found
<u>2a</u>	0	снз	130-132°	^v c=0 ¹⁷²⁰ ^v N-H ³³⁷⁰	3.56 (s, 3H) 5.8-7.6 (m, 14H) 7.8 (d, 1H) J=4 Hz	C, 75.47 H, 5.66 N, 8.81	75.19 5.81 8.95
<u>2b</u>	0	^{CH} 3 ^{CH} 2	68-70°	ν _{C=0} 1725 ν _{N-H} 3370	1.0 (t, 3H) J=7.7 Hz 4.2 (q, 2H) J=7.7 Hz 5.9-7.7 (m, 14H) 8.0 (d, 1H) J=4 Hz	C, 75.90 H, 6.02 N, 8.43	75.76 6.17 8.51
<u>2c</u> ^C	0	с ₆ н ₅ сн ₂	110-111°	ν _{C=0} 1750 ν _{N-H} 3439	5.13 (s, 2H) 5.9-7.7 (m, 19H) 8.0 (d, 1H) J=4 Hz	C, 79.39 H, 5.34 N, 7.12	79.61 5.24 7.15
<u>2d</u> d	NH	^C 6 ^H 5 ^{CH} 2	180°	v _{C=0} 1670 v _{N-H} 3260 (broad) 3420 (sharp)	4.4 (d, 2H) J=4 Hz 6.4-7.7 (m, 19H) 7.9 (d, 1H) J=3 Hz 8.4 (t, 1H) J=4 Hz	C, 79.39 H, 5.85 N, 10.89	79.19 5.83 10.70
				(sharp)			

Table

a) KBr crystals. b)60 MHz; in CDCl₃ solution. c) Yield: 85%. d) ¹H n.m.r. at 90 MHz in DMSO-d⁶ solution; see ref. 5.

Acknowledgements.- A research scholarship granted to one of us (M.A.S.) by the "Instituto de Asístencia y Promoción del Estudiante" (INAPE) is acknowledged. Thanks are given to Dr. M. C. Pardo for valuable suggestions.

References and Notes

- 1. Y. Ogata and A. Kawasaki, J. Org. Chem., 39, 1058, (1974).
- S. Miyano and N. Abe, <u>Tetrahedron Letters</u>, 1909, (1970); W. R. Mc Kay, and G. R. Proctor, J. Chem. Soc. Perkin Trans 1, 2443, (1981).
- 3. In boiling xylene. Reaction time: 7.5 hrs. Catalyst: $ZnCl_2 \cdot 1$ -phenylethylamine complex. Equimolar amounts of benzil and 2-aminopyridine (42.6 mmol of each in 70 ml. of solvent). Yield: 85% of pure product. Yellow crystals from n-hexane/AcOEt 1:2, m.p. 115-116°. i.r. (KBr): v(C=0), 1758 cm⁻¹, v(C=N), 1649 cm⁻¹. ¹³C n.m.r.: $\delta(C=0)$, 180.02, $\delta(C=N)$, 155.54. Analysis: Calc. for $C_{19}H_{14}N_2O$: C, 79.72; H, 4.80; N, 9.79. Found: C, 79.97; Ph Ph N-H
- 4. For the mechanism of Schiff bases formation see, for example, S. Patai: PhCH2 "The Chemistry of the C=N Group", Interscience, 1970.
- 5. ¹H n.m.r. data for 2d show a significant coupling through nitrogen. Signals at 7.9 and 8.4 are not interchanged with D₂O. This is an indication of the presence of a strongly associated structure as shown in Figure.