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Dipole-Stabilized Carbanions: Secondary 
(a-Lithioalky1)alkylamine Synthetic Equivalents 
from N,N-Dialkyl-2,2-diethylbutyramides 

Summary: Lithiation of N,N-dialkyl-2,2-diethylbutyr- 
amides adjacent to nitrogen followed by addition to an 
aldehyde or ketone, an acid-driven nitrogen to oxygen 
rearrangement, and basic hydrolysis provides secondary 
(a-1ithioalkyl)alkylamine synthetic equivalents. 

Sir: The development of procedures for efficiently 
achieving electrophilic substitution a to the nitrogen of 
amines has been stimulated by observations which estab- 
lish that direct lithiation can be achieved by removal of 
a proton from a carbon adjacent to nitrogen if the nitrogen 
bears a strongly electron-withdrawing group.'I2 The for- 
mally dipole-stabilized organolithium reagent thus pro- 
duced can be a useful intermediate in a sequence which 
provides the a-lithio amine synthetic equivalent. Such 
methodology, which offers a new strategy for the elabo- 
ration of amines, is of considerable current interest. 

Although the requisite acidity of amides and the direct 
preparation of stable sterically hindered a-azalithio amide 
derivatives have been reported, the synthetic use of these 
species generally has been restricted to methyl, allyl, and 
benzyl amides.*5 However, in a recent paper Meyers and 
Ten Hoeve reported that lithiation can be achieved not 
only at the methyl of a number of N-methyl-N-alkylform- 
amidines but also a to the nitrogen of a pyrrolidine form- 
amidine. These authors also noted that analogous sec- 
ondary positions of other formamidines can be metalated.6 

We report that the N,N-dialkyl-2,2-diethylbutyramides 
provide secondary (dithioalky1)alkylamine synthetic 
equivalents which add readily to aldehydes and ketones 
to give alcohol amides. These products undergo an acid- 
driven rearrangement to amino esters and subsequent basic 
hydrolysis to amino alcohols to provide a sequence for 
electrophilic a-hydroxyalkylation of amines as outlined in 
Scheme I. 

The lithiations and electrophilic substitutions of N,N- 
dimethyl-2,2-diethylbutyramide (I), N,N-diethyl-B,B-di- 
ethylbutyramide (2), pyrrolidinyl-2,2-diethylbutyramide 
(3), and piperidyL2,Zdiethylbutyramide (4) are summa- 
rized in Table I. Lithiation and trapping with carbonyl 
electrophiles can be conveniently achieved at 0 "C in ether. 
An important feature of this sequence is the acid-driven 
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Table I. Lithiation and Electrophilic Substitution of 
N, N-Dialkyl-2,2-diethylbutyramides 1-4 

Adjacent to Nitrogen 
amide electroph ile producta (% yield) 

1 ,  R -  H CH,OD R'CONCH,CH,D (90, > 95% 
d . ) b  

1 (c,H,),co R;~ONCH,CH,COH(C,H,), (91) 
2, R =  C,H,CHO 5; R = CH,, R,, R, = C,H,, H 

CH, (48) '  
3, R,R-  CH,OD R"CONCHD(CH,)~ ( 9 4 , 9 2 %  

(CH, L d . ) d  
~ *,. 

3 C,H,CHO 5; R;R = (CH,),, R , ,  R, = C,H,, 
H (72) 

3 n-C,H,,CHO 5; R , R =  (CH,),, R,,  R, = n- 
C6H139 (85) 

3 (CD,),CO 5; R,R = (CH,),, R , ,  R, = ( C D 3 ) 2  

( 69 le  
3 (CH,),CO 5; R,R = (CH,),, R , ,  R, = ( C H 3 ) 2  

( 3 7 Y  
3 (C6H5)zC0 R'CONCHCH((C,H,),OH)(CH,), 

13.5) 
4, R ,R-  CH,OD R'CO)CHD(CH,), (89, 86% 

(CH, L d 4 )  . -." 
4 C,H,CHO 5; R;R = (CH,),, R , ,  R, = C,H,, 

H (72)  
4 ~-C,H, ,CHO 5 ;  R;R-~ (cH,),, R,, R, = n- 

C,H,,, €3 (67)  
4 (CD,),CO 5; R,R = (CH,),, R,, R, = (CD,), 

(64 )e  
" Yields are for analytically pure material; all new com- 

pounds were characterized by analytical and spectral data. 
b Percent deuteration based o n  'H NMR analysis. Lith- 
iation a t  -78 "C with 4 equiv of s-BuLi. 
teration based on  mass spectral analysis. e Acid-pro- 
moted rearrangement for 11 h. 

N to 0 migration of the acyl group in hot methanol-hy- 
drochloric acid which aids in isolation and purification of 
the substituted amino ester and allows basic hydrolysis to 
the substituted amine? The lower yields for the reactions 

Percent deu- 
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of lithiated amides from 3 and 4 with acetone as compared 
to deuterioacetone probably reflect the operation of a 
deuterium isotope effect on enolization which is compe- 
titive with the addition. An example of the use of this 
approach to provide a-hydroxyalkylation of an amine is 
outlined for pyrrolidine in Scheme 11. A similar sequence 
with piperidine proceeds in yields of 77%, 72%, and 53% 
for the steps shown. The 2,2-diethylbutyric acid is also 
recovered in high yield from the hydrolysis and is thereby 
available to be recycled in the sequence. A typical ex- 
perimental procedure is given at  the end of this commu- 
nication. 

The use of n-butyllithium instead of sec-butyllithium 
results in yield which are ca. 20% less than those listed 
in Table I. Attempted alkylations of a-lithioalkyl amides 
were not successful and were not pursued because cleavage 
of the producb was anticipated to be difficult; hydrolysis 
of 3 required heating in 50% sulfuric acid at  130 OC for 
30 h. 

Steric hindrance of the carbonyl group in the 2,2-di- 
ethylbutanamides provides protection of the carbonyl 
during lithiation but sufficient access for rearrangement 
and subsequent hydrolytic cleavage. Exceptional steric 
hindrance by the triethylcarbinyl group is precedented in 
Brown’s studies of F strain and Newman’s “rule of six“ and 
has been recently discussed q~antitatively.~-~ Develop- 
ment of the synthetic potential and understanding of the 
underlying structure stability relationships of these novel 
and useful a-heteroatom dipole-stabilized carbanions is a 
matter of continuing interest.’O 

The procedure was as follows. To a diethyl ether solu- 
tion (30 mL) containing 0.45 mL (3 mmol) of tetra- 
methylethylenediamine (TMEDA) and 2.3 mL (2.8 “01) 
of s-BuLi (1.20 M in cyclohexane) was added 494 mg (2.51 
mmol) of 3 in 5 mL EbO at -78 “C. The reaction mixture 
was stirred at  0 OC for 45 min, followed by the addition 
of 0.3 mL (3 mmol) of benzaldehyde at  -78 OC. After the 
solution was allowed to warm to room temperature, 40 mL 
of EbO was added; the ethereal solution was washed with 
10% HC1 solution and saturated NaCl solution and dried 
(MgS04). Removal of solvent gave an oily product which 
was treated with 30 mL of 21 methanol-hydrochloric acid 
(concentrated) at  reflux for 17 h. The cooled solution was 
extracted three times with CHZC12; the combined organic 
layer washed once with saturated NaCl solution and once 
with 10% NaOH solution and dried (MgS04). Removal 
of solvent gave the crude ester from which 547 mg of pure 
ester (72% yield) was isolated by flash chromatography. 
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Total Synthesis of Methoxatin, the Coenzyme of 
Methanol Dehydrogenase and Glucose 
De hydrogenase 

Summary: The first total synthesis of the bacterial co- 
enzyme methoxatin has been successfully completed 
starting from readily available 2,3-dimethoxytoluene. 

Sir: Methylotrophic bacteria are organisms capable of 
utilizing C1 compounds such as methane and methanol as 
their sole source of cellular carbon.’ A promising com- 
merical process has been developed for synthesis of sin- 
gle-cell protein from methanol by such a microorganism.2 
These bacteria each contain a methanol dehydrogenase 
that is capable of oxidizing both primary alcohols and 
f~rmaldehyde.~ Recently these bacterial methanol de- 
hydrogenases have all been found to contain an unusual, 
low molecular weight coenzyme4p5 for which the name 
methoxatin has been suggested.s Methoxatin has been 
assigned the unique pyrroloquinoline quinone structure 
1 on the basis of limited spectral data4* and by an X-ray 
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