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Abstract: Stereocontrolled synthesis of glycohexaoses 3 and 4 which corresponds to the 
linkage region of chondroitin 4-sulfate to a core protein was achieved for the first time by 
employing glycotriosyl donor 5 and glycotriosyl acceptor 6. 

Nonsulfated and monosulfated glycosyl serine 1 and 2 were isolated2 in 1988 as tbe 

glycosaminoglycan linkage region after exhaustive enzymic digestions of Swarm rat 

chondrosarcoma proteoglycans with chondroitinase ABC, papain, and Pronase. As part of our 

on-going project3 on the synthesis of proteoglycan part structures, we now describe a versatile 

approach to 

respectively, 

the synthesis of both nonsulfated 3 and monosulfated glycohexaose 4 which, 

represent the glycan part of 1 and 2. 
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analysis of 3 and 4 led us to design 

acid (GlcA) residues, and a properly 
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a uhique glycotriosyl donor 5 that 

protected glycotriosyl acceptor 64. 

We first describe stereocontrolled synthesis of both 5 and 6. then crucial coupling between 

them, and further conversion of the coupled product into target molecules 3 and 4. 

Glycosylation of ally1 glucopyranoside 85 readily obtainable from 76 in 2 steps (I CSA in 

5:2 MeOH-CH2C12, 2 4MeOPhOH, Ph3P. DEAD7 in CH2CI2, 84% overall) with imidate 98 in the 

presence of TMSOTf-powdered molecular sieves 4A (MMA) in toluene of -78O--40° afforded 62% 

of B-linked9 disaccharide 105 along with 28% of the a-anomers. Oxidative conversion of 10 into 

glycobiosyl acceptor 125 ‘was achieved via 115 in 5 steps (I CAN in 4:l MeCN-H20t0. 2 (COCl)2. 

BD-WA-(1+3)- 
6 

Scheme 1 (MB2 . Cu*nz, Lw I MHxcnscyco) 
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DMSO, iPr2EtN in CH2Cl2 at -7V-lY, 3 NaCIO2, 2-methyl-2-butene, NaH2P04*2H20 in 53 tBuOH- 

H2011, 4 CH2N2.5 NaOMe in 3:2 MeOH-THF, 73% overall). A glucuronic acid donor 15 was 

prepared from I3 via I4 in 5 steps (1 BugSnOAll, SnC4 in (CHgCl)2.2 NaOMe in 1:l MeOH-THF, 3 

MB&l in Py. 4 [Ir(COD)(Ph2MeP)2]PF6. H2 in THF 12, then 12 and H20,5 Cl3CCN. DBU in CH2Cl$3, 

64% overall). BF3*OEt2-molecular sieves-AW300 (MSAWJOO) promoted glycosylation of 12 with 

15 in 1:l tolueneCH2CI2 at -25’ afforded 76% of 16 which was subsequently converted into the 

designed glycotriosyl donor 5 via 17 and 18 in 10 steps (I CSA in 3:2 MeOH-CH2C12,2 AcCl in Py at 

O”, 3 Lev20. DMAP in 2:l Py-(CH2CD2.4 Ph3P in 15O:l PhH-H20. 24 h. 50’ then Ac20. DMAP in Py, 5 

[Ir(COD)(Ph2MeP)2]PF6, H2 in THF. then 12 and H20, 6 Ac20. DMAP in Py, 7 10% W-C. H2 ‘in MeOH. 

8 MB&I, DMAP in Py, 9 piperidine=AcOH in THF 14, 10 CC13CN, DBU in CH2CI2; 30% overall). 

Ph 

7 8 10 

“a w 
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Having prepared a glycotriosyl donor 5 that corresponds to the left part (b-5-4) of the 

target molecules 3 and 4, we now describe. the synthesis of a glycotriosyl acceptor 6 that 

corresponds to the right part (3-2-1) as shown in scheme 3. Xylosyl derivative 20 was readily 

obtained from orthoester 193 in 4 steps (I TMSOTEMS4A in (CH2CD2.2 NaOMe in MeOH, 3 BnBr. 

NaH, DMF, 4 [Ir(COD)(Ph2MeP)2]PF6, H2 in THF. then H2 and 12; 73% ,overall). AgOTf15-MS4A 

promoted glycosylation of 20 with 213 in 3:l tolueneCH2C12 afforded 63% of p(l+4) linked 225 

together with 25% of the a-anomer 5. Conversion of 22 into a glycobiosyl acceptor 23 was 

carried out in 3 steps (I NaOMe in 1:l THF-MeOH. 2 BnBr, NaH in DMF, 3 [Ir(COD)(Ph2MeP)]PF6, H2 

in THF, then H20 and 12; 91% overall). CuBr2-n-BuqNBr-AgOTfl6 promoted glycosylation of 23 

with 243 in’ (CH2Cl)2 gave 97% of 25 which was transformed into a glycotriosyl acceptor 6 in 3 

steps (I deacetylation, 2 benzylation, 3 

of 22 into 23. 

deallylation, 83% overall) as described for the conversion 

Crucial coupling of a glycotriosyl donor 5 (46 pmoi) with a glycotriosyl acceptor 6 (42 

umol) was carried out at -2O“--30“ in the presence of BF3=OEt2(14 umol)-MSAW-300 in 1:2 
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tolueneCH2C12 to give 47% of 26. The a-anomer of 26 was not detected and 20% of the 

hemiacetal. hydrolysis product of 5, was recovered from the reaction mixture. 26 was smoothly 

deblocked in 3 steps to give the nonsulfated target molecule 3 (I LiOH in 2O:l THF H20 2 NaOMe in 

1:l THF-MeOH, 3 10% W-C, H2 in 2:l MeOH-H20; 83% overall). 

Finally, transformation of 26 into sulfated glycohexaose 4 was achieved via 27 in 5 steps 

(I NH2NH2aAcOH in 52 EtOH-THF, 2 Me3N*S03 in DMF at 60”, 3 LiOH in 151 THF-H20.4 NaOMe in 

1:l THF-MeOH. 5 10% W-C. H2 in 2:l MeOH-H20; 17% overall). 

In summary, two glycohexaoses 3 and 4 that correspond to the linkage sequence of a 

chondroitin 4-sulfate to a core protein were synthesixed for the first time by employing a 

glycotriosyl donor 5 and a glycotriosyl acceptor 6 as key intermediates. 
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