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SYNTi{ESIS OF SULFATED GLYCOHEXAOSE OF LINKAGE REGION OF
CHONDROITIN 4.SULFATE: B8.p-GlcA- (12 3){(SO3Na—4)}- R.n.(‘nlNAc (1-54)-8-p-
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Abstract: Stereocontrolled synthesis of glycohcxaoscs 3 and 4 which corresponds to the
linkage region of chondroitin 4-sulfate to a core protein was achieved for the first nme by
employing glycotriosyl donor 5 and glycotriosyl acceptor 6.

Nonsulfated and monosulfated glycosyl serine 1 and 2 were isolatedZ in 1988 as the
glycosaminoglycan linkage region after exbaustive enzymic digestions of Swarm rat
chondrosarcoma proteoglycans with chondroitinase ABC, papain, and Pronase. As part of our
on-going projv.:ct3 on the synthesis of proteoglycan part structures, we now describe a versatile
approach to the synthesis of both nonsulfated 3 and monosulfated glycohexaose 4 which,
respectively, represent the glycan part of 1 and 2.
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A retrogynthetic analysis of 3 and 4 led us to design a uhique glycotriosyl donor § that
carries two glucuronic acid (GIcA) residues, and a properly protected glycotriosyl acceptor 64
We first describe stereocontrolled synthesis of both 5 and 6, then crucial coupling between
them, and further conversion of the coupled product into target molecules 3 and 4.

Glycosylation of allyl glucopyranoside 85 readily obtainable from 76 in 2 steps (I CSA in
5:2 MeOH-CH2Clz, 2 4-MeOPhOH, Ph3P, DEAD? in CH2Cl3, 84% overall) with imidate 98 in the
presence of TMSOTf-powdered molecular sieves 4A (MS4A) in toluene of -78°~-40° afforded 62%
of B-linked? disaccharide 105 along with 28% of the a-anomerS. Oxidative conversion of 10 into
glycobiosyl acceptor 125 was achieved via 115 in 5 steps (/ CAN in 4:1 MeCN-H2019, 2 (COCI),.
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Scheme 1 (MB2 = 4-MeBz, Lev = MeCOCH2CHCO)
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DMSO, iPraEtN in CH2Cl3 at -78°~15°, 3 NaClO3, 2-methyl-2-butene, NaH2PO4+2H20 in 5:3 tBuOH-
H2011, 4 CH2N2, 5 NaOMe in 3:2 MeOH-THF; 73% overall). A glucuronic acid donor 15 was

prepared from 13 via 14 in 5 steps (I Bu3SnOAll, SnCly in (CH2Cl)2, 2 NaOMe in 1:1 McOH-THF, 3
MBzCl in Py, 4 [INCOD)(Ph2McP);1PFg, Ha in THF!2, then I2 and H20, 5 CI3CCN, DBU in CH3Clz13,
64% overall). BF3°OEtz-molecular sicves-AW300 (MSAW300) promoted glycosylation of 12 with
15 in 1:1 toluene-CH2Cls at -25° afforded 76% of 16 which was subsequently converted into the
designed glycotriosyl donor § via 17 and 18 in 10 steps (/ CSA in 3:2 MeOH-CH2Cl3, 2 AcCl in Py at
0° 3 Lev20, DMAP in 2:1 Py-(CH2Cl)2, 4 Ph3P in 150:1 PhH-H20, 24 h, 50° then Acy0, DMAP in Py, 5§
[Ir(COD)(PhaMeP)2]PFg, H2 in THF, then I3 and H20, 6 Ac20, DMAP in Py, 7 10% Pd-C, Hy 'in MecOH,
8 MBzCl, DMAP in Py, 9 piperidineeAcOH in THF}4, 10 CCI3CN, DBU in CHCly; 30% overall).
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Having prepared a glycotriosyl donor § that corresponds to the left part (6-5-4) of the
target molecules 3 and 4, we now describe, the synthesis of a glycotriosyl acceptor 6 that
corresponds to the right part (3-2-1) as shown in scheme 3. Xylosyl derivative 20 was readily
obtained from orthoester 193 in 4 steps (! TMSOT{-MS4A in (CH2Cl)3, 2 NaOMe in MeOH, 3 BnBr,
NaH, DMF, 4 [Ir(COD)(PhoMeP)2)PFg, Hy in THF, then Hj and Ip; 73% overall). AgOTf15-MS4A
promoted glycosylation of 20 with 213 in 3:1 toluene-CH,Cl2 afforded 63% of B(1—54) linked 225
together with 25% of the a-anomerS. Conversion of 22 into a glycobiosyl acceptor 23 was
carried out in 3 steps (/ NaOMe in 1:1 THF-MeOH, 2 BnBr, NaH in DMF, 3 [Ir(COD)(PhaMeP)]PFg, Hy
in THF, then H20 and I3; 91% overall). CuBrz-n-BugNBr-AgOTf16 promoted glycosylation of 23
with 243 in (CH2Cl)2 gave 97% of 2§ which was transformed into a glycotriosyl acceptor 6 in 3
steps (I deacetylation, 2 benzylation, 3 deallylation, 83% overall) as described for the conversion
of 22 into 23.

Crucial coupling of a glycotriosyl donor § (46 umoi) with a glycotriosyl acceptor 6 (42
umol) was carried out at -20°~-30° in the presence of BF3¢OEt2(14 pmol)-MSAW-300 in 1:2
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toluene-CH2Cl13 to give 47% of 26. The a-anomer of 26 was not detected and 20% of the

hemiacetal, hydrolysis product of §, was recovered from the reaction mixture. 26 was smoothly
deblocked in 3 steps to give the nonsulfated target molecule 3 (/ LiOH in 20:1 THF H20 2 NaOMe in
1:1 THF-MeOH, 3 10% Pd-C, H2 in 2:1 MeOH-H20; 83% overall).
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Scheme 3

Finally, transformation of 26 into sulfated glycohcxaose 4 was achieved via 27 in 5 steps
(I NHzNH2+AcOH in 5:2 EtOH-THF, 2 Me3N+S03 in DMF at 60°, 3 LiOH in 15:1 THF-H20, 4 NaOMe in
1:1 THF-MeOH, 5 10% Pd-C, Hz in 2:1 MéOH-H20: 17% overall).

‘In summary, two glycohexaoses 3 and 4 that cormrespond to the linkage sequence of a
chondroitin 4-sulfate to a core protein were synthesized for the first time by employing a
glycotriosyl donor § and a glycotriosyl acceptor 6 as key intermediates.
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