Tetrahedron Letters, Vol. 33, No. 45, pp. 6841-6844, 1992 Printed in Great Britain

SYNTHESIS OF SULFATED GLYCOHEXAOSE OF LINKAGE REGION OF CHONDROITIN 4-SULFATE: β -D-GlcA- $(1\rightarrow 3)$ {(SO₃N_a \rightarrow 4)}- β -D-GalNAc- $(1\rightarrow 4)$ - β -D-GlcA- $(1\rightarrow 3)$ - β -D-Gal- $(1\rightarrow 3)$ - β -D-Gal- $(1\rightarrow 4)$ -D-Xyl¹)

Fumitaka Goto^a, and Tomoya Ogawa*a,b

a) The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-01 Japan b) Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113 Japan

Abstract: Stereocontrolled synthesis of glycohexaoses 3 and 4 which corresponds to the linkage region of chondroitin 4-sulfate to a core protein was achieved for the first time by employing glycotriosyl donor 5 and glycotriosyl acceptor 6.

Nonsulfated and monosulfated glycosyl serine 1 and 2 were isolated² in 1988 as the glycosaminoglycan linkage region after exhaustive enzymic digestions of Swarm rat chondrosarcoma proteoglycans with chondroitinase ABC, papain, and Pronase. As part of our on-going project³ on the synthesis of proteoglycan part structures, we now describe a versatile approach to the synthesis of both nonsulfated 3 and monosulfated glycohexaose 4 which, respectively, represent the glycan part of 1 and 2.

 $\begin{array}{c} \textbf{R} \rightarrow 4) \xrightarrow{} \beta \textbf{-D} - \textbf{GalNAc} - (1 \rightarrow 4) - \beta \textbf{-D} - \textbf{GalcA} - (1 \rightarrow 3) - \beta \textbf{-D} - \textbf{Gal} - (1 \rightarrow 3) - \beta \textbf{-D} - \textbf{Gal} - (1 \rightarrow 4) - \beta \textbf{-D} - \textbf{Xyl} - (1 \rightarrow 3) \textbf{-Ser} \\ \Delta_{4,5} - \beta \textbf{-D} - \textbf{GicA} - (1 \rightarrow 3) \xrightarrow{} 5 & 4 & 3 & 2 & 1 \\ 6 & 1 & \textbf{R} = \textbf{H} \\ & 2 & \textbf{R} = SO_3 \textbf{Na} \end{array}$

A retrosynthetic analysis of 3 and 4 led us to design a unique glycotriosyl donor 5 that carries two glucuronic acid (GlcA) residues, and a properly protected glycotriosyl acceptor 6^4 . We first describe stereocontrolled synthesis of both 5 and 6, then crucial coupling between them, and further conversion of the coupled product into target molecules 3 and 4.

Glycosylation of allyl glucopyranoside 8^5 readily obtainable from 7^6 in 2 steps (1 CSA in 5:2 MeOH-CH₂Cl₂, 2 4-MeOPhOH, Ph₃P, DEAD⁷ in CH₂Cl₂, 84% overall) with imidate 9^8 in the presence of TMSOTf-powdered molecular sieves 4A (MS4A) in toluene of -78° --40° afforded 62% of β -linked⁹ disaccharide 10⁵ along with 28% of the α -anomer⁵. Oxidative conversion of 10 into glycobiosyl acceptor 12⁵ was achieved via 11⁵ in 5 steps (1 CAN in 4:1 MeCN-H₂O¹⁰, 2 (COCl)₂,

Scheme 1 (MBz = 4-MeBz, Lev = MeCOCH2CH2CO)

DMSO, iPr₂EtN in CH₂Cl₂ at -78°~15°, 3 NaClO₂, 2-methyl-2-butene, NaH₂PO₄•2H₂O in 5:3 tBuOH-H₂O¹¹, 4 CH₂N₂, 5 NaOMe in 3:2 MeOH-THF; 73% overall). A glucuronic acid donor 15 was prepared from 13 via 14 in 5 steps (*l* Bu₃SnOAll, SnCl₄ in (CH₂Cl)₂, 2 NaOMe in 1:1 MeOH-THF, 3 MBzCl in Py, 4 [Ir(COD)(Ph₂MeP)₂]PF₆, H₂ in THF¹², then I₂ and H₂O, 5 Cl₃CCN, DBU in CH₂Cl₂¹³, 64% overall). BF₃•OEt₂-molecular sieves-AW300 (MSAW300) promoted glycosylation of 12 with 15 in 1:1 toluene-CH₂Cl₂ at -25° afforded 76% of 16 which was subsequently converted into the designed glycotriosyl donor 5 via 17 and 18 in 10 steps (*l* CSA in 3:2 MeOH-CH₂Cl₂, 2 AcCl in Py at 0°, 3 Lev₂O, DMAP in 2:1 Py-(CH₂Cl)₂, 4 Ph₃P in 150:1 PhH-H₂O, 24 h, 50° then Ac₂O, DMAP in Py, 5 [Ir(COD)(Ph₂MeP)₂]PF₆, H₂ in THF, then I₂ and H₂O, 6 Ac₂O, DMAP in Py, 7 10% Pd-C, H₂ in MeOH, 8 MBzCl, DMAP in Py, 9 piperidine-AcOH in THF¹⁴, *l*O CCl₃CN, DBU in CH₂Cl₂; 30% overall).

Having prepared a glycotriosyl donor 5 that corresponds to the left part (δ -5-4) of the target molecules 3 and 4, we now describe the synthesis of a glycotriosyl acceptor 6 that corresponds to the right part (3-2-1) as shown in scheme 3. Xylosyl derivative 20 was readily obtained from orthoester 19³ in 4 steps (1 TMSOTf-MS4A in (CH₂Cl)₂, 2 NaOMe in MeOH, 3 BnBr, NaH, DMF, 4 [Ir(COD)(Ph₂MeP)₂]PF₆, H₂ in THF, then H₂ and I₂; 73% overall). AgOTf¹⁵-MS4A promoted glycosylation of 20 with 21³ in 3:1 toluene-CH₂Cl₂ afforded 63% of $\beta(1\rightarrow 4)$ linked 22⁵ together with 25% of the α -anomer⁵. Conversion of 22 into a glycobiosyl acceptor 23 was carried out in 3 steps (1 NaOMe in 1:1 THF-MeOH, 2 BnBr, NaH in DMF, 3 [Ir(COD)(Ph₂MeP)]PF₆, H₂ in THF, then H₂O and I₂; 91% overall). CuBr₂-n-Bu₄NBr-AgOTf¹⁶ promoted glycosylation of 23 with 24³ in (CH₂Cl)₂ gave 97% of 25 which was transformed into a glycotriosyl acceptor 6 in 3 steps (1 deacetylation, 2 benzylation, 3 deallylation, 83% overall) as described for the conversion of 22 into 23.

Crucial coupling of a glycotriosyl donor 5 (46 μ mol) with a glycotriosyl acceptor 6 (42 μ mol) was carried out at -20°~-30° in the presence of BF₃·OEt₂(14 μ mol)-MSAW-300 in 1:2

toluene-CH₂Cl₂ to give 47% of 26. The α -anomer of 26 was not detected and 20% of the hemiacetal, hydrolysis product of 5, was recovered from the reaction mixture. 26 was smoothly deblocked in 3 steps to give the nonsulfated target molecule 3 (1 LiOH in 20:1 THF H₂O 2 NaOMe in 1:1 THF-MeOH, 3 10% Pd-C, H₂ in 2:1 MeOH-H₂O; 83% overall).

Finally, transformation of 26 into sulfated glycohexaose 4 was achieved via 27 in 5 steps (1 NH₂NH₂•AcOH in 5:2 EtOH-THF, 2 Me₃N•SO₃ in DMF at 60°, 3 LiOH in 15:1 THF-H₂O, 4 NaOMe in 1:1 THF-MeOH, 5 10% Pd-C, H₂ in 2:1 MeOH-H₂O; 17% overall).

In summary, two glycohexaoses 3 and 4 that correspond to the linkage sequence of a chondroitin 4-sulfate to a core protein were synthesized for the first time by employing a glycotriosyl donor 5 and a glycotriosyl acceptor 6 as key intermediates.

Acknowledgements. A part of this work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and by the Special Coordination Funds of the Science and Technology Agency of the Japanese Government. We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for NMR, Mr. Y. Esumi for FAB-MS, Ms. M. Yoshida and her staff for elemental analyses, and Ms. A. Takahashi for technical assistance.

References and Notes

- 1 Part 89 in the series "Synthetic Studies on Cell-Surface Glycans". For part 88, see Y. Matsuzaki, Y. Ito, and T. Ogawa, *Tetrahedron Lett.*, submitted.
- 2 K. Sugahara, I. Yamashina, P. De Waard, H. Van Halbeek, and J. F. G. Vliegenthart, J. Biol. Chem., 263, 10168 (1988).
- 3 F. Goto and T. Ogawa, Tetrahdron Lett., in press.
- 4 For the synthesis of related glycotriosides, see B. Lindberg, L. Roden, and B.-G. Silvander, Carbohydr. Res., 2, 413 (1966); P. J. Garegg, B. Lindberg, and T. Norberg, Acta Chem. Scand. B, 33, 449 (1979); G. Ekborg, T. Curenton, N. R. Krishna, and L. Roden, J. Carbohydr. Chem., 9, 15 (1990).
- 5 Physical data for new compounds are given below, values of $[\alpha]_D$ and $\delta_{H,C}$ were measured at 25°±3° for solutions in CHCl₃ and CDCl₃, respectively, unless noted otherwise. Signal assignment such as 1³ stands for a proton at C-1 of sugar residue 3. 4: R_F 0.16 in 4:4:1, CHCl₃-MeOH-H₂O; $\delta_H(D_2O)$ 5.184 (0.3H, d, 3.7Hz, 1¹ α), 4.785 (d, 1.5Hz, 4⁵), 4.666 (d, 7.6Hz, 1⁴), 4.660 (d, 7.6Hz, 1³), 4.591 (0.7H, d, 7.6Hz, 1¹ β), 4.562 (d, 8.5Hz, 1⁵), 4.522 and 4.518 (2d, 7.9Hz, 1² β and 1² α),

4.459 (d, 7.6Hz, 1⁶), 4.180 and 4.142 (2d, 3.3Hz, 4² and 4³); FABMS (M-Na)⁻ 1152. 3: R_F 0.13 in 4:4:1 CHCl₃-MeOH-H₂O; $\delta_{H}(D_{2}O)$ 5.184 (0.3H, d, 4.0Hz, 1¹ α), 4.661 (d, 7.9Hz, 1³, 1⁴), 4.591 (d, 7.6Hz, 1¹b), 4.522 and 4.518 (2d, 7.9Hz, 1²), 4.510 (d, 8.2Hz, 1⁶), 4.482 (d, 7.6Hz, 1⁵), 4.180, 4.166, and 4.146 (3d, 3.3Hz, $4^{2,3,5}$); SIMS (M⁺-Na) 1052.. 5: R_F 0.64 in 1:2 toluene-EtOAc; [α]_D +21.6° (c 0.8); $_{0.6}$ $_$ 3.799 and 3.646 (2s, 20Me), 2.225 (s, Lev), 2.054 and 1.576 (2s, 2Ac). 6: RF 0.34 in 1:1 EtOAchexane; $[\alpha]_D$ -20.5° (c.1.9); δ_H 5.554 (s, PhCH), 4.857 (d, 7.6Hz, 1³), 4.472 and 4.443 (2d, 7.3Hz, 1¹ and 1²). 8: R_F 0.43 in 5:1 toluene-EtOAc; $[\alpha]_D$ -10.9° (c 1.8); δ_H 4.499 (d, 7.3Hz, H-1), 3.746 (s, OMe); Acetate of 8: δ_H 5.039 (dd, 9.3 and 10.0Hz, H-4). 9: R_F 0.43 in 7:3 hexane-EtOAc; [α]_D +161.3° (c 0.7); δ_H 8.755 (s, NH), 6.585 (d, 3.4Hz, H-1), 5.546 (s, PhCH), 2.178 (s, Ac). 10: R_F 0.23 in 3:1 hexane-EtOAc; $[\alpha]_D$ +33.5° (c 1.3); δ_H 5.446 (s, PhCH), 4.511 (d, 7.6Hz, 1¹), 4.377 (d, 8.2Hz, 1²), 3.776 (s, OMe), 2.109 (s, Ac). α -anomer of 10: R_F 0.34; [α]_D +99.1° (c 1.2); δ _H 5.900 (d, 3.7Hz, 1²), 4.534 (d, 7.6Hz, 1¹). 11: RF 0.65 in 1:2 toluene-EtOAc; $[\alpha]_D$ +12.4° (c 0.2); δ_H 5.482 (s, PhCH), 4.537 (d, 7.9Hz, 1²), 4.492 (d, 7.9Hz, 1¹), 3.962 (d, 9.8Hz, 5¹), 3.840 (s, OMe), 2.132 (s, Ac). 12: RF 0.38 in 2:1 toluene-EtOAc; [α]_D -5.4° (c 0.1); mp 185-186° (hexane-Et₂O); δ_H 5.552 (s, PhCH), 4.544 (d, 7.6Hz, 1²), 4.415 (d, 7.6Hz, 1¹), 3.973 (d, 9.5Hz, 5¹), 3.859 (s, OMe). 14: R_F 0.42 in 3:1 hexane-EtOAc; [α]D +52.8° (c 0.7); δ_H 5.456 (d, 3.7Hz, H-1), 3.676 (s, OMe), 2.359, 2.353, and 2.292 (3s, 3MBz). 15: RF 0.50 in 7:3 hexane-EtOAc; δ_H 8.659 (s, NH), 6.891 (d, 3.7Hz, H-1), 3.677 (s, OMe), 2.365, 2.342, and 2.300 (3s, 3MBz). 16: R_F 0.44 in 2:1 toluene-EtOAc; [α]_D -23.0° (c 0.1); δ_H 5.570 (s, PhCH), 5.175 (d, 7.3Hz, 1³), 4.497 (d, 7.6Hz, 1²), 4.408 (d, 7.9Hz, 1¹), 3.754 and 3.644 (2s, 20Me), 2.366, 2.345, and 2.300 (3s, 3MBz). 17: R_F 0.34 in 1:1 toluene-EtOAc; $[\alpha]_D$ -6.1° (c 0.2); δ_H 5.409 (d, 4.8Hz, 4²), 5.049 (d, 8.1Hz, 1³), 4.883 (d, 7.7Hz, 1²), 4.452 (d, 7.7Hz, 1¹), 3.758 and 3.674 (2s, 20Me), 2.174 (s, Lev), 1.953 and 1.557 (2s, 2Ac). 18: A 1.6:1 mixture of α and β -anomer; R_F 0.41 in 2:1 toluene-EtOAc; $\delta_{\rm H}$ 6.497 (d, 3.7Hz, 1¹ α), 5.919 (d, 7.3Hz, 1¹ β). 20: RF 0.46 in 3:1 toluene-EtOAc; [α]_D -67.8° (c 0.8); mp 120-121° (EtOAc-hexane); δ_H 4.573 (d, 6.1Hz, H-1). Acetate of 20: $\delta_{\rm H}$ 4.929 (ddd, 5.5, 8.9, and 11.9 Hz, H-4). 22: R_F 0.40 in 7:3 hexane-EtOAc; [α]_D -11.5° (c 1.7); δ_{H} 5.292 (dd, 7.9 and 9.8Hz, 2²), 4.472 (d, 7.9Hz, 1²), 4.435 (d, 7.6Hz, 1¹), 2.070 (s, Ac). α anomer of 22: RF 0.58; $[\alpha]_D$ +28.8° (c 2.0); δ_H 5.365 (dd, 4.0 and 10.7Hz, 2²), 5.275 (d, 4.0Hz, 1²), 4.412 (d, 7.6Hz, 1¹), 1.790 (s, Ac). 23: R_F 0.38 in 2:1 toluene-EtOAc; [α]_D -21.0° (c 0.3); δ_H 4.474 and 4.430 (2d, 7.3 and 7.6Hz, 1^1 and 1^2). 25: R_F 0.36 in 3:2 hexane-EtOAc; [α]_D -22.7° (c 0.6); δ _H 5.544 (s, PhCH), 5.442 (dd, 7.9 and 10.1Hz, 2^3), 4.902 (d, 7.9Hz, 1^3), 4.449 and 4.413 (2d, 7.3Hz, 1^1 and 1²), 1.918 (s, Ac). 26: R_F 0.51 and 1:2 toluene-EtOAc; $[\alpha]_D$ -4.5° (c 0.8); δ_H 5.552 Z(s, PhCH), 5.263 (d, 6.9Hz, 1⁴), 5.229 (d, 3.3Hz, 4⁵), 5.203 (d, 7.4Hz, 1⁵), 4.788 (d, 7.7Hz, 1⁶), 4.432 (d, 7.4Hz, 1¹), 4.332 (d, 8.0Hz, 1²), 3.769 and 3.646 (2s, 20Me), 2.208 (s, Lev), 2.010 and 1.567 (2s, 2Ac). 27: R_F 0.33 in 10:1 CHCl₃-MeOH; δ_H 3.784 and 3.639 (2s, 20Me), 2.350 x 2, 2.315, 2.291 and 2.269 (4s, 5MBz), 1.946 and 1.660 (2s, 2Ac).

- 6 F. Sugawara, H. Nakayama, and T. Ogawa, Carbohydr. Res., 108, C5 (1982).
- 7 O. Mitsunobu, Synthesis, 1 (1981); F. Yamazaki, T. Nukada, Y. Ito, S. Sato, T. Ogawa, Tetrahedron Lett., 30, 4417 (1989).
- 8 Prepared with slight modification according to: G. Grundler and R. R. Schmidt, Liebigs Ann. Chem., 1826 (1984).
- 9 Examples for the β-D glycosylation by the trichloroacetimidate procedure: W. Kinzy and R. R. Schmidt, Liebigs Ann. Chem., 1537 (1985); A. Termin and R. R. Schmidt, *ibid.*, 789 (1989).
- 10 T. Fukuyama, A. A. Laird, and L. M. Hotchkiss, Tetrahedron Lett., 26, 6291 (1985).
- G. Kraus and B. Roth, J. Org. Chem., 45, 4825 (1980); E. Dalcanale and F. Montanari, *ibid.*, 51, 567 (1986); Y. Nakahara and T. Ogawa, Carbohydr. Res., 205, 147 (1990).
- 12 L. M. Haines and E. Singleton, J. Chem. Soc., Dalton Trans., 1891 (1972); J. J. Oltvoort, C.A.A. van Boeckel, J. H. De Koning, and J. H. van Boom, Synthesis, 305 (1981).
- 13 R. R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19, 731 (1980).
- 14 T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31, 1597 (1990).
- 15 S. Hanessian and J. Banoub, Carbohydr. Res., 53, C13 (1977).
- 16 S. Sato, M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 155, C6 (1986).

(Received in Japan 26 June 1992)