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Abstract: Ru-SYNPHOS and Ru-DIFLUORPHOS catalysts quklgf’z L eigt%ylrggtlt% ?gfgg;n eoeﬁ_\ll(glﬁ)esaméiizuv;ghth e
were efficiently used for the synthesis of a wide variety of chiral Y ° )

hydroxy amides via asymmetric hydrogenation of the correspongc0P€ Of baker's yeast was limited, the biocatalytic reduc-
ing p-keto amides. tion of 3-oxo-3-phenylpropanamide and 3-oxobutan-
fmide derivatives was reported in good yields and
enantioselectivities ranging from 43% to 98%Asym-
metric reduction of acetoacetanilide with a NaBHar-
taric acid system was reportgédn alternative approach

to chiralp-hydroxy amides was the homogeneous catalyt-
ic asymmetric hydrogenation @fketo amides. To the
best of our knowledge, most of these examples involved
Ru-BINAP as chiral catalysts with a limited number of
substrates. Noyori et al. reported one example of quantita-
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Chiral B-hydroxy amided. are useful building blocks for
the synthesis of biologically active compouddSxam-
ples include R)-fluoxetine @)? used as antidepressat;
(3-hydroxy-12-methyltridecanoyl)nornicotin8)f as se-
lective toxic agent against the larvaeMénduca sexta

and BO-2727 4)* having antimicrobial activity .. . i
. S . ; tive Ru-BINAP-catalyzed hydrogenation reactioNgi-
(Figure 1). Although the synthetic utility of this family Ofd'methyl 2-ox0-butanamide at 63 atm for 86 hours with

compound is well established, there are only few efficieg % ee® The Ru-BINAP-promoted hydrogenation of
methods for thg enantiosele_ctive synthesis of such int%lrlkyl-sub.stituted[3-ketoamides was achieved with good
meQ|ateS. .Eff|C|ent. syn.theS|s were repqrted based fVel of enantio- and diastereoselectivite¥The synthe-
regioselective epoxide ring-opening reactiés. sis of the chiral fluoxetine intermediate (R = Ph,
R’ =Me) was described in a moderate 50% yield and
>99.9% ee after repeated recrystallization by using
{RuCl,[(9-BINAP]} at 200 psi and 100°C for 18
hours!3 Thus, the development of an efficient and practi-
cal route towards various chirgdhydroxy amides could

be useful since they are precursors of optically pure 1,3-
aminoalcohols which have found a widespread use in

organic chemistry as chiral units of synthetic utitity.

In previous communications, we have described the
synthesis of new atropisomeric diphosphines (Figure 2)
named SYNPHOS and DIFLUORPHOS%
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(S)-SYNPHOS (S)-DIFLUORPHOS

The direct asymmetric reduction @fketo amides is a

convenient route to synthesize optically acfivieydroxy Figure 2
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Hydroge

Our studies have demonstrated both their relevant ste= -3,
and electronic properties and their catalytic performant
in ruthenium-promoted hydrogenation reactiéh$:17c-¢ 25 -

As part as our continuing interest in the homogeneoiZ /

ruthenium-promoted hydrogenation reactidhwe wish 5 %

to report in this paper a new application of chiral Rug " / g ]
SYNPHOS and Ru-DIFLUORPHOS catalysts for theg / —s3
synthesis of a wide range pfhydroxy amides with high £ .,

optical purity. /

We first examined the Ru-SYNPHOS-promoted hydroge °

nation reaction of benzoylacetamifleas representative -

substrate (Scheme 1). The catalytic tests were perfform o 1 2 3 4 5 & 7 8

in methanol at 50 °C under 5-10 bar of hydrogen pressu.. Tioe i)

with a substrate/catalyst ratio (S/C) of 100 (Table 1). Preigure 3 Hydrogen uptake vs. time for the Ru-SYNPHOS asgnm
liminary study was carried out under 5 bar of hydrogeric hydrogenation of 5. (1) {(RuCI[(R-SYNPHOS)} (p-
pressure for 10 hours by using the in situ generat€ds[NHMe,], ee =99% (2) {RuBj{(R)-SYNPHOS]}, ee = 986
{RUBr,[(S-SYNPHOS]} prepared from a mixture of (3) {Ru(p-cymene)[§-SYNPHOSICICI, ee = 87%
(COD)Ru(2-methylallyl) and the diphosphine by addi-

tion of 2.2 equivalents of HBr according to our convenieldext, a comparative study was carried out between some
proceduré? Thep-hydroxy amides was obtained in 76% Ru-SYNPHOS catalysts such as {(RUB{SYN-

yield and 96% ee (entry 1). By increasing the pressureR1OS)L(u-Cl)5}[NH ;Me;] and  {Ruf-cymene)[6)-

10 bar, the reaction proceeded faster and with excellénf NPHOS]CI}CI. Results in Figure 3 are issued from a
91% yield and 96% ee (entry 2). When BINAP was useRprallel screening using the TOP INDUSTRIE parallel
as ligand, a comparable yield and ee (90% vyield, 94% dwjdrogenation system (TOP 1 590 080This commer-
was obtained but the reaction time increased to 15 ho@fglly available equipment aims at screening several
(entry 3). Fully comparable results were achieved in l&drogenation reactions on small to large scale with inde-
hours by using {RuBf(S-MeO-BIPHEP]} and pendent control of temperature and pressure. Individual
{RuBr,[(S-DIFLUORPHOS]} under analogous condi-monitoring of hydrogen uptake led to the kinetic profiles
tions (entries 4 and 5, respectively: 90% and 94% vyieldf €ach reaction. The parallel catalytic tests have been run

96% and 93% ee). under the same reaction conditions (entries 2, 6, 7, 10 bar,
50 °C, S/C =100). This graph allowed determining the
o o OH O best reaction time for the Ru-SYNPHOS catalysts. When
PPN (S)-Rul-cat. PP comparing the catalytic activities of the different Ru-
Ph NHCH: — oy~ " NHCHs SYNPHOS catalysts (Figure 3), we observed that
° 50 T, MeOH 6 {(RuCI[(R)-SYNPHOS)} (u-Cl)3}[NH ,Me,] catalyst en-

hanced exceedingly the hydrogenation reaction ratbs of
(curve 1) compared to both {RuB{R)-SYNPHOS]}
(curve 2) and {Rug-cymene)[§-SYNPHOS]CI}CI
(curve 3).

Scheme 1

Table 1 Optimization of the Asymmetric Hydrogenation®in Methanol

Entry Ru catalyst P (bar) Time (h) Yield (%) ee (%Y
1 {RUBT,[(9-SYNPHOS]} 5 10 76 96R)
2 {RUBr,[(9-SYNPHOS]} 10 3 91 96R)
3 {RUBr,[(R)-BINAP)} 10 15 90 949
4 {RUBr,[(9-MeO-BIPHEP]} 10 8 90 96R)
5 {RUBr,[(9-DIFLUORPHOS]} 10 8 94 93R)
6 {(RUCI[(R)-SYNPHOS)} 10 2 95 99 §)
(u-Ch)3}{NH ;Me,]
7 {Ru(p-cymene)[§)-SYNPHOS]CI}CI 10 10 75 87R)
8 {(RUCI[(R)-SYNPHOS)} 10 2 92 98 (9

(u-Ch)3}[NH ;Me,]

@ Reaction carried out with S/C = 100.

b |solated yield after flash chromatography.

¢ The ee were determined by HPLC analysis.
4 Reaction was conducted on 1.5 g scale.
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Table 2 Asymmetric Hydrogenation ¢f-Keto Amides7—11 with Ru-SYNPHOS and Ru-DIFLUORPHOS Catalysts

Entry Substrate  Ru catalyst Time (h) Yield (%Y Product ee (conf.) (%)
1 7 {(RUCI[(R)-SYNPHOS)} 19 93 OH O 99 (S
(1-Cl)HNH ;Me] Q)\)L
NHCHs
Me
2 7 {RUBF,[(S-SYNPHOS]} 19 92 15 29 R)
3 7 {RUBr,[(S)-DIFLUORPHOS]} 19 91 15 94 R)
4 8 {(RUCI[(R)-SYNPHOS)} 1 92 OH ©O >99 9
(1-CI3}[NH ,Me] /©)\/M
NHCH3
F
5 8 {RUBH,[(9-SYNPHOS]} 1 91 16 >99 R)
6 8 {RUBr,[(R)-DIFLUORPHOS]} 15 92 16 >99 9
7 9 {(RUCI[(R)-SYNPHOS)} 2 93 o o >99 9
(n-Ch)3HNH ;Mey] O
O NHCH
8 9 {RUBT,[(R)-SYNPHOS]} 1 91 17 >99 9
9 9 {RUBr,[(R)-DIFLUORPHOS]} 5 70 17 >99 (9
10 9 {RUB,[(9-DIFLUORPHOS]} 5 80 17 >99 R)
11 10 {(RUCI[(R)-SYNPHOS)} 2 a OH ©O B (S
(1-CIINH Me] “/'\)k
OO NHCHg
1 10 {RUBK,[(S-SYNPHOS]} 5 92 18 89 R)
13 11 {(RUCI[(R)-SYNPHOS)} 19 90 o o 95 R)
(n-Cl)3HNH ;Mey]
NHCH,Ph
14 11 {RUBr,[(R)-SYNPHOS]} 5 89 19 97 R
15 11 {RuBr,[(R)-DIFLUORPHOS]} 5 91 19 97 R

@ Reaction carried out with S/C = 100.

b Reaction time not optimized.

¢ Isolated yields after flash chromatography.

4 The ee were determined by HPLC analysis using Chiralcel OD-H or Chiralcel OJ column.

Thus, this study was extended to a serigskdto amides dered substrates such@and10were hydrogenated with
prepared according to the literatd?@he range op-keto  ee in a range from 89% to 99% (entries 7, 8, 11, 12). We
amides7-11 is illustrated in Scheme 2. The screeningvere pleased to find that homogeneous system based on
tests were carried out on a 1 mmol scale in methanol undRu-DIFLUORPHOS gave good results with yields up to
10 bar hydrogen pressure at 50 °C by using 1 mol% 860% and ee in a range from 94% to >99% (entries 3, 6, 9,
the Ru-SYNPHOS and Ru-DIFLUORPHOS catalyst40, 15).
(Table 2). In all cases, complete conversions were
achieved. As illustrated in Table 2, all hydrogenation o o
exhibited both excellent level of enantioselectivities U or

yields and high substrate generality. In all cases, ba" AR Ha. (10 bar) R/\)I\NHR' R)\)I\NHR'
{(RuCI[(R)-SYNPHOS)} (1-CD3}NH ,Mey)] and ’
{RuBr,[(R)-SYNPHOS]} catalysts have been engaged i 7 R=p-Me-CeHs, R' = Me
the ruthenium-promoted hydrogenation of aromdtic g Ei?_;_a%hl:ﬁ E:fmz
keto amides'-11 (Table 2) leading to excellent yields up ;, 2—Nazhth: R = Mo

to 93% for thepara-substituted compoundsand8 with 11 R = cH,Ph, R = CH,Ph

no influence of th@ara-substituentsg-Me—Ph, entries 1,

2 orp-F—Ph, entries 4 and 5). Interestingly, the more hirrc"eme 2

[Ru]-cat. OH O OH O

15-19
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To extend the scope of this versatile methodology wignantiomer was detected by HPLC analysis. When these
conditions established for the catalytic hydrogenation afansformations were repeated by using DIFLUORPHOS
B-aryl-substituted keto amides, this procedure was aligand, slightly lower ee were obtained together with very
plied to the hydrogenation di-alkyl-substituted keto good yields (entries 3, 6, 9: 96-99% ee, 90-93% yields).
amidesl2-14 (Scheme 3, Table 3). Once again, essential-

ly quantitative conversions to enantiomerically enriche " o o OH O OH O
p-hydroxy amide®0-22 (entries 1-9) were observed un- M~ et 2 o ] 1
der the same catalytic conditions. When SYNPHOS w:" NAR' Ha (10ban R NART R NHR
used as chiral ligand, the hydrogenation reactions we 50°C, MeOH 2022

performed again with excellent enantiofacial discriming!2 R =Me, R =Ph
tion affording the corresponding enantiopure alcoholy ¢, i wtye
21-22 (Table 3, entries 4, 5, 7, 8: ee >99%). Only one

Scheme 3

Table 3 Asymmetric Hydrogenation gf-Keto Amidesl12-14 with Ru-SYNPHOS and Ru-DIFLUORPHOS Catalysts

Entry Substrate  Ru-catalyst Time (h)  Yield (%9 Product ee (conf.) (%)

1 12 {(RUCI[(R)-SYNPHOS)} (u- 1 ® OH ©O 9 (R°
Cl)o}{NH ,Me,] /'\/”\NHPh

2 12 {(RUCI[(S)-SYNPHOS)} (u- 1 % 20 99 (5°
Cl)3}[NH ,Me)]

3 12 {RuBr,[(R)-DIFLUORPHOS]} 4 90 20 96 R)°

4 13 {(RUCI[(R)-SYNPHOS)} (n- 0.5 91 OH ©O >99 R)
CI)3[NH ,Me,] A)\)LNHME

5 13 {(RUCI[(S)-SYNPHOS)} (u- 0.5 92 21 >99 (9
Cl)3}[NH ,Me,]

6 13 {RuBr,[(R)-DIFLUORPHOS]} 5 90 21 99 R

7 14 {(RUCI[(R)-SYNPHOS)}, (- 1 92 oH O >99 R)
CI)2}[NH ,Me;]

C15H31 NHMe

8 14 {(RUCI[(S)-SYNPHOS)} (u- 1 Y1 22 >99 (9
CI)g}[NH ,Me,]

9 14 {RuBr,[(R)-DIFLUORPHOS]} 4 93 22 96 R

aReaction carried with S/C = 100.

b |solated yields after flash chromatography.

¢ The ee were determined By NMR (400 MHz) of (+)-MTPA ester derivatives.

4 The ee were determined by HPLC analysis using Chiralcel OD-H or Chiralcel OJ column.

The absolute configurations of the chirfdhydroxy the convenient preparation of both enantiomers with high
amides6 and21 were assigned fromu], value by com- level of enantioselectivites enabling the synthesis of
parison with known compoundd?2'3Concerning th@- natural products and analogues of biological interest.
keto amides/—11, we assumed that their hydrogenation

follows the same stereochemical outcome as abo
according to the stereochemical model proposed for t?%knowledgment

hydrogenation reaction of carbonyl derivatives witlWe would like to thank the CMCU (Comité Mixte Franco-Tunisien
ruthenium-arylphosphine catalyst! pour la Coopération Universitaire) for financial support.
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