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Abstract: Pyrazole-based DHODase inhibitors have been efficient
and conveniently synthesized in 51–60% yield from 3-(p-aryl)-4-
cyanosydnone via regioselective 1,3-diploar cycloaddition fol-
lowed by an amidation and a Ritter reaction. 
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Helicobacter pylori is a gram-negative microaerophilic
bacterium that infects up to 50% of the world’s human
population.1 Helicobacter pylori resides in the acidic sur-
roundings of the stomach, utilizing high urease enzyme
activity to provide a locally alkaline environment. Inhibi-
tion of a key enzyme of the de novo pyrimidine biosyn-
thetic pathway, dihydroorotate dehydrogenase2

(DHODase), could selectively kill this H. pylori bacteri-
um without affecting human cells or other bacterial spe-
cies.3 In 2000, Copeland et al.,3 reported that pyrazole-
based compounds 1 are potent and selective inhibitors of
the dihydroorotate dehydrogenase of H. pylori (H. pylori
DHODase) but do not inhibit the cognate enzymes from
gram-positive bacteria or humans (Figure 1).

Figure 1

There have been a few methods reported for the synthesis
of the carboethoxy-pyrazole core. Ashton et al.4 reported
a regioselective synthesis of 1H-pyrazole-5-carboxylate
from 2,4-diketo esters, but, in order to direct the initial at-
tack of the arylhydrazine on the 4-carbonyl, the 2-carbon-
yl had to be protected. The pyrazole monoacid/monofuran
cores were successfully synthesized by solution phase
synthesis.5 The furan was oxidized to a carboxylic acid
with sodium periodate and ruthenium(III) chloride or po-
tassium permanganate to provide the desired pyrazole

acid/ester product.6 A subsequent amidation step results in
the pyrazole DHODase inhibitor 1, which can be prepared
in less than 50% yield. The core pyrazole 1 was also
prepared on solid support, however, this methodology is
generally performed only on a small scale.7 We report
the regioselective 1,3-dipolar cycloaddition of 3-aryl-4-
cyanosydnone (2 or 7) to propargylic esters using the
highly hindered diphenylmethyl propiolate. This provided
only the diphenylmethyl 5-cyano-1-aryl-1H-pyrazole-3-
carboxylate 5d or 9 without any of the regioisomer 6.8

Subsequent amination and Ritter reactions provided a
convenient and efficient access to pyrazole DHODase
inhibitors. 

Sydnones9 undergo smooth cycloaddition with propargyl-
ic esters to give pyrazoles.10–15 The reaction involves a
1,3-dipolar cycloaddition of the sydnones, which behave
as cyclic azomethine imines. The initially formed cy-
cloadducts readily release carbon dioxide to produce a
mixture of five-membered regioisomeric pyrazoles. To
optimize the ratio of regioisomers (5/6), 3-(p-ethoxyphen-
yl)-4-cyanosydnone 2 was treated with unsymmetrically
substituted propargylic esters in chlorobenzene at reflux
for 48 hours (Scheme 1). The reaction pathway involves a
cycloaddition to a sydnone to give two N-bridged inter-
mediates 3 and 4. The regiochemistry of cycloaddition
should be controlled by the steric effect of the bulky sub-
stituent R2 of propargylic esters and the 4-cyano group of
sydnone 2. As the size of the R2 substituent of propargylic
esters was increased (Et, CH2Ph, and t-Bu), the regioiso-
meric ratio (5/6) improved from 57:43 to 78:22 (Table 1).
The structure assignment of the regioisomers (5/6) was
made on the basis of their characteristic 1H NMR spec-
trum. Particular attention was given to the chemical shift
of the pyrazole proton. The ring proton in the 3-carbo-
ethoxy-substituted isomers (5a–d) appeared 1.2–1.3 ppm
upfield relative to the 4-carboethoxy-substituted isomer
(6a–c). However, when 3-(p-ethoxyphenyl)-4-cyanosyd-
none (2) was reacted with diphenylmethyl propiolate
(R2 = CHPh2), only a single product, diphenylmethyl
5-cyano-1-(p-ethoxyphenyl)-1H-pyrazole-3-carboxylate
(5d), was identified and isolated in 85% yield. 

As a result, 3-aryl-4-cyanosydnones 2 and 7 were treated
with diphenylmethyl propiolate in chlorobenzene at re-
flux (ca. 130 °C) and the progress of the reaction was
monitored by carbon dioxide evolution without isolating
the bicyclic intermediate 8 (Scheme 2). After work-up
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and column chromatography, diphenylmethyl 5-cyano-
1H-pyrazole-3-carboxylates 5d and 9 were obtained as
the single products in 85% and 80% yields, respectively.
The carboxylic ester 5d and acid 9 were directly con-
verted to the corresponding secondary amides 10a and
10b in excellent yields (93% and 91%, respectively)16,17

by treatment with benzylamine. We attempted to perform
the Ritter reaction by treating compounds 10a and 10b
with cyclohexanol in refluxing formic acid,18 however,
the resultant reaction mixture was complex and only
provided a small amount of the expected N-alkylation
products. The Ritter reaction was modified19,20 by using
boron trifluoride as a catalyst under aprotic and non-aque-
ous conditions. Compound 10a or 10b was added to a
solution of cyclohexanol and boron trifluoride etherate in
chlorobenzene and heated at reflux for 72 hours. After
work-up and purification, the corresponding pyrazole
DHODase inhibitor analogues 11a and 11b were obtained
in 70% and 76% yields, respectively (Scheme 2).

In conclusion, we have developed an efficient method to
control the regioselectivity of the 1,3-dipolar cycloaddi-
tion of bulky diphenylmethyl propiolate with 3-aryl-4-
cyanosydnone (2 or 7), which was applicable to the syn-
thesis of DHODase inhibitor analogues 11a and 11b. The
cyclized 5-cyano-1-aryl-1H-pyrazole-3-carboxylate (5d
or 9) was obtained as a single isomer. After amidation and
Ritter reaction, compounds 5d and 9 were converted to
compounds 11a and 11b in 51% and 60% yields, respec-
tively, from 3-(p-aryl)-4-cyanosydnone 2 and 7. 

Scheme 1
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Scheme 2 Synthesis of the pyrazole-based DHODase inhibitors.
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Table 1 1,3-Dipolar Cycloaddition of the Sydnonea

Entry R2 Regioisomeric ratio 
(%)a

Isolated yield of 
5 and 6 (%)

5a–d 6a–c

1 Et 58 42 80

2 t-Bu 78 22 79

3 CH2Ph 57 43 76

4 CHPh2 ca. 100 –c 85d

a Sydnone 2, unsymmetrically substituted propiolate, chlorobenzene, 
reflux, 48 h.
b The 5/6 ratios were determined by 1H NMR spectroscopy.
c Not detected.
d Only 5d was isolated.
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