
This article was downloaded by: [Universita degli Studi di Torino] On: 06 June 2013, At: 23:55 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

A Practical and Eco-Friendly Method for Conversion of Epoxides to Thiiranes with Immobilized Thiourea on CaCO₃

Behzad Zeynizadeh $^{\rm a}$, Mohammad Mehdi Baradarani $^{\rm a}$ & Ronak Eisavi $_{\rm a}$

^a Department of Chemistry, Faculty of Science, Urmia University, Urmia, Iran Published online: 31 Oct 2011.

To cite this article: Behzad Zeynizadeh , Mohammad Mehdi Baradarani & Ronak Eisavi (2011): A Practical and Eco-Friendly Method for Conversion of Epoxides to Thiiranes with Immobilized Thiourea on CaCO₃ , Phosphorus, Sulfur, and Silicon and the Related Elements, 186:11, 2208-2215

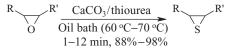
To link to this article: <u>http://dx.doi.org/10.1080/10426507.2011.583963</u>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.


Phosphorus, Sulfur, and Silicon, 186:2208–2215, 2011 Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426507.2011.583963

A PRACTICAL AND ECO-FRIENDLY METHOD FOR CONVERSION OF EPOXIDES TO THIIRANES WITH IMMOBILIZED THIOUREA ON CaCO₃

Behzad Zeynizadeh, Mohammad Mehdi Baradarani, and Ronak Eisavi

Department of Chemistry, Faculty of Science, Urmia University, Urmia, Iran

GRAPHICAL ABSTRACT

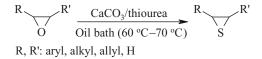
Abstract Solvent-free conversion of various epoxides to the corresponding thiiranes was carried out efficiently with immobilized thiourea on $CaCO_3$. The reactions were completed within 1–12 min under oil bath (60 °C–70 °C) conditions to afford thiiranes in 88%–98% yields.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental resource: Figures S1–S3.]

Keywords Epoxide; CaCO₃; thiirane; thiourea; solvent free

INTRODUCTION

Synthetic chemists continue to explore new methods to carry out chemical transformations. One of these new methods is to run reactions on the surface of solids. Surfaces have properties that are not duplicated in the solution or gas phase; hence entirely new chemistry may occur.¹ Even in the absence of new chemistry, a surface reaction may be more desirable than a solution counterpart, because the reaction can be more convenient to run or a higher yield of the product is attained. For these reasons, surface synthetic organic chemistry is a rapidly growing field of study. In organic syntheses, increasing attention is being focused on green chemistry,² using environmentally benign reagents and conditions, particularly solvent-free procedures,³ which often lead to clean, eco-friendly, and highly efficient procedures involving simplified workups. The absence of solvent reduces the risk of hazardous explosion when the reaction takes place in a closed vessel. Moreover, aprotic


Received 30 December 2010; accepted 21 April 2011.

The financial support of this work was gratefully acknowledged by the Research Council of Urmia University. Address correspondence to B. Zeynizadeh, Department of Chemistry, Faculty of Science, Urmia University, Urmia 57159-165, Iran. E-mail: bzeynizadeh@gmail.com

dipolar solvents with high boiling points are expensive and are difficult to remove from reaction mixtures.

Thiiranes are the simplest sulfur heterocycles and occur in nature. They have been used advantageously in the pharmaceutical, polymer, pesticide, and herbicide industries.⁴ The general procedure for the synthesis of thiiranes is the conversion of epoxides by an oxygen–sulfur exchange reaction. Sulfur transferring agents such as thiourea,⁵ inorganic thiocyanates,⁶ silica-supported KSCN⁷ or $(NH_2)_2CS$,⁸ polymer-supported thiocyanates,⁹ and Dowex-50WX8-supported thiourea¹⁰ have been used for this purpose. Conversion of epoxides to thiiranes with thiourea or NH₄SCN in the presence of Lewis acids or other promoters such as RuCl₃,¹¹ BiCl₃,¹² TiO₂,¹³ TiCl₃(OTf),¹⁴ Mg(HSO₄)₂,¹⁵ LiBF₄,¹⁶ LiClO₄,¹⁷ I₂,¹⁸ montmorillonite K10,¹⁹ (NH₄)₈[CeW₁₀O₃₆]·20H₂O,²⁰ CAN,²¹ Sn(TTP)(OTf)₂,²² [bmim]PF₆,²³ poly(4-vinylpyridine)-supported Ce(OTf)₄,²⁴ polystyrene-supported AlCl₃,²⁵ etidronic acid,²⁶ NH₄Cl,²⁷ HBF₄/SiO₂,²⁸ and silica chloride²⁹ have been also reported. Although, a vast variety of reagents or methods have been reported for the preparation of thiiranes from epoxides; however, most of these protocols suffer from some disadvantages.

As a part of our research program to the synthesis of thiiranes, herein, we wish to report a green and practical method for solvent-free conversion of epoxides to the corresponding thiiranes by $CaCO_3$ -supported thiourea under oil bath conditions (60 °C-70 °C) (Scheme 1).

Scheme 1

RESULTS AND DISCUSSION

A literature review shows that solvent-free conversion of epoxides to the corresponding thiiranes has been rarely studied and this goal was achieved with thiourea at $120 \circ C^5$ and thiourea/SiO₂ system.⁸ Nevertheless, these methods suffered from high reaction temperature and moderate yields. In this context, we have reported Dowex-50WX8-supported thiourea as an efficient polymeric supporting system for solvent-free conversion of epoxides to thiiranes.¹⁰ Lack of information related to the application of alkali and alkali metal carbonates and sulfates in the preparation of thiiranes from epoxides encouraged us to investigate the capability of some costless and eco-friendly reagents such as Na₂CO₃, K₂CO₃, Cs₂CO₃, MgCO₃, CaCO₃, SrCO₃, BaCO₃, NaHCO₃, KHCO₃, NaHSO₄, KHSO₄, and Na₂SO₄ for the titled transformation. Reaction of styrene oxide with the immobilized thiourea on the carbonates and sulfates was carried out under solvent and solvent-free conditions (Table 1). The results showed that among the reagents only CaCO₃ presented the perfect capability in the conversion of styrene oxide to styrene episulfide. In addition, the rate enhancement and efficiency under solvent-free conditions was higher than the solution phase.

In order to clarify the effect of Ca^{2+} or CO_3^{2-} ions in the observed promotion, we also examined the oxygen–sulfur exchange reaction of styrene oxide with the immobilized

Reaction component	Molar ratio	Solvent	Condition ^b	Time (min)	Conversion (%)
Epoxide/thiourea/NaHCO ₃	1:2:2	CH ₃ CN	Reflux	60	20
Epoxide/thiourea/NaHCO ₃	1:2:2	Solvent free	r.t.	50	30
Epoxide/thiourea/NaHSO ₄	1:2:2	Solvent free	r.t.	50	0
Epoxide/thiourea/Na ₂ SO ₄	1:2:2	Solvent free	r.t.	50	50
Epoxide/thiourea/Na ₂ CO ₃	1:2:2	Solvent free	r.t.	30	0
Epoxide/thiourea/KHCO ₃	1:2:2	Solvent free	r.t.	50	25
Epoxide/thiourea/KHSO ₄	1:2:2	Solvent free	r.t.	60	5
Epoxide/thiourea/K ₂ CO ₃	1:2:2	Solvent free	r.t.	30	0
Epoxide/thiourea/BaCO ₃	1:2:2	Solvent free	Oil bath	30	40
Epoxide/thiourea/BaCO ₃	1:2:2	CH ₃ CN	Reflux	120	70
Epoxide/thiourea/CaCO ₃	1:2:2	CH ₃ CN	Reflux	90	95
Epoxide/thiourea/CaCO ₃	1:2:2	THF	Reflux	120	96
Epoxide/thiourea/CaCO ₃	1:2:2	EtOH	Reflux	35	100
Epoxide/thiourea/CaCO ₃	1:2:2	Solvent free	r.t.	4	100
Epoxide/thiourea/CaCO ₃	1:2:2	Solvent free	Oil bath	1	100
Epoxide/thiourea/CaCO ₃	1:2:3	Solvent free	Oil bath	1	100
Epoxide/thiourea/CaCO ₃	1:2:5	solvent free	Oil bath	0.5	100
Epoxide/thiourea/CaO	1:2:3	CH ₃ CN	Reflux	90	30
Epoxide/thiourea/CaO	1:2:3	Solvent free	r.t.	30	20
Epoxide/thiourea/CaCl ₂	1:2:2	CH ₃ CN	Reflux	60	5
Epoxide/thiourea/CaCl ₂	1:2:2	Solvent free	r.t.	60	10
Epoxide/thiourea/MgSO ₄	1:2:2	Solvent free	r.t.	60	40
Epoxide/thiourea/MgSO ₄	1:2:2	CH ₃ CN	Reflux	60	40
Epoxide/thiourea/MgCO ₃	1:2:2	Solvent free	Oil bath	60	55
Epoxide/thiourea/Cs ₂ CO ₃	1:2:2	Solvent free	r.t.	60	20
Epoxide/thiourea/SrCO ₃	1:2:2	Solvent free	r.t.	60	15

 Table 1 Optimization experiments for conversion of styrene oxide to styrene episulfide with thiourea under different conditions^a

^aAll reactions were carried out with 1 mmol of epoxide. ^bTemperature of oil bath was 60 °C-70 °C.

thiourea on CaO and CaCl₂ (Table 1). The experiments showed that calcium oxide and chloride did not show any efficiency in solution or even under solvent-free conditions. On the basis of these observations, we therefore concluded that the integrated form of Ca²⁺ and CO₃²⁻ ions as CaCO₃ synergistically promoted the conversion of styrene oxide to styrene episulfide. Moreover, the immobilization of thiourea (2 mmol) on CaCO₃ (2 mmol) was the requirement for the complete reaction of styrene oxide (1 mmol) within 1–4 min. In addition, performing the reaction in an oil bath (60 °C–70 °C) exhibited the more rate enhancement than room temperature conditions. The capability of thiourea/CaCO₃ system was further investigated by the reaction of activated, deactivated, and cyclic epoxides under the optimized conditions. Table 2 shows the general trend and versatility of this synthetic method. Generally, activated epoxides showed higher-rate enhancement than deactivated ones; however, all reactions were carried out successfully in an oil bath (60 °C–70 °C) at solvent-free conditions, and subsequently the corresponding thiiranes were obtained in high to excellent yields within 1–12 min.

The benefits of the immobilized thiourea on CaCO₃ was highlighted by comparison of our results with those of reported for thiourea/120 °C,⁵ silica-gel-supported thiourea,⁸ Dowex-50WX8-supported thiourea,¹⁰ and thiourea/NH₄Cl²⁷ protocols (Table 3). A case study shows that in viewpoints of availability and costless of the reagents, mild reaction

Epoxide	Thiirane	Molar ratio epoxide/thiourea/ CaCO ₃	Time (min)	Yield (%) ^b	Reference
Ph	Ph	1:2:2	1	96	27
		1:2:2	2	98	26
$\bigcirc_{0} \sim_{0}$	\bigcirc_{o}_{v}	1:2:2	10	95	27
MeO O O	MeO	1:2:2	12	96	23
		1:2:2	8	95	23
Me O	Me	1:2:2	12	97	23
	≫_0~~s	1:2:2	1	98	27
	$\downarrow_0 \sim$	1:2:2	5	97	27
	$\sim 0 \sim S$	1:2:2	4	92	23
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1:2:2	3	94	23
		1:2:2	7	97	27
O Ph Ph	Ph Ph	1:2:2	3	98	27
CI	CI	1:2:2	6	88	23
Oo	S	1:2:2	3	90	27
o	S	1:2:2	8	91	27
	C S	1:2:2	10	98	28
			(	Continued	on next page)

Table 2 Solvent-free conversion of epoxides to thiiranes with CaCO immobilized thiourea^a

Epoxide	Thiirane	Molar ratio epoxide/thiourea/ CaCO ₃	Time (min)	Yield (%) ^b	Reference
		1:2:2	2	97	28
	0	1:2:2	2	90	28
Ph O	Ph S	1:2:2	3	95	28

Table 2 Solvent-free conversion of epoxides to thiiranes with CaCO immobilized thiourea^a (Continued)

^aAll reactions were carried out in oil bath (60 °C-70 °C) at solvent-free conditions. ^bIsolated yields.

conditions, and the yield of thiiranes, the present method shows the more or comparable efficiency than the other methods.

In conclusion, we have shown that various epoxides are easily and efficiently converted to the corresponding thiiranes with thiourea immobilized on CaCO₃ in oil bath and under solvent-free conditions. The cheapness and easy preparation of thiourea/CaCO₃ system, mild reaction conditions, high yield of thiiranes, simple workup procedure as well as the benefits of solvent-free conditions make this method a useful addition to the present methodologies.

#### EXPERIMENTAL

#### General

All reagents and substrates were purchased from commercial sources with the best quality and were used without further purification. IR and  1 H/ 13 C NMR spectra were recorded on Thermo Nicolet Nexus 670 FT-IR and 300 MHz Bruker Avance spectrometers, respectively. The products were characterized by their spectra data and comparison with the reported data in literature. TLC was applied for the purity determination of substrates, products, and reaction monitoring over silica gel 60 F₂₅₄ aluminum sheet.

#### Preparation of Immobilized Thiourea on CaCO₃

A mixture of thiourea (0.152 g, 2 mmol) and CaCO₃ (0.2 g, 2 mmol) were placed in a mortar and then were thoroughly mixed for 2 min at room temperature to give CaCO₃ immobilized thiourea (0.35 g, 76% w/w). FT-IR ( $\nu_{max}$ /cm⁻¹, KBr): 3808, 3388, 3285, 3180, 2692, 2519, 2365, 1787, 1613, 1508, 1085, 858, 729, 633, 497. FT-IR spectrum of thiourea, CaCO₃, and CaCO₃/thiourea system are provided as supplementary data.

# General Procedure for Solvent-Free Conversion of Epoxides to Thiiranes with Thiourea Immobilized on CaCO₃

In an experimental tube equipped with a magnetic stirrer, the epoxide (1 mmol) and  $CaCO_3$  immobilized thiourea (0.35 g, 76% w/w) were well mixed. The reaction mixture was

23:55 06 June 2013
at
[orino] at
di T
di
Studi
:=
deg]
versita degli S
Unive
[Ur
d by
adec
omloa
ŏ

	sols	
	protocols	
	different	
	à	
	anes with thiourea	
	with t	
	thur	
	poxides to	
,	otel	
	vent-free conversion	
,	-free	
	olvent	
	of soly	
	Comparison of	
(	5	
:	Table 3	

	Tr	Thiourea/CaC	aCO3 ^a		Thiour	Thiourea/Dowex-50WX ¹⁰	x-50W2	K ¹⁰	Thi	Thiourea/NH4C1 ²⁷	I ₄ C1 ²⁷		Tr	Thiourea/SiO2 ⁸	SiO ₂ ⁸		Thiour	Thiourea/120 °C5	C2
Epoxide	Thiourea (mmol)	CaCO ₃ T (mmol) (1	Time (min)	Yield (%)	Thiourea (mmol)	Dowex (g)	Time (min)	Yield (%)	Thiourea CaCO ₃ Time Yield Thiourea Dowex Time Yield Thiourea NH ₄ C1 Time Yield Thiourea Silica Time Yield Thiourea Time Yield (mmol) (mmol) (mmol) (mmol) (mmol) (%) (mmol) (	NH4C1 (g)	Time (min)	Yield (%)	Thiourea (mmol)	Silica (g)	Time (min)	Yield (%)	Thiourea (mmol)	Time (min)	Yield (%)
Lo d	6	7	-	96	7	0.5 60		93	6	0.5	30 95	95	7	2.8	2.8 80 95	95	7	15	65
Å Å	7	7	5	76	7	0.5	20	95	7	0.5	30	96	7	2.8 45	45	93	7	60	80
A of	2	7	-	98	2	0.5	30	96	2	0.5	15	93	2	2.8	40	92	2	09	LL
Off	7	7	10	95	7	0.5	20	91	7	0.5	75	94	7	2.8	2.8 120	95	7	15	84

^aThe present method.

stirred and heated in an oil bath (60  $^{\circ}$ C–70  $^{\circ}$ C) for the appropriate time mentioned in Table 2. The progress of the reaction was monitored by TLC. After completion of the reaction, simply washing of the reaction mixture with an organic solvent and then evaporation of the filtrate under reduced pressure afforded the pure thiirane in 88%–98% yield.

#### REFERENCES

- (a) Toda, F. Organic Solid State Reactions (Topics in Current Chemistry 254) (Springer-Verlag, Berlin, 2010);
   (b) Kirschning, A. Immobilized Catalysts: Solid Phases, Immobilization and Applications (Topics in Current Chemistry 242) (Springer-Verlag, Berlin, 2010);
   (c) Zaragoza Dörwald, F. Organic Synthesis on Solid Phase: Supports, Linkers, Reactions (Wiley-VCH, Weinheim, 2002), 2nd ed. (d) Hosseini Sarvari, M.; Sharghi, H. J. Org. Chem. 2004, 69, 6953–6956;
   (e) Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. Tetrahedron 1996, 52, 4527–4554.
- (a) Doxsee, K.; Hutchison, J. Green Organic Chemistry: Strategies, Tools, and Laboratory Experiments (Brooks/Cole, Belmont, CA, 2004); (b) Dunn, P. J.; Wells, A. S.; Williams, M. T., Green Chemistry in the Pharmaceutical Industry (Wiley-VCH, Weinheim, 2010); (c) Sheldon, R. A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis (Wiley-VCH, Weinheim, 2007); (d) Doble, M.; Kumar, A. Green Chemistry and Engineering (Elsevier, New York, 2007).
- 3. Tanaka, K. Solvent-free Organic Synthesis (Wiley-VCH, Weinheim, 2009), 2nd ed.
- Dittmer, D. C., In *Thiiranes and Thiirenes in Comprehensive Heterocyclic Chemistry*, A. R. Katritzky and C. W. Rees, Eds. (Pergamon, Oxford, **1984**), vol. 7, pp. 132–182.
- Kiasat, A. R.; Kazemi, F.; Fallah Mehrjardi, M. Phosphorus Sulfur Silicon Relat. Elem. 2004, 179, 1841–1844.
- 6. (a) Bouda, H.; Borredon, M. E.; Delmas, M.; Gaset, A. Synth. Commun. 1987, 17, 943–951;
  (b) Vedejs, E.; Krafft, G. A.; *Tetrahedron* 1982, 38, 2857–2881; (c) Jankowski, K.; Harvey, R. Synthesis 1972, 627–628; (d) Sander, M. Chem. Rev. 1966, 66, 297–339.
- Brimeyer, M. O.; Mehrota, A.; Quici, S.; Nigam, A.; Regen, S. L.; J. Org. Chem. 1980, 45, 4254–4255.
- Iranpoor, N.; Firouzabadi, H.; Jafari, A. A.; *Phosphorus Sulfur Silicon Relat. Elem.* 2005, 180, 1809–1814.
- 9. Tamami, B.; Kiasat, A. R.; Synth. Commun. 1996, 26, 3953-3958.
- 10. Zeynizadeh, B.; Yeghaneh, S. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 362-368.
- 11. Iranpoor, N.; Kazemi, F. Tetrahedron 1997, 53, 11377-11382.
- 12. Mohammadpoor-Baltork, I.; Aliyan, H. Synth. Commun. 1998, 28, 3943-3947.
- 13. Yadollahi, B.; Tangestaninejad, S.; Habibi, M. H.; Synth. Commun. 2004, 34, 2823–2827.
- 14. Iranpoor, N.; Zeynizadeh, B. Synth. Commun. 1998, 28, 3913-3918.
- 15. Salehi, P.; Khodaei, M. M.; Zolfigol, M. A.; Keyvan, A. Synth. Commun. 2003, 33, 3041–3048.
- 16. Kazemi, F.; Kiasat, A. R.; Ebrahimi, S. Synth. Commun. 2003, 33, 595-600.
- 17. Reddy, C. S.; Nagavani, S. Heteroatom Chem. 2008, 19, 97-99.
- Yadav, J. S.; Subba Reddy, B. V.; Sengupta, S.; Gupta, M. K.; Baishya, G.; Harshavardhana, S. J.; Dash, U. *Monatsh. Chem.* **2008**, 139, 1363–1367.
- 19. Mohammadpoor-Baltork, I.; Aliyan, H. J. Chem. Res. 2000, 122–123.
- 20. Mirkhani, V.; Tangestaninejad, S.; Alipanah, L. Synth. Commun. 2002, 32, 621-626.
- 21. Iranpoor, N.; Kazemi, F. Synthesis 1996, 821-822.
- 22. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Shaibani, R. Tetrahedron 2004, 60, 6105–6111.
- Yadav, J. S.; Subba Reddy, B. V.; Srinivas Reddy, C.; Rajasekhar, K. J. Org. Chem. 2003, 68, 2525–2527.
- 24. Iranpoor, N.; Tamami, B.; Shekarriz, M. Synth. Commun. 1999, 29, 3313-3321.
- 25. Tamami, B.; Parvanak Borujeny, K. Synth. Commun. 2004, 34, 65-70.
- 26. Wu, L.; Wang, Y.; Yan, F.; Yang, C. Bull. Korean Chem. Soc. 2010, 31, 1419–1420.

#### CONVERSION OF EPOXIDES TO THIIRANES WITH CaCO₃/THIOUREA SYSTEM 2215

- 27. Zeynizadeh, B.; Yeghaneh, S. Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 2280-2286.
- 28. Bandgar, B. P.; Patil, A. V.; Kamble, V. T.; Totre, J. V.; J. Mol. Catal. A: Chem. 2007, 273, 114–117.
- 29. Wu, L.; Yang, L.; Fang, L.; Yang, C.; Yan, F. *Phosphorus Sulfur Silicon Relat. Elem.* **2010**, 185, 2159–2164.